Skip to content
2000
image of Unveiling the Therapeutic Potential of Pinostrobin in Alzheimer’s and Parkinson’s Disease Based on Oxidative Stress and Mitochondrial 
Dysfunction

Abstract

Introduction

Neurodegenerative diseases are a group of life-threatening conditions characterized by gradual and severe neuronal degeneration, posing a significant global health challenge. Many neurodegenerative diseases, including Alzheimer's disease and Parkinson’s disease, share identical and recognizable etiologies, such as neuronal degeneration, apoptosis, oxidative stress, lipid peroxidation, Ca2+ overload, neuroinflammation, protein aggregation, endoplasmic reticulum stress, and mitochondrial dysfunction. Among these etiologies, oxidative stress and mitochondrial dysfunction are the primary contributing factors, involving several enzymes and signaling molecules in the underlying mechanism of disease progression. Globally available treatments provide only temporary symptomatic relief with side effects, and yet there is no medication to eradicate the disease-related cause.

Materials and Methods

Extensive research has explored novel herbal medications offered as neuroprotective against these debilitating conditions, aiming to reverse or halt the disease progression with minimal adverse effects. Pinostrobin is a major bioactive flavonoid primarily isolated from (Fingerroot). Established research has reported that pinostrobin exhibits a wide array of pharmacological activities, including anti-inflammatory, anti-leukemia, antioxidant, antimicrobial properties, as well as protective effects against mitochondrial dysfunction and neurodegeneration.

Results and Discussion

Based on preclinical studies, we have summarised the current knowledge of pinostrobin's neuroprotective actions, highlighting its effectiveness in mitigating neuronal damage, preserving synaptic function, reducing oxidative stress, neuroinflammation, protein aggregation, mitochondrial apoptosis, and calcium overload. These mechanisms collectively support its therapeutic potential in modulating the molecular pathways underlying Alzheimer’s and Parkinson’s disease.

Conclusion

This review offers a comprehensive analysis of pinostrobin and its molecular pathways in combating neurodegenerative diseases, highlighting its promising effectiveness as a natural neuroprotective agent in Alzheimer’s and Parkinson’s disease by modulating mitochondrial and oxidative stress-mediated pathways.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010410158251107102136
2026-01-09
2026-01-31
Loading full text...

Full text loading...

References

  1. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  2. Khan A. Ikram M. Hahm J.R. Kim M.O. Antioxidant and anti-inflammatory effects of Citrus flavonoid hesperetin: Special focus on neurological disorders. Antioxidants 2020 9 7 609 10.3390/antiox9070609 32664395
    [Google Scholar]
  3. Erkkinen M.G. Kim M.O. Geschwind M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2018 10 4 a033118 10.1101/cshperspect.a033118 28716886
    [Google Scholar]
  4. Vellingiri B. An overview about neurological diseases in India – A theranostics approach. Aging Health. Res. 2024 4 1 100177 10.1016/j.ahr.2023.100177
    [Google Scholar]
  5. Teleanu D.M. Niculescu A.G. Lungu I.I. Radu C.I. Vladâcenco O. Roza E. Costăchescu B. Grumezescu A.M. Teleanu R.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 2022 23 11 5938 10.3390/ijms23115938 35682615
    [Google Scholar]
  6. Singh R. Sadiq N.M. Cholinesterase Inhibitors. Treasure Island, Florida StatPearls 2023
    [Google Scholar]
  7. Cummings J.L. Tong G. Ballard C. Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options. J. Alzheimers Dis. 2019 67 3 779 794 10.3233/JAD‑180766 30689575
    [Google Scholar]
  8. Surguchov A. Bernal L. Surguchev A.A. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules 2021 11 5 624 10.3390/biom11050624 33922207
    [Google Scholar]
  9. Murti Y. Semwal B.C. Goyal A. Mishra P. Naringenin scaffold as a template for drug designing. Curr. Tradit. Med. 2021 7 1 28 44 10.2174/2215083805666190617144652
    [Google Scholar]
  10. Semwal B.C. Singh B. Murti Y. Singh S. Therapeutic potential of ascorbic acid in the management of Alzheimer’s disease: An update. Curr. Pharm. Biotechnol. 2023 25 2 196 212 10.2174/1389201024666230804102617 37537932
    [Google Scholar]
  11. Singh N.K. Garabadu D. Quercetin exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-induced mitochondrial toxicity and cognitive impairments in experimental rodents. Neurotox. Res. 2021 39 6 1859 1879 10.1007/s12640‑021‑00410‑5 34554409
    [Google Scholar]
  12. Andrade S. Nunes D. Dabur M. Ramalho M.J. Pereira M.C. Loureiro J.A. Therapeutic potential of natural compounds in neurodegenerative diseases: Insights from clinical trials. Pharmaceutics 2023 15 1 212 10.3390/pharmaceutics15010212 36678841
    [Google Scholar]
  13. Ullah A. Munir S. Badshah S.L. Khan N. Ghani L. Poulson B.G. Emwas A.H. Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules 2020 25 22 5243 10.3390/molecules25225243 33187049
    [Google Scholar]
  14. Francardo V. Schmitz Y. Sulzer D. Cenci M.A. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson’s disease. Exp. Neurol. 2017 298 Pt B 137 147 10.1016/j.expneurol.2017.10.001
    [Google Scholar]
  15. Frandsen J.R. Narayanasamy P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol. 2018 14 465 473 10.1016/j.redox.2017.10.015 29080525
    [Google Scholar]
  16. Patel N.K. Jaiswal G. Bhutani K.K. A review on biological sources, chemistry and pharmacological activities of pinostrobin. Nat. Prod. Res. 2016 30 18 2017 2027 10.1080/14786419.2015.1107556 26653796
    [Google Scholar]
  17. Athapaththu A.M.G.K. Lee K.T. Kavinda M.H.D. Lee S. Kang S. Lee M.H. Kang C.H. Choi Y.H. Kim G.Y. Pinostrobin ameliorates lipopolysaccharide (LPS)-induced inflammation and endotoxemia by inhibiting LPS binding to the TLR4/MD2 complex. Biomed. Pharmacother. 2022 156 113874 10.1016/j.biopha.2022.113874 36270256
    [Google Scholar]
  18. Norkaew C. Subkorn P. Chatupheeraphat C. Roytrakul S. Tanyong D. Pinostrobin, a fingerroot compound, regulates miR-181b-5p and induces acute leukemic cell apoptosis. Sci. Rep. 2023 13 1 8084 10.1038/s41598‑023‑35193‑6 37208425
    [Google Scholar]
  19. Zhao L.L. Jayeoye T.J. Ashaolu T.J. Olatunji O.J. Pinostrobin, a dietary bioflavonoid exerts antioxidant, anti-inflammatory, and anti-apoptotic protective effects against methotrexate-induced ovarian toxicity in rats. Tissue Cell 2023 85 102254 10.1016/j.tice.2023.102254 37866152
    [Google Scholar]
  20. Worakajit N. Thongnuanjan P. Chabang N. Soodvilai S. Tuchinda P. Soodvilai S. Pinostrobin attenuates colistin-induced apoptosis of human renal proximal tubular cells. Pharma Sci. Asia 2021 48 6 549 556 10.29090/psa.2021.06.21.008
    [Google Scholar]
  21. Thongrong S. Promsrisuk T. Sriraksa N. Surapinit S. Jittiwat J. Kongsui R. Alleviative effect of scopolamine induced memory deficit via enhancing antioxidant and cholinergic function in rats by pinostrobin from Boesenbergia rotunda (L.). Biomed. Rep. 2024 21 3 130 10.3892/br.2024.1818 39070112
    [Google Scholar]
  22. González A.S. Soto Tellini V.H. Benjumea Gutiérrez D.M. Study of the dermal anti-inflammatory, antioxidant, and analgesic activity of pinostrobin. Heliyon 2022 8 9 10413 10.1016/j.heliyon.2022.e10413 36097473
    [Google Scholar]
  23. Kumar M. Thangavel C. Becker R.C. Sadayappan S. Monoclonal antibody-based immunotherapy and its role in the development of cardiac toxicity. Cancers 2020 13 1 86 10.3390/cancers13010086 33396766
    [Google Scholar]
  24. Panthong A. Kanjanapothi D. Tuntiwachwuttikul P. Pancharoen O. Reutrakul V. Antiinflammatory activity of flavonoids. Phytomedicine 1994 1 2 141 144 10.1016/S0944‑7113(11)80032‑2 23195887
    [Google Scholar]
  25. Li C. Tang B. Feng Y. Tang F. Pui-Man Hoi M. Su Z. Ming-Yuen Lee S. Pinostrobin exerts neuroprotective actions in neurotoxin-induced Parkinson’s disease models through nrf2 induction. J. Agric. Food Chem. 2018 66 31 8307 8318 10.1021/acs.jafc.8b02607 29961319
    [Google Scholar]
  26. Nicholson R.A. David L.S. Pan R.L. Liu X.M. Pinostrobin from Cajanus cajan (L.) Millsp. inhibits sodium channel-activated depolarization of mouse brain synaptoneurosomes. Fitoterapia 2010 81 7 826 829 10.1016/j.fitote.2010.05.005 20472040
    [Google Scholar]
  27. González A.G. Aguiar Z.E. Luis J.G. Ravelo A.G. Vázquez J.T. Domínguez X.A. Flavonoids from Salvia texana. Phytochemistry 1989 28 10 2871 2872 10.1016/S0031‑9422(00)98114‑7
    [Google Scholar]
  28. Patel N.K. Bhutani K.K. Pinostrobin and Cajanus lactone isolated from Cajanus cajan (L.) leaves inhibits TNF-α and IL-1β production: In vitro and in vivo experimentation. Phytomedicine 2014 21 7 946 953 10.1016/j.phymed.2014.02.011 24680612
    [Google Scholar]
  29. Knopman D.S. Amieva H. Petersen R.C. Alzheimer disease. Nat. Rev. Dis. Primers 2021 7 1 1 21 10.1038/s41572‑021‑00269‑y
    [Google Scholar]
  30. International A.D. Guerchet M. Prince M. Prina M. The global voice on dementia. 2020 Available from: https://www.alzint.org
    [Google Scholar]
  31. Pszczołowska M. Walczak K. Miśków W. Mroziak M. Chojdak-Łukasiewicz J. Leszek J. Mitochondrial disorders leading to Alzheimer’s disease—perspectives of diagnosis and treatment. Geroscience 2024 46 3 2977 2988 10.1007/s11357‑024‑01118‑y 38457008
    [Google Scholar]
  32. Ren J. Xiang B. Xueling L. Han X. Yang Z. Zhang M. Zhang Y. Molecular mechanisms of mitochondrial homeostasis regulation in neurons and possible therapeutic approaches for Alzheimer’s disease. Heliyon 2024 10 17 36470 10.1016/j.heliyon.2024.e36470 39281517
    [Google Scholar]
  33. Pappolla M.A. Martins R.N. Poeggeler B. Omar R.A. Perry G. Oxidative stress in Alzheimer’s disease: The shortcomings of antioxidant therapies. J. Alzheimers Dis. 2024 101 s1 S155 S178 10.3233/JAD‑240659 39422961
    [Google Scholar]
  34. Calabrò M. Rinaldi C. Santoro G. Crisafulli C. The biological pathways of Alzheimer disease: A review. AIMS Neurosci. 2021 8 1 86 132 10.3934/Neuroscience.2021005 33490374
    [Google Scholar]
  35. Jomova K. Makova M. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Rhodes C.J. Valko M. Essential metals in health and disease. Chem. Biol. Interact. 2022 367 110173 10.1016/j.cbi.2022.110173 36152810
    [Google Scholar]
  36. Tiwana J. Shah A. Dhalla N. The involvement of reactive oxygen species in causing chronic cardiovascular and neurodegenerative diseases and some cancers. Scr. Med. 2024 55 2 199 217 10.5937/scriptamed55‑48730
    [Google Scholar]
  37. Forman H.J. Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021 20 9 689 709 10.1038/s41573‑021‑00233‑1 34194012
    [Google Scholar]
  38. Singh A. Kukreti R. Saso L. Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019 24 8 1583 10.3390/molecules24081583 31013638
    [Google Scholar]
  39. Jomova K. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024 98 5 1323 1367 10.1007/s00204‑024‑03696‑4 38483584
    [Google Scholar]
  40. Cassidy L. Fernandez F. Johnson J.B. Naiker M. Owoola A.G. Broszczak D.A. Oxidative stress in Alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med. 2020 49 102294 10.1016/j.ctim.2019.102294 32147039
    [Google Scholar]
  41. Tsou H.H. Hsu W.C. Fuh J.L. Chen S.P. Liu T.Y. Wang H.T. Alterations in acrolein metabolism contribute to Alzheimer’s disease. J. Alzheimers Dis. 2017 61 2 571 580 10.3233/JAD‑170736 29226874
    [Google Scholar]
  42. Peña-Bautista C. Baquero M. Vento M. Cháfer-Pericás C. Free radicals in Alzheimer’s disease: Lipid peroxidation biomarkers. Clin. Chim. Acta 2019 491 85 90 10.1016/j.cca.2019.01.021 30685358
    [Google Scholar]
  43. Zhang Y.H. Wang D.W. Xu S.F. Zhang S. Fan Y.G. Yang Y.Y. Guo S.Q. Wang S. Guo T. Wang Z.Y. Guo C. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol. 2018 14 535 548 10.1016/j.redox.2017.11.001 29126071
    [Google Scholar]
  44. Kao Y.C. Ho P.C. Tu Y.K. Jou I.M. Tsai K.J. Lipids and Alzheimer’s disease. Int. J. Mol. Sci. 2020 21 4 1505 10.3390/ijms21041505 32098382
    [Google Scholar]
  45. Campos-Peña V. Pichardo-Rojas P. Sánchez-Barbosa T. Ortíz-Islas E. Rodríguez-Pérez C.E. Montes P. Ramos-Palacios G. Silva-Adaya D. Valencia-Quintana R. Cerna-Cortes J.F. Toral-Rios D. Amyloid β, lipid metabolism, basal cholinergic system, and therapeutics in Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 20 12092 10.3390/ijms232012092 36292947
    [Google Scholar]
  46. Arimon M. Takeda S. Post K.L. Svirsky S. Hyman B.T. Berezovska O. Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol. Dis. 2015 84 109 119 10.1016/j.nbd.2015.06.013 26102023
    [Google Scholar]
  47. Yin F. Lipid metabolism and Alzheimer’s disease: Clinical evidence, mechanistic link and therapeutic promise. FEBS J. 2023 290 6 1420 1453 10.1111/febs.16344 34997690
    [Google Scholar]
  48. Sultana R. Perluigi M. Butterfield D.A. Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radic. Biol. Med. 2013 62 157 169 10.1016/j.freeradbiomed.2012.09.027 23044265
    [Google Scholar]
  49. Butterfield D.A. Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019 20 3 148 160 10.1038/s41583‑019‑0132‑6 30737462
    [Google Scholar]
  50. Dhana K. Evans D.A. Rajan K.B. Bennett D.A. Morris M.C. Healthy lifestyle and the risk of Alzheimer dementia. Neurology 2020 95 4 e374 e383 10.1212/WNL.0000000000009816 32554763
    [Google Scholar]
  51. Hardy J.A. Higgins G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992 256 5054 184 185 10.1126/science.1566067 1566067
    [Google Scholar]
  52. Ghosh A. Mizuno K. Tiwari S.S. Proitsi P. Gomez Perez-Nievas B. Glennon E. Martinez-Nunez R.T. Giese K.P. Alzheimer’s disease-related dysregulation of mRNA translation causes key pathological features with ageing. Transl. Psychiatry 2020 10 1 192 10.1038/s41398‑020‑00882‑7 32546772
    [Google Scholar]
  53. Baranello R. Bharani K. Padmaraju V. Chopra N. Lahiri D. Greig N. Pappolla M. Sambamurti K. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease. Curr. Alzheimer Res. 2015 12 1 32 46 10.2174/1567205012666141218140953 25523424
    [Google Scholar]
  54. Yiannopoulou K.G. Anastasiou A.I. Zachariou V. Pelidou S.H. Reasons for failed trials of disease-modifying treatments for alzheimer disease and their contribution in recent research. Biomedicines 2019 7 4 97 10.3390/biomedicines7040097 31835422
    [Google Scholar]
  55. Dourlen P. Kilinc D. Malmanche N. Chapuis J. Lambert J.C. The new genetic landscape of Alzheimer’s disease: From amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol. 2019 138 2 221 236 10.1007/s00401‑019‑02004‑0 30982098
    [Google Scholar]
  56. Swerdlow R.H. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J. Alzheimers Dis. 2018 62 3 1403 1416 10.3233/JAD‑170585 29036828
    [Google Scholar]
  57. Friedman J.R. Mitochondria from the outside in: The relationship between inter-organelle crosstalk and mitochondrial internal organization. Contact (Thousand Oaks) 2022 5 10.1177/25152564221133267 36329759
    [Google Scholar]
  58. Wang W. Zhao F. Ma X. Perry G. Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol. Neurodegener. 2020 15 1 1 22 10.1186/S13024‑020‑00376‑6
    [Google Scholar]
  59. Klemmensen M.M. Borrowman S.H. Pearce C. Pyles B. Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024 21 1 00292 10.1016/j.neurot.2023.10.002 38241161
    [Google Scholar]
  60. Chakravorty A. Jetto C.T. Manjithaya R. Dysfunctional mitochondria and mitophagy as drivers of Alzheimer’s disease pathogenesis. Front. Aging Neurosci. 2019 11 311 10.3389/fnagi.2019.00311 31824296
    [Google Scholar]
  61. Holper L. Ben-Shachar D. Mann J.J. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology 2019 44 5 837 849 10.1038/s41386‑018‑0090‑0 29855563
    [Google Scholar]
  62. Pereira C. Santos M.S. Oliveira C. Involvement of oxidative stress on the impairment of energy metabolism induced by A beta peptides on PC12 cells: Protection by antioxidants. Neurobiol. Dis. 1999 6 3 209 219 10.1006/nbdi.1999.0241 10408810
    [Google Scholar]
  63. Fišar Z. Hroudová J. Hansíková H. Spáčilová J. Lelková P. Wenchich L. Jirák R. Zvěřová M. Zeman J. Martásek P. Raboch J. Mitochondrial respiration in the platelets of patients with Alzheimer’s disease. Curr. Alzheimer Res. 2016 13 8 930 941 10.2174/1567205013666160314150856 26971932
    [Google Scholar]
  64. Kerr J.S. Adriaanse B.A. Greig N.H. Mattson M.P. Cader M.Z. Bohr V.A. Fang E.F. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci. 2017 40 3 151 166 10.1016/j.tins.2017.01.002 28190529
    [Google Scholar]
  65. Troutwine B.R. Strope T.A. Franczak E. Lysaker C.R. Hamid L. Mansel C. Stopperan J.A. Gouvion C.M. Haeri M. Swerdlow R.H. Wilkins H.M. Mitochondrial function and Aβ in Alzheimer’s disease postmortem brain. Neurobiol. Dis. 2022 171 105781 10.1016/j.nbd.2022.105781 35667615
    [Google Scholar]
  66. Bera A. Lavanya G. Reshmi R. Dev K. Kumar R. Mechanistic and therapeutic role of Drp1 in the pathogenesis of Alzheimer’s disease. Eur. J. Neurosci. 2022 56 9 5516 5531 10.1111/ejn.15611 35078269
    [Google Scholar]
  67. Eckert A. Hauptmann S. Scherping I. Rhein V. Müller-Spahn F. Götz J. Müller W.E. Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice. Neurodegener. Dis. 2008 5 3-4 157 159 10.1159/000113689 18322377
    [Google Scholar]
  68. Rhein V. Song X. Wiesner A. Ittner L.M. Baysang G. Meier F. Ozmen L. Bluethmann H. Dröse S. Brandt U. Savaskan E. Czech C. Götz J. Eckert A. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc. Natl. Acad. Sci. USA 2009 106 47 20057 20062 10.1073/pnas.0905529106 19897719
    [Google Scholar]
  69. Ren R. Zhang Y. Li B. Wu Y. Li B. Effect of β‐amyloid (25–35) on mitochondrial function and expression of mitochondrial permeability transition pore proteins in rat hippocampal neurons. J. Cell. Biochem. 2011 112 5 1450 1457 10.1002/jcb.23062 21321998
    [Google Scholar]
  70. Ghasemi R. Zarifkar A. Rastegar K. Maghsoudi N. Moosavi M. Repeated intra-hippocampal injection of beta-amyloid 25–35 induces a reproducible impairment of learning and memory: Considering caspase-3 and MAPKs activity. Eur. J. Pharmacol. 2014 726 1 33 40 10.1016/j.ejphar.2013.11.034 24418687
    [Google Scholar]
  71. Chen L. Xu S. Wu T. Shao Y. Luo L. Zhou L. Ou S. Tang H. Huang W. Guo K. Xu J. Studies on APP metabolism related to age-associated mitochondrial dysfunction in APP/PS1 transgenic mice. Aging (Albany NY) 2019 11 22 10242 10251 10.18632/aging.102451 31744937
    [Google Scholar]
  72. Dragicevic N. Mamcarz M. Zhu Y. Buzzeo R. Tan J. Arendash G.W. Bradshaw P.C. Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer’s transgenic mice. J. Alzheimers Dis. 2010 20 s2 S535 S550 10.3233/JAD‑2010‑100342 20463404
    [Google Scholar]
  73. Feng J. Zheng Y. Guo M. Ares I. Martínez M. Lopez-Torres B. Martínez-Larrañaga M.R. Wang X. Anadón A. Martínez M.A. Oxidative stress, the blood–brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm. Sin. B 2023 13 10 3988 4024 10.1016/j.apsb.2023.07.010 37799389
    [Google Scholar]
  74. Wang Z. Hu B. Zhou W. Xu M. Wang D. Hopf bifurcation mechanism analysis in an improved cortex-basal ganglia network with distributed delays: An application to Parkinson’s disease. Chaos Solitons Fractals 2023 166 113022 10.1016/j.chaos.2022.113022
    [Google Scholar]
  75. Wang Z. Hu B. Zhu L. Lin J. Xu M. Wang D. Hopf bifurcation analysis for Parkinson oscillation with heterogeneous delays: A theoretical derivation and simulation analysis. Commun. Nonlinear Sci. Numer. Simul. 2022 114 106614 10.1016/j.cnsns.2022.106614
    [Google Scholar]
  76. Hu B. Wang X. Lu S. Ying X. A study of bidirectional control of Parkinson’s beta oscillations by basal ganglia. Chaos Solitons Fractals 2025 195 116267 10.1016/j.chaos.2025.116267
    [Google Scholar]
  77. Poewe W. Seppi K. Tanner C.M. Halliday G.M. Brundin P. Volkmann J. Schrag A.E. Lang A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017 3 1 17013 10.1038/nrdp.2017.13 28332488
    [Google Scholar]
  78. Rizek P. Kumar N. Jog M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ 2016 188 16 1157 1165 10.1503/cmaj.151179 27221269
    [Google Scholar]
  79. Bogers J.S. Bloem B.R. Den Heijer J.M. The etiology of Parkinson’s disease: New perspectives from gene-environment interactions. J. Parkinsons Dis. 2023 13 8 1281 1288 10.3233/JPD‑230250 37980685
    [Google Scholar]
  80. Dorsey E.R. Sherer T. Okun M.S. Bloem B.R. The emerging evidence of the Parkinson pandemic. J. Parkinsons Dis. 2018 8 s1 S3 S8 10.3233/JPD‑181474 30584159
    [Google Scholar]
  81. Aradi S.D. Hauser R.A. Medical management and prevention of motor complications in Parkinson’s disease. Neurotherapeutics 2020 17 4 1339 1365 10.1007/s13311‑020‑00889‑4 32761324
    [Google Scholar]
  82. Pyatha S. Kim H. Lee D. Kim K. Association between Heavy Metal Exposure and Parkinson’s Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants 2022 11 12 2467 10.3390/antiox11122467 36552676
    [Google Scholar]
  83. Alqahtani T. Deore S.L. Kide A.A. Shende B.A. Sharma R. Dadarao Chakole R. Nemade L.S. Kishor Kale N. Borah S. Shrikant Deokar S. Behera A. Dhawal Bhandari D. Gaikwad N. Kalam Azad A. Ghosh A. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis -An updated review. Mitochondrion 2023 71 83 92 10.1016/j.mito.2023.05.007 37269968
    [Google Scholar]
  84. Hong Y. Boiti A. Vallone D. Foulkes N.S. Reactive oxygen species signaling and oxidative stress: Transcriptional regulation and evolution. Antioxidants 2024 13 3 312 10.3390/antiox13030312 38539845
    [Google Scholar]
  85. Rasool A. Manzoor R. Kaleem Ullah; Afzal, R.; Ul-Haq, A.; Imran, H.; Kaleem, I.; Akhtar, T.; Farrukh, A.; Hameed, S.; Bashir, S. Oxidative stress and dopaminergic metabolism: A major pd pathogenic mechanism and basis of potential antioxidant therapies. CNS Neurol. Disord. Drug Targets 2024 23 7 852 864 10.2174/1871527322666230609141519 37303175
    [Google Scholar]
  86. Weng M. Xie X. Liu C. Lim K.L. Zhang C. Li L. The sources of reactive oxygen species and its possible role in the pathogenesis of Parkinson’s disease. Parkinsons Dis. 2018 2018 1 1 9 10.1155/2018/9163040 30245802
    [Google Scholar]
  87. Sanders L.H. Timothy Greenamyre J. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic. Biol. Med. 2013 62 111 120 10.1016/j.freeradbiomed.2013.01.003 23328732
    [Google Scholar]
  88. Fischer R. Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid. Med. Cell. Longev. 2015 2015 1 18 10.1155/2015/610813 25834699
    [Google Scholar]
  89. Gonzalez-Hunt C.P. Sanders L.H. DNA damage and repair in Parkinson’s disease: Recent advances and new opportunities. J. Neurosci. Res. 2021 99 1 180 189 10.1002/jnr.24592 32048327
    [Google Scholar]
  90. Ni A. Ernst C. Evidence that substantia nigra pars compacta dopaminergic neurons are selectively vulnerable to oxidative stress because they are highly metabolically active. Front. Cell. Neurosci. 2022 16 826193 10.3389/fncel.2022.826193 35308118
    [Google Scholar]
  91. Petrovic S. Arsic A. Ristic-Medic D. Cvetkovic Z. Vucic V. Lipid peroxidation and antioxidant supplementation in neurodegenerative diseases: A review of human studies. Antioxidants 2020 9 11 1128 10.3390/antiox9111128 33202952
    [Google Scholar]
  92. Mischley L.K. Standish L.J. Weiss N.S. Padowski J.M. Kavanagh T.J. White C.C. Rosenfeld M.E. Glutathione as a biomarker in Parkinson’s disease: Associations with aging and disease severity. Oxid. Med. Cell. Longev. 2016 2016 1 9409363 10.1155/2016/9409363 27446510
    [Google Scholar]
  93. Shukla D. Goel A. Mandal P.K. Joon S. Punjabi K. Arora Y. Kumar R. Mehta V.S. Singh P. Maroon J.C. Bansal R. Sandal K. Roy R.G. Samkaria A. Sharma S. Sandhilya S. Gaur S. Parvathi S. Joshi M. Glutathione depletion and concomitant elevation of susceptibility in patients with Parkinson’s disease: State-of-the-art MR spectroscopy and neuropsychological study. ACS Chem. Neurosci. 2023 14 24 4383 4394 10.1021/acschemneuro.3c00717 38050970
    [Google Scholar]
  94. Fedorova T.N. Logvinenko A.A. Poleshchuk V.V. Muzychuk O.A. Shabalina A.A. Illarioshkin S.N. Lipid peroxidation products in the blood plasma of patients with Parkinson’s disease as possible biomarkers of different stages of the disease. Neurochem. J. 2019 13 4 391 395 10.1134/S1819712419040020
    [Google Scholar]
  95. Wang J.Y. Zhuang Q.Q. Zhu L.B. Zhu H. Li T. Li R. Chen S.F. Huang C.P. Zhang X. Zhu J.H. Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci. Rep. 2016 6 1 36669 10.1038/srep36669 27827408
    [Google Scholar]
  96. Wise R.M. Wagener A. Fietzek U.M. Klopstock T. Mosharov E.V. Zucca F.A. Sulzer D. Zecca L. Burbulla L.F. Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson’s disease and Neurodegeneration with Brain Iron Accumulation disorders. Neurobiol. Dis. 2022 175 105920 10.1016/j.nbd.2022.105920 36351559
    [Google Scholar]
  97. Burbulla L.F. Song P. Mazzulli J.R. Zampese E. Wong Y.C. Jeon S. Santos D.P. Blanz J. Obermaier C.D. Strojny C. Savas J.N. Kiskinis E. Zhuang X. Krüger R. Surmeier D.J. Krainc D. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 2017 357 6357 1255 1261 10.1126/science.aam9080 28882997
    [Google Scholar]
  98. Robson E. Tweedy C. Manzanza N. Taylor J.P. Atkinson P. Randall F. Reeve A. Clowry G.J. LeBeau F.E.N. Impaired fast network oscillations and mitochondrial dysfunction in a mouse model of alpha-synucleinopathy (A30P). Neuroscience 2018 377 161 173 10.1016/j.neuroscience.2018.02.032 29524634
    [Google Scholar]
  99. Morales-Martínez A. Martínez-Gómez P.A. Martinez-Fong D. Villegas-Rojas M.M. Pérez-Severiano F. Del Toro-Colín M.A. Delgado-Minjares K.M. Blanco-Alvarez V.M. Leon-Chavez B.A. Aparicio-Trejo O.E. Baéz-Cortés M.T. Cardenas-Aguayo M.C. Luna-Muñoz J. Pacheco-Herrero M. Angeles-López Q.D. Martínez-Dávila I.A. Salinas-Lara C. Romero-López J.P. Sánchez-Garibay C. Méndez-Cruz A.R. Soto-Rojas L.O. Oxidative stress and mitochondrial complex i dysfunction correlate with neurodegeneration in an α-synucleinopathy animal model. Int. J. Mol. Sci. 2022 23 19 11394 10.3390/ijms231911394 36232716
    [Google Scholar]
  100. Scudamore O. Ciossek T. Increased oxidative stress exacerbates α-synuclein aggregation in vivo. J. Neuropathol. Exp. Neurol. 2018 77 6 443 453 10.1093/jnen/nly024 29718367
    [Google Scholar]
  101. Morris H.R. Spillantini M.G. Sue C.M. Williams-Gray C.H. The pathogenesis of Parkinson’s disease. Lancet 2024 403 10423 293 304 10.1016/S0140‑6736(23)01478‑2 38245249
    [Google Scholar]
  102. Kouli A. Torsney K.M. Kuan W.L. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. In: Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications: Brisbane (AU) 2018 3 26 10.15586/codonpublications.parkinsonsdisease.2018.ch1
    [Google Scholar]
  103. Yu S.B. Pekkurnaz G. Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J. Mol. Biol. 2018 430 21 3922 3941 10.1016/j.jmb.2018.07.027 30089235
    [Google Scholar]
  104. Henrich M.T. Oertel W.H. Surmeier D.J. Geibl F.F. Mitochondrial dysfunction in Parkinson’s disease – a key disease hallmark with therapeutic potential. Mol. Neurodegener. 2023 18 1 1 20 10.1186/S13024‑023‑00676‑7
    [Google Scholar]
  105. Haddad D. Nakamura K. Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson’s disease. FEBS Lett. 2015 589 24 Pt A 3702 3713 10.1016/j.febslet.2015.10.021
    [Google Scholar]
  106. Choong C.J. Mochizuki H. Involvement of mitochondria in Parkinson’s disease. Int. J. Mol. Sci. 2023 24 23 17027 10.3390/ijms242317027 38069350
    [Google Scholar]
  107. Kaur I. Behl T. Sehgal A. Singh S. Sharma N. Aleya L. Bungau S. Connecting the dots between mitochondrial dysfunction and Parkinson’s disorder: Focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. Environ. Sci. Pollut. Res. Int. 2021 28 28 37060 37081 10.1007/s11356‑021‑14619‑6 34053042
    [Google Scholar]
  108. Naoi M. Maruyama W. Shamoto-Nagai M. Neuroprotective function of rasagiline and selegiline, inhibitors of type b monoamine oxidase, and role of monoamine oxidases in synucleinopathies. Int. J. Mol. Sci. 2022 23 19 11059 10.3390/ijms231911059 36232361
    [Google Scholar]
  109. Ibarra-Gutiérrez M.T. Serrano-García N. Orozco-Ibarra M. Rotenone-induced model of Parkinson’s disease: Beyond mitochondrial complex I inhibition. Mol. Neurobiol. 2023 60 4 1929 1948 10.1007/S12035‑022‑03193‑8
    [Google Scholar]
  110. Zeng X.S. Geng W.S. Jia J.J. Neurotoxin-induced animal models of parkinson disease: Pathogenic mechanism and assessment. ASN Neuro 2018 10 1 1759091418777438 10.1177/1759091418777438 29809058
    [Google Scholar]
  111. Flønes I.H. Toker L. Sandnes D.A. Castelli M. Mostafavi S. Lura N. Shadad O. Fernandez-Vizarra E. Painous C. Pérez-Soriano A. Compta Y. Molina-Porcel L. Alves G. Tysnes O.B. Dölle C. Nido G.S. Tzoulis C. Mitochondrial complex I deficiency stratifies idiopathic Parkinson’s disease. Nat. Commun. 2024 15 1 3631 10.1038/s41467‑024‑47867‑4 38684731
    [Google Scholar]
  112. Blagov A. Postnov A. Sukhorukov V. Popov M. Uzokov J. Orekhov A. Significance of mitochondrial dysfunction in the pathogenesis of Parkinson’s disease. Front. Biosci. 2024 29 1 36 10.31083/j.fbl2901036
    [Google Scholar]
  113. González-Rodríguez P. Zampese E. Stout K.A. Guzman J.N. Ilijic E. Yang B. Tkatch T. Stavarache M.A. Wokosin D.L. Gao L. Kaplitt M.G. López-Barneo J. Schumacker P.T. Surmeier D.J. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 2021 599 7886 650 656 10.1038/s41586‑021‑04059‑0 34732887
    [Google Scholar]
  114. Zuo L. Motherwell M.S. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease. Gene 2013 532 1 18 23 10.1016/j.gene.2013.07.085 23954870
    [Google Scholar]
  115. Larsen S.B. Hanss Z. Krüger R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease. Cell Tissue Res. 2018 373 1 21 37 10.1007/S00441‑017‑2768‑8
    [Google Scholar]
  116. Tresse E. Marturia-Navarro J. Sew W.Q.G. Cisquella-Serra M. Jaberi E. Riera-Ponsati L. Fauerby N. Hu E. Kretz O. Aznar S. Issazadeh-Navikas S. Mitochondrial DNA damage triggers spread of Parkinson’s disease-like pathology. Mol. Psychiatry 2023 28 11 4902 4914 10.1038/s41380‑023‑02251‑4 37779111
    [Google Scholar]
  117. Schapira A.H.V. Olanow C.W. Greenamyre J.T. Bezard E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: Future therapeutic perspectives. Lancet 2014 384 9942 545 555 10.1016/S0140‑6736(14)61010‑2 24954676
    [Google Scholar]
  118. Choong C.J. Mochizuki H. Neuropathology of α‐synuclein in Parkinson’s disease. Neuropathology 2022 42 2 93 103 10.1111/neup.12812 35362115
    [Google Scholar]
  119. Geibl F.F. Henrich M.T. Xie Z. Zampese E. Ueda J. Tkatch T. Wokosin D.L. Nasiri E. Grotmann C.A. Dawson V.L. Dawson T.M. Chandel N.S. Oertel W.H. Surmeier D.J. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at-risk in Parkinson’s disease. Mol. Neurodegener. 2024 19 1 69 10.1186/s13024‑024‑00756‑2 39379975
    [Google Scholar]
  120. Williamson M.G. Madureira M. McGuinness W. Heon-Roberts R. Mock E.D. Naidoo K. Cramb K.M.L. Caiazza M.C. Malpartida A.B. Lavelle M. Savory K. Humble S.W. Patterson R. Davis J.B. Connor-Robson N. Ryan B.J. Wade-Martins R. Mitochondrial dysfunction and mitophagy defects in LRRK2-R1441C Parkinson’s disease models. Hum. Mol. Genet. 2023 32 18 2808 2821 10.1093/hmg/ddad102 37384414
    [Google Scholar]
  121. Di Maio R. Barrett P.J. Hoffman E.K. Barrett C.W. Zharikov A. Borah A. Hu X. McCoy J. Chu C.T. Burton E.A. Hastings T.G. Greenamyre J.T. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci. Transl. Med. 2016 8 342 342ra78 10.1126/scitranslmed.aaf3634 27280685
    [Google Scholar]
  122. Yuan Y. Yan W. Sun J. Huang J. Mu Z. Chen N.H. The molecular mechanism of rotenone-induced α-synuclein aggregation: Emphasizing the role of the calcium/GSK3β pathway. Toxicol. Lett. 2015 233 2 163 171 10.1016/j.toxlet.2014.11.029 25433145
    [Google Scholar]
  123. Ramezani M. Wagenknecht-Wiesner A. Wang T. Holowka D.A. Eliezer D. Baird B.A. Alpha synuclein modulates mitochondrial Ca2+ uptake from ER during cell stimulation and under stress conditions. npj Park Dis. 2023 9 1 1 18 10.1038/s41531‑023‑00578‑x
    [Google Scholar]
  124. Velusamy T. Panneerselvam A.S. Purushottam M. Anusuyadevi M. Pal P.K. Jain S. Essa M.M. Guillemin G.J. Kandasamy M. Protective effect of antioxidants on neuronal dysfunction and plasticity in Huntington’s disease. Oxid. Med. Cell. Longev. 2017 2017 1 3279061 10.1155/2017/3279061 28168008
    [Google Scholar]
  125. Bellavite P. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action. Antioxidants 2023 12 2 280 10.3390/antiox12020280 36829840
    [Google Scholar]
  126. Mao P. Manczak M. Calkins M.J. Truong Q. Reddy T.P. Reddy A.P. Shirendeb U. Lo H.H. Rabinovitch P.S. Reddy P.H. Mitochondria-targeted catalase reduces abnormal APP processing, amyloid production and BACE1 in a mouse model of Alzheimer’s disease: Implications for neuroprotection and lifespan extension. Hum. Mol. Genet. 2012 21 13 2973 2990 10.1093/hmg/dds128 22492996
    [Google Scholar]
  127. Pandey S. Singh B. Yadav S.K. Mahdi A.A. Novel biomarker for neurodegenerative diseases- motor neuron disease (MND), cerebellar ataxia (CA) and Parkinson’s disease (PD). Clin. Chim. Acta 2018 485 258 261 10.1016/j.cca.2018.07.021 30006282
    [Google Scholar]
  128. Sharma G. Shin E.J. Sharma N. Nah S.Y. Mai H.N. Nguyen B.T. Jeong J.H. Lei X.G. Kim H.C. Glutathione peroxidase-1 and neuromodulation: Novel potentials of an old enzyme. Food Chem. Toxicol. 2021 148 111945 10.1016/j.fct.2020.111945 33359022
    [Google Scholar]
  129. Bjørklund G. Peana M. Maes M. Dadar M. Severin B. The glutathione system in Parkinson’s disease and its progression. Neurosci. Biobehav. Rev. 2021 120 470 478 10.1016/j.neubiorev.2020.10.004 33068556
    [Google Scholar]
  130. Chen J.J. Thiyagarajah M. Song J. Chen C. Herrmann N. Gallagher D. Rapoport M.J. Black S.E. Ramirez J. Andreazza A.C. Oh P. Marzolini S. Graham S.J. Lanctôt K.L. Altered central and blood glutathione in Alzheimer’s disease and mild cognitive impairment: A meta-analysis. Alzheimers Res. Ther. 2022 14 1 23 10.1186/s13195‑022‑00961‑5 35123548
    [Google Scholar]
  131. Haddad M. Hervé V. Ben Khedher M.R. Rabanel J.M. Ramassamy C. Glutathione: An old and small molecule with great functions and new applications in the brain and in Alzheimer’s disease. Antioxid. Redox Signal. 2021 35 4 270 292 10.1089/ars.2020.8129 33637005
    [Google Scholar]
  132. De Nuccio F. Cianciulli A. Porro C. Kashyrina M. Ruggiero M. Calvello R. Miraglia A. Nicolardi G. Lofrumento D.D. Panaro M.A. Inflammatory response modulation by vitamin c in an mptp mouse model of Parkinson’s disease. Biology 2021 10 11 1155 10.3390/biology10111155 34827148
    [Google Scholar]
  133. Alam J. Vitamins: A nutritional intervention to modulate the Alzheimer’s disease progression. Nutr. Neurosci. 2022 25 5 945 962 10.1080/1028415X.2020.1826762 32998670
    [Google Scholar]
  134. Dixit S. Bernardo A. Walker J.M. Kennard J.A. Kim G.Y. Kessler E.S. Harrison F.E. Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. ACS Chem. Neurosci. 2015 6 4 570 581 10.1021/cn500308h 25642732
    [Google Scholar]
  135. Feng Y. Wang X. Antioxidant therapies for Alzheimer’s disease. Oxid. Med. Cell. Longev. 2012 2012 1 17 10.1155/2012/472932 22888398
    [Google Scholar]
  136. Inneh C.A. Eiya B.O. Anticholinesterase activity and antioxidant effect of vitamin E in aluminium chloride induced toxicity in iDrosophila melanogaster/i. J. Afr Assoc Physiol. Sci. 2023 11 1 17 28 10.4314/jaaps.v11i1.2
    [Google Scholar]
  137. Hamid M. Mansoor S. Amber S. Zahid S. A quantitative meta-analysis of vitamin C in the pathophysiology of Alzheimer’s disease. Front. Aging Neurosci. 2022 14 970263 10.3389/fnagi.2022.970263 36158537
    [Google Scholar]
  138. Schirinzi T. Martella G. Imbriani P. Di Lazzaro G. Franco D. Colona V.L. Alwardat M. Sinibaldi Salimei P. Mercuri N.B. Pierantozzi M. Pisani A. Dietary Vitamin E as a protective factor for Parkinson’s disease: Clinical and experimental evidence. Front. Neurol. 2019 10 148 10.3389/fneur.2019.00148 30863359
    [Google Scholar]
  139. Maoka T. Carotenoids as natural functional pigments. J. Nat. Med. 2020 74 1 1 16 10.1007/s11418‑019‑01364‑x 31588965
    [Google Scholar]
  140. Li J. Abdel-Aal E.S.M. Dietary Lutein and Cognitive Function in Adults: A Meta-Analysis of Randomized Controlled Trials. Molecules 2021 26 19 5794 10.3390/molecules26195794 34641336
    [Google Scholar]
  141. Rudrapal M. Khairnar S.J. Khan J. Dukhyil A.B. Ansari M.A. Alomary M.N. Alshabrmi F.M. Palai S. Deb P.K. Devi R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Front. Pharmacol. 2022 13 806470 10.3389/fphar.2022.806470 35237163
    [Google Scholar]
  142. Shabani S. Rabiei Z. Amini-Khoei H. Exploring the multifaceted neuroprotective actions of gallic acid: A review. Int. J. Food Prop. 2020 23 1 736 752 10.1080/10942912.2020.1753769
    [Google Scholar]
  143. Grabska-Kobyłecka I. Szpakowski P. Król A. Książek-Winiarek D. Kobyłecki A. Głąbiński A. Nowak D. Poly-phenols and their impact on the prevention of neurodegenerative diseases and development. Nutrients 2023 15 15 3454 10.3390/nu15153454 37571391
    [Google Scholar]
  144. Broderick T.L. Rasool S. Li R. Zhang Y. Anderson M. Al-Nakkash L. Plochocki J.H. Geetha T. Babu J.R. Neuroprotective effects of chronic resveratrol treatment and exercise training in the 3xTg-AD mouse model of Alzheimer’s disease. Int. J. Mol. Sci. 2020 21 19 7337 10.3390/ijms21197337 33020412
    [Google Scholar]
  145. Park J.S. Davis R.L. Sue C.M. Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep. 2018 18 5 21 10.1007/s11910‑018‑0829‑3 29616350
    [Google Scholar]
  146. Perez Ortiz J.M. Swerdlow R.H. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. Br. J. Pharmacol. 2019 176 18 3489 3507 10.1111/bph.14585 30675901
    [Google Scholar]
  147. Wu Y. Chen M. Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion 2019 49 35 45 10.1016/j.mito.2019.07.003 31288090
    [Google Scholar]
  148. Hawking Z.L. Alzheimer’s disease: The role of mitochondrial dysfunction and potential new therapies. Biosci. Horiz. 2016 9 hzw014 10.1093/biohorizons/hzw014
    [Google Scholar]
  149. Voulgaropoulou S.D. van Amelsvoort T.A.M.J. Prickaerts J. Vingerhoets C. The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res. 2019 1725 146476 10.1016/j.brainres.2019.146476 31560864
    [Google Scholar]
  150. Sharma N. Nehru B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology 2018 26 2 349 360 10.1007/s10787‑017‑0402‑8 29027056
    [Google Scholar]
  151. Nan S. Wang P. Zhang Y. Fan J. Epigallocatechin-3-gallate provides protection against Alzheimer’s disease-induced learning and memory impairments in rats. Drug Des. Devel. Ther. 2021 15 2013 2024 10.2147/DDDT.S289473 34012254
    [Google Scholar]
  152. Ravishankar D. Corona G. Hogan S.M. Spencer J.P.E. Greco F. Osborn H.M.I. Thioflavones as novel neuroprotective agents. Bioorg. Med. Chem. 2016 24 21 5513 5520 10.1016/j.bmc.2016.09.006 27663547
    [Google Scholar]
  153. Manigandan V. Nataraj J. Karthik R. Manivasagam T. Saravanan R. Thenmozhi A.J. Essa M.M. Guillemin G.J. Low molecular weight sulfated chitosan: Neuroprotective effect on rotenone-induced in vitro Parkinson’s disease. Neurotox. Res. 2019 35 3 505 515 10.1007/s12640‑018‑9978‑z 30426393
    [Google Scholar]
  154. Sharif R. Aghsami M. Gharghabi M. Sanati M. Khorshidahmad T. Vakilzadeh G. Mehdizadeh H. Gholizadeh S. Taghizadeh G. Sharifzadeh M. Melatonin reverses H-89 induced spatial memory deficit: Involvement of oxidative stress and mitochondrial function. Behav. Brain Res. 2017 316 115 124 10.1016/j.bbr.2016.08.040 27555536
    [Google Scholar]
  155. Lin M.W. Lin C.C. Chen Y.H. Yang H.B. Hung S.Y. Bin, Hung SY. Celastrol inhibits dopaminergic neuronal death of Parkinson’S disease through activating mitophagy. Antioxidants 2019 9 1 37 10.3390/antiox9010037 31906147
    [Google Scholar]
  156. Yu G. Wang Y. Zhao J. Inhibitory effect of mitoquinone against the α -synuclein fibrillation and relevant neurotoxicity: Possible role in inhibition of Parkinson’s disease. Biol. Chem. 2022 403 3 253 263 10.1515/hsz‑2021‑0312 34653323
    [Google Scholar]
  157. Hu X. Weng Z. Chu C.T. Zhang L. Cao G. Gao Y. Signore A. Zhu J. Hastings T. Greenamyre J.T. Chen J. Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J. Neurosci. 2011 31 1 247 261 10.1523/JNEUROSCI.4589‑10.2011 21209210
    [Google Scholar]
  158. Liu M. Zuo S. Guo X. Peng J. Xing Y. Guo Y. Li C. Xing H. The study of overexpression of peroxiredoxin-2 reduces MPP+-Induced toxicity in the cell model of Parkinson’s disease. Neurochem. Res. 2023 48 7 2129 2137 10.1007/s11064‑023‑03880‑5 36808393
    [Google Scholar]
  159. Ren Q. Jiang X. Paudel Y.N. Gao X. Gao D. Zhang P. Sheng W. Shang X. Liu K. Zhang X. Jin M. Co-treatment with natural HMGB1 inhibitor Glycyrrhizin exerts neuroprotection and reverses Parkinson’s disease like pathology in Zebrafish. J. Ethnopharmacol. 2022 292 115234 10.1016/j.jep.2022.115234 35358621
    [Google Scholar]
  160. Bai Y. Zhou J. Zhu H. Tao Y. Wang L. Yang L. Wu H. Huang F. Shi H. Wu X. Isoliquiritigenin inhibits microglia-mediated neuroinflammation in models of Parkinson’s disease via JNK/AKT/NFκB signaling pathway. Phytother. Res. 2023 37 3 848 859 10.1002/ptr.7665 36484427
    [Google Scholar]
  161. Goyal A. Solanki K. Verma A. Luteolin: Nature’s promising warrior against Alzheimer’s and Parkinson’s disease. J. Biochem. Mol. Toxicol. 2024 38 1 23619 10.1002/jbt.23619 38091364
    [Google Scholar]
  162. Goyal A. Verma A. Dubey N. Raghav J. Agrawal A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem. 2022 46 12 14415 10.1111/jfbc.14415 36106706
    [Google Scholar]
  163. Park H.W. Park C.G. Park M. Intrastriatal administration of coenzyme Q10 enhances neuroprotection in a Parkinson’s disease rat model. Sci. Rep. 2020 10 1 1 12 10.1038/s41598‑020‑66493‑w
    [Google Scholar]
  164. Solesio M.E. Prime T.A. Logan A. Murphy M.P. del Mar Arroyo-Jimenez M. Jordán J. Galindo M.F. The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2013 1832 1 174 182 10.1016/j.bbadis.2012.07.009 22846607
    [Google Scholar]
  165. Liu J. Duan W. Deng Y. Zhang Q. Li R. Long J. Ahmed W. Gu C. Qiu Y. Cai H. Hu Y. Chen L. New insights into molecular mechanisms underlying neurodegenerative disorders. J. Integr. Neurosci. 2023 22 3 58 10.31083/j.jin2203058 37258447
    [Google Scholar]
  166. Houldsworth A. Role of oxidative stress in neurodegenerative disorders: A review of reactive oxygen species and prevention by antioxidants. Brain Commun. 2023 6 1 fcad356 10.1093/braincomms/fcad356 38214013
    [Google Scholar]
  167. Monzio Compagnoni G. Di Fonzo A. Corti S. Comi G.P. Bresolin N. Masliah E. The role of mitochondria in neurodegenerative diseases: The lesson from Alzheimer’s disease and Parkinson’s disease. Mol. Neurobiol. 2020 57 7 2959 2980 10.1007/S12035‑020‑01926‑1
    [Google Scholar]
  168. Cobley J.N. Fiorello M.L. Bailey D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018 15 490 503 10.1016/j.redox.2018.01.008 29413961
    [Google Scholar]
  169. Swerdlow R.H. The Alzheimer’s disease mitochondrial cascade hypothesis: A current overview. J. Alzheimers Dis. 2023 92 3 751 768 10.3233/JAD‑221286 36806512
    [Google Scholar]
  170. Schofield J.H. Schafer Z.T. Mitochondrial reactive oxygen species and mitophagy: A complex and nuanced relationship. Antioxid. Redox Signal. 2021 34 7 517 530 10.1089/ars.2020.8058 32079408
    [Google Scholar]
  171. De Gaetano A. Gibellini L. Zanini G. Nasi M. Cossarizza A. Pinti M. Mitophagy and oxidative stress: The role of aging. Antioxidants 2021 10 5 794 10.3390/antiox10050794 34067882
    [Google Scholar]
  172. Müller M. Ahumada-Castro U. Sanhueza M. Gonzalez-Billault C. Court F.A. Cárdenas C. Mitochondria and calcium regulation as basis of neurodegeneration associated with aging. Front. Neurosci. 2018 12 470 10.3389/fnins.2018.00470 30057523
    [Google Scholar]
  173. Wong K.Y. Roy J. Fung M.L. Heng B.C. Zhang C. Lim L.W. Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer’s Disease. Aging Dis. 2020 11 5 1291 1316 10.14336/AD.2019.1125 33014538
    [Google Scholar]
  174. Ghio S. Kamp F. Cauchi R. Giese A. Vassallo N. Interaction of α-synuclein with biomembranes in Parkinson’s disease —role of cardiolipin. Prog. Lipid Res. 2016 61 73 82 10.1016/j.plipres.2015.10.005 26703192
    [Google Scholar]
  175. Yoon G. Shah S.A. Ali T. Kim M.O. The adiponectin homolog osmotin enhances neurite outgrowth and synaptic complexity via adipor1/ngr1 signaling in Alzheimer’s disease. Mol. Neurobiol. 2018 55 8 6673 6686 10.1007/s12035‑017‑0847‑1 29335844
    [Google Scholar]
  176. Nishiguchi H. Omura T. Sato A. Kitahiro Y. Yamamoto K. Kunimasa J. Yano I. Luteolin protects against 6-hydoroxydopamine-induced cell death via an upregulation of HRD1 and SEL1L. Neurochem. Res. 2024 49 1 117 128 10.1007/s11064‑023‑04019‑2 37632637
    [Google Scholar]
  177. Goes A.T.R. Jesse C.R. Antunes M.S. Lobo Ladd F.V. Lobo Ladd A.A.B. Luchese C. Paroul N. Boeira S.P. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem. Biol. Interact. 2018 279 111 120 10.1016/j.cbi.2017.10.019 29054324
    [Google Scholar]
  178. Guo B. Zheng C. Cai W. Cheng J. Wang H. Li H. Sun Y. Cui W. Wang Y. Han Y. Lee S.M.Y. Zhang Z. Multifunction of chrysin in Parkinson’s model: Anti-neuronal apoptosis, neuroprotection via activation of MEF2D, and inhibition of monoamine oxidase-b. J. Agric. Food Chem. 2016 64 26 5324 5333 10.1021/acs.jafc.6b01707 27245668
    [Google Scholar]
  179. Nor M.K. Yusuf A. Suffian M. Annuar M. Khalid N. Existence of bioactive flavonoids in rhizomes and plant cell cultures of Boesenbergia rotunda. AJCS 2013 7 6 730 734 10.3316/informit.365003829991756
    [Google Scholar]
  180. Benchamana A. Tohkayomatee R. Soodvilai S. Chabang N. Pinostrobin exerts inhibitory effects on adipogenesis and adipocyte-induced MCF-7 breast cancer cell proliferation and migration. Trends Sci. 2024 21 9 8125 10.48048/tis.2024.8125
    [Google Scholar]
  181. Abdelwahab S.I. Mohan S. Abdulla M.A. Sukari M.A. Abdul A.B. Taha M.M.E. Syam S. Ahmad S. Lee K.H. The methanolic extract of Boesenbergia rotunda (L.) Mansf. and its major compound pinostrobin induces anti-ulcerogenic property in vivo: Possible involvement of indirect antioxidant action. J. Ethnopharmacol. 2011 137 2 963 970 10.1016/j.jep.2011.07.010 21771650
    [Google Scholar]
  182. Kong Y. Fu Y.J. Zu Y.G. Chang F-R. Chen Y-H. Liu X-L. Stelten J. Schiebel H-M. Cajanuslactone, a new coumarin with anti-bacterial activity from pigeon pea [Cajanus cajan (L.) Millsp. leaves. Food Chem. 2010 121 4 1150 1155 10.1016/j.foodchem.2010.01.062
    [Google Scholar]
  183. Kongsui R. Promsrisuk T. Klimaschewski L. Sriraksa N. Jittiwat J. Thongrong S. Pinostrobin mitigates neurodegeneration through an up-regulation of antioxidants and GDNF in a rat model of Parkinson’s disease. F1000 Res. 2023 12 846 10.12688/f1000research.134891.2 38434672
    [Google Scholar]
  184. González H. Elgueta D. Montoya A. Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J. Neuroimmunol. 2014 274 1-2 1 13 10.1016/j.jneuroim.2014.07.012 25091432
    [Google Scholar]
  185. Isik S. Yeman Kiyak B. Akbayir R. Seyhali R. Arpaci T. Microglia mediated neuroinflammation in Parkinson’s disease. Cells 2023 12 7 1012 10.3390/cells12071012 37048085
    [Google Scholar]
  186. Liana D. Eurtivong C. Phanumartwiwath A. Boesenbergia rotunda and Its Pinostrobin for Atopic Dermatitis: Dual 5-Lipoxygenase and Cyclooxygenase-2 Inhibitor and Its Mechanistic Study through Steady-State Kinetics and Molecular Modeling. Antioxidants 2024 13 1 74 10.3390/antiox13010074 38247498
    [Google Scholar]
  187. Athapaththu A.M.G.K. Anti-inflammatory and anti-melanogenic effects of pinostrobin. 2022 Available from: https://dcoll.jejunu.ac.kr/common/orgView/000000010775
    [Google Scholar]
  188. Xian Y.F. Ip S.P. Lin Z.X. Mao Q.Q. Su Z.R. Lai X.P. Protective effects of pinostrobin on β-amyloid-induced neurotoxicity in PC12 cells. Cell. Mol. Neurobiol. 2012 32 8 1223 1230 10.1007/s10571‑012‑9847‑x 22565301
    [Google Scholar]
  189. Shareef S.H. Al-Medhtiy M.H. Al Rashdi A.S. Aziz P.Y. Abdulla M.A. Hepatoprotective effect of pinostrobin against thioacetamide-induced liver cirrhosis in rats. Saudi J. Biol. Sci. 2023 30 1 103506 10.1016/j.sjbs.2022.103506 36458098
    [Google Scholar]
  190. Gunasekaran V. Dhakshinamurthy S. Computational insights into the interaction of pinostrobin with Bcl-2 family proteins: A molecular docking analysis. Asian Pac. J. Cancer Prev. 2024 25 2 507 512 10.31557/APJCP.2024.25.2.507 38415536
    [Google Scholar]
  191. Gómez-Betancur I. Benjumea D. Patiño A. Jiménez N. Osorio E. Inhibition of the toxic effects of Bothrops asper venom by pinostrobin, a flavanone isolated from Renealmia alpinia (Rottb.) MAAS. J. Ethnopharmacol. 2014 155 3 1609 1615 10.1016/j.jep.2014.08.002 25138354
    [Google Scholar]
  192. Kongsui R. Surapinit S. Promsrisuk T. Thongrong S. Pinostrobin from Boesenbergia rotunda attenuates oxidative stress and promotes functional recovery in rat model of sciatic nerve crush injury. Braz. J. Med. Biol. Res. 2023 56 12578 10.1590/1414‑431x2023e12578 36856256
    [Google Scholar]
  193. Thongrong S. Surapinit S. Promsrisuk T. Jittiwat J. Kongsui R. Pinostrobin alleviates chronic restraint stress induced cognitive impairment by modulating oxidative stress and the function of astrocytes in the hippocampus of rats. Biomed. Rep. 2023 18 3 20 10.3892/br.2023.1602 36798091
    [Google Scholar]
  194. Youn K. Jun M. Biological evaluation and docking analysis of potent BACE1 inhibitors from Boesenbergia rotunda. Nutrients 2019 11 3 662 10.3390/nu11030662 30893825
    [Google Scholar]
  195. Pajouhesh H. Lenz G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005 2 4 541 553 10.1602/neurorx.2.4.541 16489364
    [Google Scholar]
  196. Smolarz H.D. Mendyk E. Bogucka-Kocka A. Kockic J. Pinostrobin--an anti-leukemic flavonoid from Polygonum lapathifolium L. ssp. nodosum (Pers.). Z. Naturforsch. C J. Biosci. 2006 61 1-2 64 68 10.1515/znc‑2006‑1‑212 16610219
    [Google Scholar]
  197. Sukardiman D.A. Darwanto A. Tanjung M. Darmadi M.O. Cytotoxic mechanism of flavonoid from Temu Kunci (Kaempferia pandurata) in cell culture of human mammary carcinoma. Clin. Hemorheol. Microcirc. 2000 23 2-4 185 190 10.3233/chm‑2000‑ 11321439
    [Google Scholar]
  198. Tonum K. Chabang N. Fongsupa S. Chantawarin S. Jiarpinitnun C. Tuchinda P. Soodvilai S. Pinostrobin inhibits renal CFTR-mediated Cl− secretion and retards cyst growth in cell-derived cyst and polycystic kidney disease rats. J. Pharmacol. Sci. 2022 148 4 369 376 10.1016/j.jphs.2022.02.003 35300812
    [Google Scholar]
  199. San H.T. Khine H.E.E. Sritularak B. Prompetchara E. Chaotham C. Che C.T. Likhitwitayawuid K. Pinostrobin: An adipogenic suppressor from fingerroot (Boesenbergia rotunda) and its possible mechanisms. Foods 2022 11 19 3024 10.3390/foods11193024 36230099
    [Google Scholar]
  200. Chatsumpun N. Sritularak B. Likhitwitayawuid K. New biflavonoids with α-glucosidase and pancreatic lipase inhibitory activities from boesenbergia rotunda. Molecules 2017 22 11 1862 10.3390/molecules22111862 29084164
    [Google Scholar]
  201. Sopanaporn J. Suksawatamnuay S. Sardikin A. Lengwittaya R. Chavasiri W. Miyakawa T. Yompakdee C. Pinostrobin suppresses the Ca2+-signal-dependent growth arrest in yeast by inhibiting the Swe1-mediated G2 cell-cycle regulation. FEMS Yeast Res. 2020 20 4 foaa026 10.1093/femsyr/foaa026 32401321
    [Google Scholar]
  202. Meckes M. Paz D. Acosta J. Mata R. The effects of chrysin and pinostrobin, two flavonoids isolated from Teloxys graveolens leaves, on isolated guinea-pig ileum. Phytomedicine 1998 5 6 459 463 10.1016/S0944‑7113(98)80042‑1 23196029
    [Google Scholar]
  203. Kong Y. Fu Y.J. Zu Y.G. Liu W. Wang W. Hua X. Yang M. Ethanol modified supercritical fluid extraction and antioxidant activity of cajaninstilbene acid and pinostrobin from pigeonpea [Cajanus cajan (L.) Millsp. leaves. Food Chem. 2009 117 1 152 159 10.1016/j.foodchem.2009.03.091
    [Google Scholar]
  204. Zhao L. Yao L. Chen R. He J. Lin T. Qiu S. Chen G. Chen H. Qiu S.X. Pinostrobin from plants and propolis against human coronavirus HCoV-OC43 by modulating host AHR/CYP1A1 pathway and lipid metabolism. Antiviral Res. 2023 212 105570 10.1016/j.antiviral.2023.105570 36863496
    [Google Scholar]
  205. Torres F. Robledo S.M. Quiñones W. Escobar G. Archbold R. Correa E. Gil J.F. Arbeláez N. Murillo J. Echeverri F. Exploring antiparasitic molecule sources from timber by-product industries—leishmanicidal and trypanocidal compounds from Clathrotropis brunnea Amshoff. Front. Pharmacol. 2020 11 584668 10.3389/fphar.2020.584668 33424593
    [Google Scholar]
  206. Gómez-Betancur I. Pereañez J.A. Patiño A.C. Benjumea D. Inhibitory effect of pinostrobin from Renealmia alpinia, on the enzymatic and biological activities of a PLA2. Int. J. Biol. Macromol. 2016 89 35 42 10.1016/j.ijbiomac.2016.04.042 27109758
    [Google Scholar]
  207. Wu N. Kong Y. Zu Y. Fu Y. Liu Z. Meng R. Liu X. Efferth T. Activity investigation of pinostrobin towards herpes simplex virus-1 as determined by atomic force microscopy. Phytomedicine 2011 18 2-3 110 118 10.1016/j.phymed.2010.07.001 20739162
    [Google Scholar]
  208. Junior W.A.R. Gomes D.B. Zanchet B. Schönell A.P. Diel K.A.P. Banzato T.P. Ruiz A.L.T.G. Carvalho J.E. Neppel A. Barison A. Santos C.A.M. Antiproliferative effects of pinostrobin and 5,6-dehydrokavain isolated from leaves of Alpinia zerumbet. Rev. Bras. Farmacogn. 2017 27 5 592 598 10.1016/j.bjp.2017.05.007
    [Google Scholar]
  209. Kanchanapiboon J. Kongsa U. Pattamadilok D. Kamponchaidet S. Wachisunthon D. Poonsatha S. Tuntoaw S. Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin. J. Ethnopharmacol. 2020 261 113193 10.1016/j.jep.2020.113193 32730867
    [Google Scholar]
  210. Palomares-Alonso F. Rojas-Tomé I.S. Juárez Rocha V. Palencia Hernández G. González-Maciel A. Ramos-Morales A. Santiago-Reyes R. González-Hernández I.E. Jung-Cook H. Cysticidal activity of extracts and isolated compounds from Teloxys graveolens: In vitro and in vivo studies. Exp. Parasitol. 2015 156 79 86 10.1016/j.exppara.2015.06.001 26072200
    [Google Scholar]
  211. Ishola I.O. Olubodun-Obadun T.G. Akinwande A.S. Adeyemi O.O. Cajanus cajan (L) Millsp. seed extract ameliorates scopolamine-induced amnesia through increase in antioxidant defense mechanisms and cholinergic neurotransmission. Niger. J. Physiol. Sci. 2023 38 1 91 99 10.54548/njps.v38i1.13 38243363
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010410158251107102136
Loading
/content/journals/cpb/10.2174/0113892010410158251107102136
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test