Skip to content
2000
image of Research Progress on the Effect and Mechanism of Gene Transfection in Reducing the Inflammatory Response of Atherosclerosis

Abstract

Introduction

Gene transfection techniques have potential therapeutic value in reducing the inflammatory response in atherosclerosis. Atherosclerosis is a chronic inflammatory disease. Its pathological process involves multiple types of cells and signaling pathways.

Methods

In recent years, researchers have used gene transfection techniques to introduce specific genes into vascular or immune cells in order to inhibit inflammatory responses, stabilize plaques, and slow down the process of atherosclerosis. Research progress has shown that gene transfection can exert anti-inflammatory effects through various mechanisms. IL-10 transfection suppresses atherosclerosis by activating the STAT3 pathway, reducing TNF-α and IL-6 expression in macrophages. Conversely, eNOS transfection enhances nitric oxide bioavailability, inhibiting endothelial cell adhesion molecule expression (e.g., VCAM-1) and monocyte recruitment.

Results

Other studies have regulated the expression of inflammation-related genes by transfecting miRNA (tiny RNA), thus inhibiting the inflammatory response of atherosclerosis.

Discussion

Despite preclinical efficacy, clinical translation is hindered by suboptimal vector tropism (e.g., viral vectors exhibit off-target hepatotoxicity) and immune-mediated clearance of non-viral vectors (e.g., liposomes trigger complement activation). Long-term risks of insertional mutagenesis (retroviral vectors) and epigenetic silencing of transgenes further limit durability.

Conclusion

This paper discusses the role and mechanism of gene transfection in reducing the inflammatory response in atherosclerosis.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010369468251020063757
2025-10-29
2026-01-31
Loading full text...

Full text loading...

References

  1. Yang J. Rong S. The emerging role of CircRNAs in atherosclerosis. Curr. Vasc Pharmacol. 2023 21 1 26 41 10.2174/1570161121666230106153857 36617710
    [Google Scholar]
  2. Vesnina A. Prosekov A. Atuchin V. Minina V. Ponasenko A. Tackling atherosclerosis via selected nutrition. Int. J. Mol. Sci. 2022 23 15 8233 10.3390/ijms23158233 35897799
    [Google Scholar]
  3. Raitakari O. Pahkala K. Magnussen C.G. Prevention of atherosclerosis from childhood. Nat. Rev. Cardiol. 2022 19 8 543 554 10.1038/s41569‑021‑00647‑9 34987194
    [Google Scholar]
  4. Vartak T. Kumaresan S. Brennan E. Decoding microRNA drivers in atherosclerosis. Biosci Rep 2022 42 7 BSR20212355 10.1042/BSR20212355 35758143
    [Google Scholar]
  5. Kong P. Cui Z.Y. Huang X.F. Zhang D.D. Guo R.J. Han M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022 7 1 131 10.1038/s41392‑022‑00955‑7 35459215
    [Google Scholar]
  6. Liang G. Wang S. Shao J. Jin Y.J. Xu L. Yan Y. Günther S. Wang L. Offermanns S. Tenascin-X mediates flow-induced suppression of EndMT and atherosclerosis. Circ. Res. 2022 130 11 1647 1659 10.1161/CIRCRESAHA.121.320694 35443807
    [Google Scholar]
  7. Huang X. Zhao Y. Zhou H. Li Y. Circular RNAs in atherosclerosis. Clin. Chim. Acta 2022 531 71 80 10.1016/j.cca.2022.03.016 35339453
    [Google Scholar]
  8. Poznyak A.V. Bezsonov E.E. Popkova T.V. Starodubova A.V. Orekhov A.N. Vaccination against atherosclerosis: Is it real? Int. J. Mol. Sci. 2022 23 5 2417 10.3390/ijms23052417 35269559
    [Google Scholar]
  9. Rodriguez D. Watts D. Gaete D. Sormendi S. Wielockx B. Hypoxia pathway proteins and their impact on the blood vasculature. Int. J. Mol. Sci. 2021 22 17 9191 10.3390/ijms22179191 34502102
    [Google Scholar]
  10. Bugger H. Zirlik A. Anti-inflammatory strategies in atherosclerosis. Hamostaseologie 2021 41 6 433 442 10.1055/a‑1661‑0020 34942656
    [Google Scholar]
  11. Movahedian Ataar A. Eshraghi A. Asgari S. Naderi G.H. Badiee A. Antioxidant Effect of Ziziphus vulgaris, Portulaca oleracea, Berberis integerima and Gundelia tournefortti on lipid peroxidation, Hb glycosylation and red blood Cell hemolysis. Faslnamah-i Giyahan-i Daruyi 2011 10 40 80 88
    [Google Scholar]
  12. Riccardi G. Giosuè A. Calabrese I. Vaccaro O. Dietary recommendations for prevention of atherosclerosis. Cardiovasc. Res. 2022 118 5 1188 1204 10.1093/cvr/cvab173 34229346
    [Google Scholar]
  13. Tabares-Guevara J.H. Villa-Pulgarin J.A. Hernandez J.C. Atherosclerosis: Immunopathogenesis and strategies for immunotherapy. Immunotherapy 2021 13 14 1231 1244 10.2217/imt‑2021‑0009 34382409
    [Google Scholar]
  14. Blaha M.J. DeFilippis A.P. Multi-ethnic study of atherosclerosis (MESA). J. Am. Coll. Cardiol. 2021 77 25 3195 3216 10.1016/j.jacc.2021.05.006 34167645
    [Google Scholar]
  15. Ruotsalainen A.K. Mäkinen P. Ylä-Herttuala S. Novel RNAi-based therapies for atherosclerosis. Curr. Atheroscler. Rep. 2021 23 8 45 10.1007/s11883‑021‑00938‑z 34146172
    [Google Scholar]
  16. Ruddy T.D. Kadoya Y. Small G.R. Targeting atherosclerosis with antihypertensive therapy. J. Nucl. Cardiol. 2023 30 4 1627 1629 10.1007/s12350‑023‑03272‑w 37138176
    [Google Scholar]
  17. Yuan H.Q. Hao Y.M. Ren Z. Gu H.F. Liu F.T. Yan B.J. Qu S.L. Tang Z.H. Liu L.S. Chen D.X. Jiang Z.S. Tissue factor pathway inhibitor in atherosclerosis. Clin. Chim. Acta 2019 491 97 102 10.1016/j.cca.2019.01.024 30695687
    [Google Scholar]
  18. Getz G.S. Reardon C.A. Atherosclerosis: Cell biology and lipoproteins. Curr. Opin. Lipidol. 2020 31 5 286 290 10.1097/MOL.0000000000000704 32773467
    [Google Scholar]
  19. Sanchez-Rodriguez E. Egea-Zorrilla A. Plaza-Díaz J. Aragón-Vela J. Muñoz-Quezada S. Tercedor-Sánchez L. Abadia-Molina F. The gut microbiota and its implication in the development of atherosclerosis and related cardiovascular diseases. Nutrients 2020 12 3 605 10.3390/nu12030605 32110880
    [Google Scholar]
  20. Ruparelia N. Choudhury R. Inflammation and atherosclerosis: What is on the horizon? Heart 2020 106 1 80 85 10.1136/heartjnl‑2018‑314230 31843811
    [Google Scholar]
  21. Pedro-Botet J. Climent E. Benaiges D. Atherosclerosis and inflammation. New therapeutic approaches. Med. Clin 2020 155 6 256 262 10.1016/j.medcli.2020.04.024 32571617
    [Google Scholar]
  22. Pérez-Medina C. Fayad Z.A. Mulder W.J.M. Atherosclerosis immunoimaging by positron emission tomography. Arterioscler. Thromb. Vasc. Biol. 2020 40 4 865 873 10.1161/ATVBAHA.119.313455 32078338
    [Google Scholar]
  23. Lee-Huang S. Huang P.L. Huang P.L. Bourinbaiar A.S. Chen H.C. Kung H.F. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proc. Natl. Acad. Sci. USA 1995 92 19 8818 8822 10.1073/pnas.92.19.8818 7568024
    [Google Scholar]
  24. McCaffrey A.P. RNA interference inhibitors of hepatitis B virus. Ann. N. Y. Acad. Sci. 2009 1175 1 15 23 10.1111/j.1749‑6632.2009.04974.x 19796073
    [Google Scholar]
  25. Tavakoli-Ardakani M. Eshraghi A. Hajhossein Talasaz A. Salamzadeh J. A drug utilization evaluation study of amphotericin B in neutropenic patients in a teaching hospital in iran. Iran. J. Pharm. Res. 2012 11 1 151 156 10.1002/ddr.21001 24250436
    [Google Scholar]
  26. Nomura M. Ohashi T. Nishikawa K. Nishitsuji H. Kurihara K. Hasegawa A. Furuta R.A. Fujisawa J. Tanaka Y. Hanabuchi S. Harashima N. Masuda T. Kannagi M. Repression of tax expression is associated both with resistance of human T-cell leukemia virus type 1-infected T cells to killing by tax-specific cytotoxic T lymphocytes and with impaired tumorigenicity in a rat model. J. Virol. 2004 78 8 3827 3836 10.1128/JVI.78.8.3827‑3836.2004 15047798
    [Google Scholar]
  27. Zhang M. Liu W. Li Q. Gene transfection technology and its application in tumor research. Chin J. Anim. Sci. Vet. Med. 2013 40 5 4 10.3969/j.issn.1671‑7236.2013.05.016
    [Google Scholar]
  28. Mantziaris V. Kolios G. Gut microbiota, atherosclerosis, and therapeutic targets. Crit. Pathw. Cardiol. 2019 18 3 139 142 10.1097/HPC.0000000000000187 31348074
    [Google Scholar]
  29. Hemmat N. Ebadi A. Badalzadeh R. Memar M.Y. Baghi H.B. Viral infection and atherosclerosis. Eur. J. Clin. Microbiol. Infect. Dis. 2018 37 12 2225 2233 10.1007/s10096‑018‑3370‑z 30187247
    [Google Scholar]
  30. Xu S. Pelisek J. Jin Z.G. Atherosclerosis is an epigenetic disease. Trends Endocrinol. Metab. 2018 29 11 739 742 10.1016/j.tem.2018.04.007 29753613
    [Google Scholar]
  31. Eshraghi A. Talasaz A.H. Salamzadeh J. Salarifar M. Pourhosseini H. Nozari Y. Bahremand M. Jalali A. Boroumand M.A. Evaluating the effect of intracoronary n-acetylcysteine on platelet activation markers after primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction. Am. J. Ther. 2016 23 1 e44 e51 10.1097/MJT.0000000000000309 26291594
    [Google Scholar]
  32. Nozari Y. Eshraghi A. Talasaz A.H. Bahremand M. Salamzadeh J. Salarifar M. Pourhosseini H. Jalali A. Mortazavi S.H. Protection from reperfusion injury with intracoronary N-acetylcysteine in patients with STEMI undergoing primary percutaneous coronary intervention in a cardiac tertiary center. Am. J. Cardiovasc. Drugs 2018 18 3 213 221 10.1007/s40256‑017‑0258‑8 29322434
    [Google Scholar]
  33. Krasilnikova O. Yakimova A. Ivanov S. Atiakshin D. Kostin A.A. Sosin D. Shegay P. Kaprin A.D. Klabukov I. Gene-activated materials in regenerative dentistry: Narrative review of technology and study results. Int. J. Mol. Sci. 2023 24 22 16250 10.3390/ijms242216250 38003439
    [Google Scholar]
  34. Wang Y. Liu J. Tong C. Li L. Cui H. Zhang L. Zhang M. Zhang S. Zhou K. Lan X. Chen Q. Zhao Y. Gene therapy by virus-like self-spooling toroidal DNA condensates for revascularization of hindlimb ischemia. J. Nanobiotechnology 2024 22 1 413 10.1186/s12951‑024‑02620‑3 39004736
    [Google Scholar]
  35. Mehrpooya M. Vaseghi G. Eshraghi A. Eslami N. Delayed myocardial infarction associated with rituximab infusion. Am. J. Ther. 2016 23 1 e283 e287 10.1097/MJT.0000000000000214 26196524
    [Google Scholar]
  36. Stark V.K. Hoch J.R. Warner T.F. Hullett D.A. Monocyte chemotactic protein-1 expression is associated with the development of vein graft intimal hyperplasia. Arterioscler. Thromb. Vasc. Biol. 1997 17 8 1614 1621 10.1161/01.ATV.17.8.1614 9301643
    [Google Scholar]
  37. Twiner M.J. Hennessy J. Wein R. Levy P.D. Nitroglycerin use in the emergency department: Current perspectives. Open Access Emerg. Med. 2022 14 327 333 10.2147/OAEM.S340513 35847764
    [Google Scholar]
  38. Nagar N. Naidu G. Panda S.K. Gulati K. Singh R.P. Poluri K.M. Elucidating the role of chemokines in inflammaging associated atherosclerotic cardiovascular diseases. Mech. Ageing Dev. 2024 220 111944 10.1016/j.mad.2024.111944 38782074
    [Google Scholar]
  39. Ma Y. Pan C. Tang X. Zhang M. Shi H. Wang T. Zhang Y. MicroRNA-200a represses myocardial infarction-related cell death and inflammation by targeting the Keap1/Nrf2 and β-catenin pathways. Hellenic J. Cardiol. 2021 62 2 139 148 10.1016/j.hjc.2020.10.006 33197602
    [Google Scholar]
  40. Chen H. Qing T. Luo H. Yu M. Wang Y. Wei W. Xie Y. Yi X. Inflammation and endothelial function relevant genetic polymorphisms, carotid atherosclerosis, and vascular events in high-risk stroke population. Front. Neurol. 2024 15 1405183 10.3389/fneur.2024.1405183 38827573
    [Google Scholar]
  41. Demirtola A.İ. Erdöl M.A. Mammadli A. Göktuğ Ertem A. Yayla Ç. Akçay A.B. Predicting coronary artery severity in patients undergoing coronary computed tomographic angiography: Insights from pan-immune inflammation value and atherogenic index of plasma. Nutr. Metab. Cardiovasc. Dis. 2024 34 10 2289 2297 10.1016/j.numecd.2024.05.015 38897846
    [Google Scholar]
  42. Mao J. Chen Y. Zong Q. Liu C. Xie J. Wang Y. Fisher D. Hien N.T.T. Pronyuk K. Musabaev E. Li Y. Zhao L. Dang Y. Corilagin alleviates atherosclerosis by inhibiting NLRP3 inflammasome activation via the Olfr2 signaling pathway in vitro and in vivo. Front. Immunol. 2024 15 1364161 10.3389/fimmu.2024.1364161 38803504
    [Google Scholar]
  43. Zhu B. Yang Y. Wang X. Sun D. Yang X. Zhu X. Ding S. Xiao C. Zou Y. Yang X. Blocking H1R signal aggravates atherosclerosis by promoting inflammation and foam cell formation. J. Mol. Med. 2024 102 7 887 897 10.1007/s00109‑024‑02453‑5 38733386
    [Google Scholar]
  44. Li X. Sallam T.A. (cholesterol) crystal clear path to inflammasome activation in atherosclerosis. J. Lipid Res. 2024 65 6 100554 10.1016/j.jlr.2024.100554 38705278
    [Google Scholar]
  45. Mardani R. Shahali M. Prediction of atherosclerosis in severe COVID-19 patients with CD16 and CD18 markers and inflammatory factors. Clin. Chim. Acta 2024 558 S1 118847 10.1016/j.cca.2024.118847
    [Google Scholar]
  46. Qu K. Zhong Y. Zhu L. Mou N. Cao Y. Liu J. Wu S. Yan M. Yan F. Li J. Zhang C. Wu G. Zhang K. Qin X. Wu W. A macrophage membrane‐functionalized, reactive oxygen species‐activatable nanoprodrug to alleviate inflammation and improve the lipid metabolism for atherosclerosis management. Adv. Healthc. Mater. 2024 13 26 2401113 10.1002/adhm.202401113 38686849
    [Google Scholar]
  47. Mao L. Chen L. Qu M. He X. Pericarotid adipose tissue is associated with circulatory markers of inflammation and carotid atherosclerosis. Angiology 2024 33197241248776 00033197241248776 10.1177/00033197241248776 38644057
    [Google Scholar]
  48. Ding Y. Sun Y. Wang H. Zhao H. Yin R. Zhang M. Pan X. Zhu X. Atherosis-associated lnc_000048 activates PKR to enhance STAT1-mediated polarization of THP-1 macrophages to M1 phenotype. Neural Regen. Res. 2024 19 11 2488 2498 10.4103/NRR.NRR‑D‑23‑01355 38526285
    [Google Scholar]
  49. Zhang Y. Zhang X.Y. Shi S.R. Ma C.N. Lin Y.P. Song W.G. Guo S.D. Natural products in atherosclerosis therapy by targeting PPARs: A review focusing on lipid metabolism and inflammation. Front. Cardiovasc. Med. 2024 11 1372055 10.3389/fcvm.2024.1372055 38699583
    [Google Scholar]
  50. Guo S. Wang L. Cao K. Li Z. Song M. Huang S. Li Z. Wang C. Chen P. Wang Y. Dai X. Chen X. Fu X. Feng D. He J. Huo Y. Xu Y. Endothelial nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome regulation in atherosclerosis. Cardiovasc. Res. 2024 120 8 883 898 10.1093/cvr/cvae071 38626254
    [Google Scholar]
  51. Wang Y. Chen Z. Zhu Q. Chen Z. Fu G. Ma B. Zhang W. Aiming at early-stage vulnerable plaques: A nanoplatform with dual-mode imaging and lipid-inflammation integrated regulation for atherosclerotic theranostics. Bioact. Mater. 2024 37 94 105 10.1016/j.bioactmat.2024.03.019 38523705
    [Google Scholar]
  52. Shafieipour S. Mohammadtaghizadeh M. Evaluation of common genes and molecular pathways between atherosclerosis and inflammatory bowel disease: A systems biology approach. Hum. Genet. 2024 40 201277 10.1016/j.humgen.2024.201277
    [Google Scholar]
  53. Hoekstra M. Snip O.S.C. Janusz P. Bernabé Kleijn M.N.A. Truitt E.R. Sullivan B.D. Schmidt T.A. Jay G.D. Van Eck M. Recombinant human proteoglycan 4 lowers inflammation and atherosclerosis susceptibility in female low‐density lipoprotein receptor knockout mice. J. Physiol. 2024 602 9 1939 1951 10.1113/JP286354 38606903
    [Google Scholar]
  54. Cyr Y. Bozal F.K. Barcia Durán J.G. Newman A.A.C. Amadori L. Smyrnis P. Gourvest M. Das D. Gildea M. Kaur R. Zhang T. Wang K.M. Von Itter R. Schlegel P.M. Dupuis S.D. Sanchez B.F. Schmidt A.M. Fisher E.A. van Solingen C. Giannarelli C. Moore K.J. The IRG1–itaconate axis protects from cholesterol-induced inflammation and atherosclerosis. Proc. Natl. Acad. Sci. USA 2024 121 15 e2400675121 10.1073/pnas.2400675121 38564634
    [Google Scholar]
  55. Henry D. Baugé E. Hennuyer N. Ory K. Derudas B. Vallez E. Deprince A. Lefebvre P. Haas J.T. Staels B. Lalloyer F. Anti-inflammatory, but not lipid-lowering, activity of hepatocyte PPARα improves atherosclerosis in Ldlr- deficient mice. Sci. Transl. Med. 2025 17 800 eadj8192 10.1126/scitranslmed.adj8192 40435217
    [Google Scholar]
  56. Su X. O’Hare K.A. Freeman M.L. Mechanisms and implications of vascular-homing CD8 T cells in atherosclerosis. NPJ Cardiovasc Health. 2025 2 1 19 10.1038/s44325‑025‑00056‑8 40454002
    [Google Scholar]
  57. Yang H. Yang Y. Cui G. Xu Y. Zhao R. Le G. Xie Y. Li P. Dietary methionine restriction ameliorates atherosclerosis by remodeling the gut microbiota in apolipoprotein E-knockout mice. Food Funct. 2025 16 12 4904 4922 10.1039/D5FO00841G 40421996
    [Google Scholar]
  58. Wang J. Zheng W. Shang H. Pan L. Yuan Y. Chen W. Guo C. Li S. Sun X. Guo J. Zhang X. Radial artery intima-media thickening is a sensitive marker of atherosclerosis and coronary artery stenosis, a lesson from a 6-year study of a spontaneous monkey model. Mol. Cell. Biochem. 2025 10.1007/s11010‑025‑05315‑x 40411734
    [Google Scholar]
  59. Rahim I.N.A. Omar E. Muid S.A. Kasim N.A.M. Antiatherogenic and plaque stabilizing effects of saffron ethanolic extract in atherosclerotic rabbits. BMC Complement Med. Ther. 2025 25 1 187 10.1186/s12906‑025‑04927‑6 40410745
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010369468251020063757
Loading
/content/journals/cpb/10.2174/0113892010369468251020063757
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: chronic disease ; response ; inflammation ; atherosclerosis ; expression ; Gene transfection
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test