Skip to content
2000
image of Advances in the Diagnosis of Invasive Fungal Infections: Bridging Traditional Methods and Emerging Technologies

Abstract

Invasive Fungal Infections (IFIs) are a growing global health concern, particularly among immunocompromised individuals and critically ill patients. Diagnosis remains challenging due to nonspecific symptoms, low sensitivity of conventional methods, and the emergence of antifungal resistance. This review outlines the diagnostic limitations of microscopy, culture, and serological assays while exploring the potential of molecular tools. Emphasis is placed on integrated diagnostic pathways, resistance gene detection, point-of-care assays, and Artificial Intelligence (AI) enhanced imaging for fungal infections. Diagnostic challenges in special populations are also addressed. The role of diagnostics in antifungal stewardship and infection control is discussed with forward-looking perspectives. By integrating conventional approaches with emerging technologies, this review highlights the need for a more precise and responsive diagnostic era in IFIs. Timely and accurate diagnosis of IFIs is vital for improving outcomes. The integration of traditional and emerging diagnostic tools, including pan-fungal platforms and resistance profiling, is key to advancing fungal disease management globally, particularly in resource-limited settings.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010438113251117051548
2026-01-19
2026-01-31
Loading full text...

Full text loading...

References

  1. Enoch D.A. Yang H. Aliyu S.H. Micallef C. The changing epidemiology of invasive fungal infections. Methods Mol. Biol. 2017 1508 17 65 10.1007/978‑1‑4939‑6515‑1_2 27837497
    [Google Scholar]
  2. Panda S. Brahma S. Dutta S. Selective antifungal action of crude extracts of Cassia fistula L.: A preliminary study on Candida and Aspergillus species. Malays. J. Microbiol. 2010 6 1 62 68 10.21161/mjm.19609
    [Google Scholar]
  3. Lamoth F. Calandra T. Early diagnosis of invasive mould infections and disease. J. Antimicrob. Chemother. 2017 72 Suppl. 1 i19 i28 10.1093/jac/dkx030 28355464
    [Google Scholar]
  4. Ruijters V.J. Oosterom N. Wolfs T.F.W. van den Heuvel-Eibrink M.M. van Grotel M. Frequency and determinants of invasive fungal infections in children with solid and hematologic malignancies in a nonallogeneic stem cell transplantation setting: A narrative review. J. Pediatr. Hematol. Oncol. 2019 41 5 345 354 10.1097/MPH.0000000000001468 30973485
    [Google Scholar]
  5. Kidd S.E. Chen S.C.A. Meyer W. Halliday C.L. A new age in molecular diagnostics for invasive fungal disease: Are we ready? Front. Microbiol. 2020 10 2903 10.3389/fmicb.2019.02903 31993022
    [Google Scholar]
  6. Rahi M.S. Jindal V. Pednekar P. Parekh J. Gunasekaran K. Sharma S. Stender M. Jaiyesimi I.A. Fungal infections in hematopoietic stem-cell transplant patients: A review of epidemiology, diagnosis, and management. Ther. Adv. Infect. Dis. 2021 8 20499361211039050 10.1177/20499361211039050 34434551
    [Google Scholar]
  7. Mori G. Diotallevi S. Farina F. Lolatto R. Galli L. Chiurlo M. Acerbis A. Xue E. Clerici D. Mastaglio S. Lupo Stanghellini M.T. Ripa M. Corti C. Peccatori J. Puoti M. Bernardi M. Castagna A. Ciceri F. Greco R. Oltolini C. High-risk neutropenic fever and invasive fungal diseases in patients with hematological malignancies. Microorganisms 2024 12 1 117 10.3390/microorganisms12010117 38257945
    [Google Scholar]
  8. Das S. Mallick U. Sahu B.K. Turuk J. Sahu M.C. Clinical mycology: Understanding pathogenesis, diagnosis, and antifungal strategies for invasive fungal infections: A review. In: Microb Infect. Dis 2024 10.21608/mid.2024.331599.2319
    [Google Scholar]
  9. Bongomin F. Gago S. Oladele R. Denning D. Global and multi-national prevalence of fungal diseases—Estimate precision. J. Fungi 2017 3 4 57 10.3390/jof3040057 29371573
    [Google Scholar]
  10. Fang W. Wu J. Cheng M. Zhu X. Du M. Chen C. Liao W. Zhi K. Pan W. Diagnosis of invasive fungal infections: Challenges and recent developments. J. Biomed. Sci. 2023 30 1 42 10.1186/s12929‑023‑00926‑2 37337179
    [Google Scholar]
  11. Whaley S.G. Berkow E.L. Rybak J.M. Nishimoto A.T. Barker K.S. Rogers P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol. 2017 7 2173 10.3389/fmicb.2016.02173 28127295
    [Google Scholar]
  12. Alexander B.D. Johnson M.D. Pfeiffer C.D. Jiménez-Ortigosa C. Catania J. Booker R. Castanheira M. Messer S.A. Perlin D.S. Pfaller M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 2013 56 12 1724 1732 10.1093/cid/cit136 23487382
    [Google Scholar]
  13. Chowdhary A. Sharma C. Meis J.F. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017 13 5 1006290 10.1371/journal.ppat.1006290 28542486
    [Google Scholar]
  14. antibiotic resistance threats report. 2019 Available from: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/index.html
  15. Panda S.K. Khan A. Swain S.S. Aissa A. Mukazayire M.J. Van Puyvelde L. Luyten W. The anticandidal activity of the diterpenediol 8(14),15‐sandaracopimaradiene‐7alpha,18‐diol from Tetradenia riparia against the emerging pathogen Candida auris. Phytother. Res. 2023 37 1 3 6 10.1002/ptr.7638 36199239
    [Google Scholar]
  16. Sanyaolu A. Okorie C. Marinkovic A. Abbasi A.F. Prakash S. Mangat J. Hosein Z. Haider N. Chan J. Candida auris: An overview of the emerging drug-resistant fungal infection. Infect. Chemother. 2022 54 2 236 246 10.3947/ic.2022.0008 35794716
    [Google Scholar]
  17. Verweij P.E. Chowdhary A. Melchers W.J.G. Meis J.F. Azole resistance in Aspergillus fumigatus: Can we retain the clinical use of mold-active antifungal azoles? Clin. Infect. Dis. 2016 62 3 362 368 10.1093/cid/civ885 26486705
    [Google Scholar]
  18. Mpoza E. Rhein J. Abassi M. Emerging fluconazole resistance: Implications for the management of cryptococcal meningitis. Med. Mycol. Case Rep. 2018 19 30 32 10.1016/j.mmcr.2017.11.004 29234588
    [Google Scholar]
  19. Panda S.K. Buroni S. Tiwari V. Nascimento da Silva L.C. Editorial: Insights into new strategies to combat biofilms. Front. Microbiol. 2021 12 742647 10.3389/fmicb.2021.742647 34630368
    [Google Scholar]
  20. Kerkoub N. Panda S.K. Yang M.R. Lu J.G. Jiang Z.H. Nasri H. Luyten W. Bioassay-guided isolation of anti-Candida biofilm compounds from methanol extracts of the aerial parts of Salvia officinalis (Annaba, Algeria). Front. Pharmacol. 2018 9 1418 10.3389/fphar.2018.01418 30618736
    [Google Scholar]
  21. Chandrasekar P. Diagnostic challenges and recent advances in the early management of invasive fungal infections. Eur. J. Haematol. 2010 84 4 281 290 10.1111/j.1600‑0609.2009.01391.x 20002155
    [Google Scholar]
  22. Arvanitis M. Anagnostou T. Fuchs B.B. Caliendo A.M. Mylonakis E. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin. Microbiol. Rev. 2014 27 3 490 526 10.1128/CMR.00091‑13 24982319
    [Google Scholar]
  23. Stemler J. Többen C. Lass-Flörl C. Steinmann J. Ackermann K. Rath P.M. Simon M. Cornely O.A. Koehler P. Diagnosis and Treatment of invasive aspergillosis caused by non-fumigatus Aspergillus spp. J. Fungi 2023 9 4 500 10.3390/jof9040500 37108955
    [Google Scholar]
  24. Černáková L. Roudbary M. Brás S. Tafaj S. Rodrigues C.F. Candida auris: A quick review on identification, current treatments, and challenges. Int. J. Mol. Sci. 2021 22 9 4470 10.3390/ijms22094470 33922907
    [Google Scholar]
  25. Muthu V. Agarwal R. Patel A. Kathirvel S. Abraham O.C. Aggarwal A.N. Bal A. Bhalla A.S. Chhajed P.N. Chaudhry D. Garg M. Guleria R. Krishnan R.G. Kumar A. Maheshwari U. Mehta R. Mohan A. Nath A. Patel D. Rudramurthy S.M. Saxena P. Sethuraman N. Singhal T. Soman R. Thangakunam B. Varghese G.M. Chakrabarti A. Definition, diagnosis, and management of COVID-19-associated pulmonary mucormycosis: Delphi consensus statement from the Fungal Infection Study Forum and Academy of Pulmonary Sciences, India. Lancet Infect. Dis. 2022 22 9 e240 e253 10.1016/S1473‑3099(22)00124‑4 35390293
    [Google Scholar]
  26. Singh A.K. Singh R. Joshi S.R. Misra A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab. Syndr. 2021 15 4 102146 10.1016/j.dsx.2021.05.019 34192610
    [Google Scholar]
  27. Chong W.H. Neu K.P. Incidence, diagnosis and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA): A systematic review. J. Hosp. Infect. 2021 113 115 129 10.1016/j.jhin.2021.04.012 33891985
    [Google Scholar]
  28. Almyroudi M.P. Akinosoglou K. Rello J. Blot S. Dimopoulos G. Clinical phenotypes of COVID-19 associated mucormycosis (CAM): A comprehensive review. Diagnostics 2022 12 12 3092 10.3390/diagnostics12123092 36553099
    [Google Scholar]
  29. Hussain S. Baxi H. Riad A. Klugarová J. Pokorná A. Slezáková S. Líčeník R. Najmi A.K. Klugar M. COVID-19-associated mucormycosis (CAM): An updated evidence mapping. Int. J. Environ. Res. Public Health 2021 18 19 10340 10.3390/ijerph181910340 34639637
    [Google Scholar]
  30. Ahmadi A. Bashardoust B. Abdorahimi M. Aminizadeh S. Salehi M. Khodavaisy S. Emerging challenges in diagnosis and treatment of invasive fungal infections: Addressing the impact of COVID-19 and new pathogens. Curr. Fungal Infect. Rep. 2023 17 4 296 308 10.1007/s12281‑023‑00475‑z
    [Google Scholar]
  31. Fisher M.C. Gurr S.J. Cuomo C.A. Blehert D.S. Jin H. Stukenbrock E.H. Stajich J.E. Kahmann R. Boone C. Denning D.W. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. MBio 2020 11 3 e00449 e20 10.1128/mBio.00449‑20 32371596
    [Google Scholar]
  32. Prakash H. Chakrabarti A. Global epidemiology of mucormycosis. J. Fungi 2019 5 1 26 10.3390/jof5010026 30901907
    [Google Scholar]
  33. Panda S. Sahu M.C. Turuk J. Pati S. Mucormycosis: A rare disease to notifiable disease. Braz. J. Microbiol. 2024 55 2 1065 1081 10.1007/s42770‑024‑01315‑z 38561499
    [Google Scholar]
  34. Cornely O.A. Alastruey-Izquierdo A. Arenz D. Chen S.C.A. Dannaoui E. Hochhegger B. Hoenigl M. Jensen H.E. Lagrou K. Lewis R.E. Mellinghoff S.C. Mer M. Pana Z.D. Seidel D. Sheppard D.C. Wahba R. Akova M. Alanio A. Al-Hatmi A.M.S. Arikan-Akdagli S. Badali H. Ben-Ami R. Bonifaz A. Bretagne S. Castagnola E. Chayakulkeeree M. Colombo A.L. Corzo-León D.E. Drgona L. Groll A.H. Guinea J. Heussel C.P. Ibrahim A.S. Kanj S.S. Klimko N. Lackner M. Lamoth F. Lanternier F. Lass-Floerl C. Lee D.G. Lehrnbecher T. Lmimouni B.E. Mares M. Maschmeyer G. Meis J.F. Meletiadis J. Morrissey C.O. Nucci M. Oladele R. Pagano L. Pasqualotto A. Patel A. Racil Z. Richardson M. Roilides E. Ruhnke M. Seyedmousavi S. Sidharthan N. Singh N. Sinko J. Skiada A. Slavin M. Soman R. Spellberg B. Steinbach W. Tan B.H. Ullmann A.J. Vehreschild J.J. Vehreschild M.J.G.T. Walsh T.J. White P.L. Wiederhold N.P. Zaoutis T. Chakrabarti A. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect. Dis. 2019 19 12 e405 e421 10.1016/S1473‑3099(19)30312‑3 31699664
    [Google Scholar]
  35. Chow B.D.W. Linden J.R. Bliss J.M. Candida parapsilosis and the neonate: Epidemiology, virulence and host defense in a unique patient setting. Expert Rev. Anti Infect. Ther. 2012 10 8 935 946 10.1586/eri.12.74 23030332
    [Google Scholar]
  36. Juyal D. Sharma M. Pal S. Rathaur V. Sharma N. Emergence of non-albicans candida species in neonatal candidemia. N. Am. J. Med. Sci. 2013 5 9 541 545 10.4103/1947‑2714.118919 24251272
    [Google Scholar]
  37. Bassetti M. Righi E. Montravers P. Cornely O.A. What has changed in the treatment of invasive candidiasis? A look at the past 10 years and ahead. J. Antimicrob. Chemother. 2018 73 Suppl. 1 i14 i25 10.1093/jac/dkx445 29304208
    [Google Scholar]
  38. Yan G. Chew K.L. Chai L.Y.A. Update on non-culture-based diagnostics for invasive fungal disease. Mycopathologia 2021 186 5 575 582 10.1007/s11046‑021‑00549‑x 34213735
    [Google Scholar]
  39. Posch W. Heimdörfer D. Wilflingseder D. Lass-Flörl C. Invasive candidiasis: Future directions in non-culture based diagnosis. Expert Rev. Anti Infect. Ther. 2017 15 9 829 838 10.1080/14787210.2017.1370373 28829207
    [Google Scholar]
  40. Morrell M. Fraser V.J. Kollef M.H. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: A potential risk factor for hospital mortality. Antimicrob. Agents Chemother. 2005 49 9 3640 3645 10.1128/AAC.49.9.3640‑3645.2005 16127033
    [Google Scholar]
  41. Pfaller M.A. Diekema D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007 20 1 133 163 10.1128/CMR.00029‑06 17223626
    [Google Scholar]
  42. Tamo S.P.B. Candida Infections: Clinical features, diagnosis and treatment. Infect. Dis. Clin. Microbiol. 2020 2 2 91 102 10.36519/idcm.2020.0006
    [Google Scholar]
  43. Clancy C.J. Nguyen M.H. Diagnosing invasive candidiasis. J. Clin. Microbiol. 2018 56 5 e01909 17 10.1128/JCM.01909‑17 29444828
    [Google Scholar]
  44. Hsu J.L. Ruoss S.J. Bower N.D. Lin M. Holodniy M. Stevens D.A. Diagnosing invasive fungal disease in critically ill patients. Crit. Rev. Microbiol. 2011 37 4 277 312 10.3109/1040841X.2011.581223 21749278
    [Google Scholar]
  45. Pappas P.G. Lionakis M.S. Arendrup M.C. Ostrosky-Zeichner L. Kullberg B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018 4 1 18026 10.1038/nrdp.2018.26 29749387
    [Google Scholar]
  46. Darouiche R.O. Oropharyngeal and esophageal candidiasis in immunocompromised patients: Treatment issues. Clin. Infect. Dis. 1998 26 2 259 272 10.1086/516315 9502438
    [Google Scholar]
  47. Pappas P.G. Kauffman C.A. Andes D.R. Clancy C.J. Marr K.A. Ostrosky-Zeichner L. Reboli A.C. Schuster M.G. Vazquez J.A. Walsh T.J. Zaoutis T.E. Sobel J.D. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016 62 4 e1 e50 10.1093/cid/civ933 26679628
    [Google Scholar]
  48. Lenka S. Swain S.K. Bhuyan R. Sahu M.C. Fungal infection in the oral cavity: A review. Int. J. Curr. Res. Rev. 2020 12 18 149 153 10.31782/IJCRR.2020.121821
    [Google Scholar]
  49. Katsipoulaki M. Stappers M.H.T. Malavia-Jones D. Brunke S. Hube B. Gow N.A.R. Candida albicans and Candida glabrata: Global priority pathogens. Microbiol. Mol. Biol. Rev. 2024 88 2 e00021 23 10.1128/mmbr.00021‑23 38832801
    [Google Scholar]
  50. Sobel J.D. Vulvovaginal candidosis. Lancet 2007 369 9577 1961 1971 10.1016/S0140‑6736(07)60917‑9 17560449
    [Google Scholar]
  51. Mallick U. Sahu B.K. Hegde R. Jena P. Turuk J. Sahu M.C. Panda S.K. Antifungal resistance in vaginal candidiasis among reproductive-age women: A review. Curr. Pharm. Biotechnol. 2025 26 10.2174/0113892010368329250503175104 40353419
    [Google Scholar]
  52. Keighley C. Garnham K. Harch S.A.J. Robertson M. Chaw K. Teng J.C. Chen S.C.A. Candida auris: Diagnostic challenges and emerging opportunities for the clinical microbiology laboratory. Curr. Fungal Infect. Rep. 2021 15 3 116 126 10.1007/s12281‑021‑00420‑y 34178208
    [Google Scholar]
  53. Hata D.J. Humphries R. Lockhart S.R. Committee CoAPM: Candida auris: An emerging yeast pathogen posing distinct challenges for laboratory diagnostics, treatment, and infection prevention. Arch. Pathol. Lab. Med. 2020 144 1 107 114 10.5858/arpa.2018‑0508‑RA 31169997
    [Google Scholar]
  54. Sexton D.J. Kordalewska M. Bentz M.L. Welsh R.M. Perlin D.S. Litvintseva A.P. Direct detection of emergent fungal pathogen Candida auris in clinical skin swabs by SYBR green-based quantitative PCR assay. J. Clin. Microbiol. 2018 56 12 e01337 e18 10.1128/JCM.01337‑18 30232130
    [Google Scholar]
  55. De Carolis E. Marchionni F. La Rosa M. Meis J.F. Chowdhary A. Posteraro B. Sanguinetti M. Are we ready for nosocomial Candida auris infections? Rapid identification and antifungal resistance detection using MALDI-TOF mass spectrometry may be the answer. Front. Cell. Infect. Microbiol. 2021 11 645049 10.3389/fcimb.2021.645049 33796487
    [Google Scholar]
  56. Lewis M. Mechanistic model development for the evaluation of infection risks following environmentally mediated transmission of Clostridioides difficile and Candida auris through the patient environment. The Ohio State University 2025
    [Google Scholar]
  57. Koo S. Bryar J.M. Page J.H. Baden L.R. Marty F.M. Diagnostic performance of the (1-->3)-β-D-glucan assay for invasive fungal disease. Clin. Infect. Dis. 2009 49 11 1650 1659 10.1086/647942 19863452
    [Google Scholar]
  58. Barantsevich N. Barantsevich E. Diagnosis and treatment of invasive candidiasis. Antibiotics 2022 11 6 718 10.3390/antibiotics11060718 35740125
    [Google Scholar]
  59. Nett J. Andes D. Candida albicans biofilm development, modeling a host–pathogen interaction. Curr. Opin. Microbiol. 2006 9 4 340 345 10.1016/j.mib.2006.06.007 16815078
    [Google Scholar]
  60. Fox E.P. Singh-Babak S.D. Hartooni N. Nobile C.J. Biofilms and Antifungal Resistance. Antifungals: From Genomics to Resistance and the Development of Novel Agents. Caister Academic Press 2015 71 90 10.21775/9781910190012.04
    [Google Scholar]
  61. Harriott M.M. Noverr M.C. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: Effects on antimicrobial resistance. Antimicrob. Agents Chemother. 2009 53 9 3914 3922 10.1128/AAC.00657‑09 19564370
    [Google Scholar]
  62. Khan F. Bamunuarachchi N.I. Pham D.T.N. Tabassum N. Khan M.S.A. Kim Y.M. Mixed biofilms of pathogenic Candida -bacteria: Regulation mechanisms and treatment strategies. Crit. Rev. Microbiol. 2021 47 6 699 727 10.1080/1040841X.2021.1921696 34003065
    [Google Scholar]
  63. Tumbarello M. Posteraro B. Trecarichi E.M. Fiori B. Rossi M. Porta R. de Gaetano Donati K. La Sorda M. Spanu T. Fadda G. Cauda R. Sanguinetti M. Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. J. Clin. Microbiol. 2007 45 6 1843 1850 10.1128/JCM.00131‑07 17460052
    [Google Scholar]
  64. Mylonakis E. Clancy C.J. Ostrosky-Zeichner L. Garey K.W. Alangaden G.J. Vazquez J.A. Groeger J.S. Judson M.A. Vinagre Y.M. Heard S.O. Zervou F.N. Zacharioudakis I.M. Kontoyiannis D.P. Pappas P.G. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: A clinical trial. Clin. Infect. Dis. 2015 60 6 892 899 10.1093/cid/ciu959 25586686
    [Google Scholar]
  65. Pfaller M.A. Wolk D.M. Lowery T.J. T2MR and T2Candida: Novel technology for the rapid diagnosis of candidemia and invasive candidiasis. Future Microbiol. 2016 11 1 103 117 10.2217/fmb.15.111 26371384
    [Google Scholar]
  66. Patterson T.F. Thompson G.R. Denning D.W. Fishman J.A. Hadley S. Herbrecht R. Kontoyiannis D.P. Marr K.A. Morrison V.A. Nguyen M.H. Segal B.H. Steinbach W.J. Stevens D.A. Walsh T.J. Wingard J.R. Young J.A.H. Bennett J.E. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016 63 4 e1 e60 10.1093/cid/ciw326 27365388
    [Google Scholar]
  67. White P.L. Archer A.E. Barnes R.A. Comparison of non-culture-based methods for detection of systemic fungal infections, with an emphasis on invasive Candida infections. J. Clin. Microbiol. 2005 43 5 2181 2187 10.1128/JCM.43.5.2181‑2187.2005 15872239
    [Google Scholar]
  68. Otašević S. Momčilović S. Stojanović N.M. Skvarč M. Rajković K. Arsić-Arsenijević V. Non-culture based assays for the detection of fungal pathogens. J. Mycol. Med. 2018 28 2 236 248 10.1016/j.mycmed.2018.03.001 29605542
    [Google Scholar]
  69. Yeoh D.K. McMullan B.J. Clark J.E. Slavin M.A. Haeusler G.M. Blyth C.C. The challenge of diagnosing invasive pulmonary aspergillosis in children: A review of existing and emerging tools. Mycopathologia 2023 188 5 731 743 10.1007/s11046‑023‑00714‑4 37040020
    [Google Scholar]
  70. Scharmann U. Verhasselt H.L. Kirchhoff L. Furnica D.T. Steinmann J. Rath P.M. Microbiological non-culture-based methods for diagnosing invasive pulmonary aspergillosis in ICU patients. Diagnostics 2023 13 16 2718 10.3390/diagnostics13162718 37627977
    [Google Scholar]
  71. Hoenigl M. Prattes J. Spiess B. Wagner J. Prueller F. Raggam R.B. Posch V. Duettmann W. Hoenigl K. Wölfler A. Koidl C. Buzina W. Reinwald M. Thornton C.R. Krause R. Buchheidt D. Performance of galactomannan, beta-d-glucan, Aspergillus lateral-flow device, conventional culture, and PCR tests with bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. J. Clin. Microbiol. 2014 52 6 2039 2045 10.1128/JCM.00467‑14 24671798
    [Google Scholar]
  72. Finkelman M.A. Specificity influences in (1→ 3)-β-d-glucan-supported diagnosis of invasive fungal disease. J. Fungi 2020 7 1 14 10.3390/jof7010014 33383818
    [Google Scholar]
  73. Dudakova A. Spiess B. Tangwattanachuleeporn M. Sasse C. Buchheidt D. Weig M. Groß U. Bader O. Molecular tools for the detection and deduction of azole antifungal drug resistance phenotypes in Aspergillus species. Clin. Microbiol. Rev. 2017 30 4 1065 1091 10.1128/CMR.00095‑16 28903985
    [Google Scholar]
  74. van der Torre M.H. Novak-Frazer L. Rautemaa-Richardson R. Detecting azole-antifungal resistance in Aspergillus fumigatus by pyrosequencing. J. Fungi 2020 6 1 12 10.3390/jof6010012 31936898
    [Google Scholar]
  75. Novak-Frazer L. Anees-Hill S.P. Hassan D. Masania R. Moore C.B. Richardson M.D. Denning D.W. Rautemaa-Richardson R. Deciphering Aspergillus fumigatus cyp51A -mediated triazole resistance by pyrosequencing of respiratory specimens. J. Antimicrob. Chemother. 2020 75 12 3501 3509 10.1093/jac/dkaa357 32862231
    [Google Scholar]
  76. Stefan M.A. Ugur F.S. Garcia G.A. Source of the fitness defect in rifamycin-resistant Mycobacterium tuberculosis RNA polymerase and the mechanism of compensation by mutations in the β′ subunit. Antimicrob. Agents Chemother. 2018 62 6 e00164 e18 10.1128/AAC.00164‑18 29661864
    [Google Scholar]
  77. Rath P.M. Steinmann J. Overview of commercially available PCR assays for the detection of Aspergillus spp. DNA in patient samples. Front. Microbiol. 2018 9 740 10.3389/fmicb.2018.00740 29740403
    [Google Scholar]
  78. Guegan H. Robert-Gangneux F. Camus C. Belaz S. Marchand T. Baldeyrou M. Gangneux J.P. Improving the diagnosis of invasive aspergillosis by the detection of Aspergillus in broncho-alveolar lavage fluid: Comparison of non-culture-based assays. J. Infect. 2018 76 2 196 205 10.1016/j.jinf.2017.11.011 29248586
    [Google Scholar]
  79. Mendonça A. Santos H. Franco-Duarte R. Sampaio P. Fungal infections diagnosis – Past, present and future. Res. Microbiol. 2022 173 3 103915 10.1016/j.resmic.2021.103915 34863883
    [Google Scholar]
  80. Buil J.B. Zoll J. Verweij P.E. Melchers W.J.G. Molecular detection of azole-resistant Aspergillus fumigatus in clinical samples. Front. Microbiol. 2018 9 515 10.3389/fmicb.2018.00515 29619020
    [Google Scholar]
  81. Rajasingham R. Smith R.M. Park B.J. Jarvis J.N. Govender N.P. Chiller T.M. Denning D.W. Loyse A. Boulware D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017 17 8 873 881 10.1016/S1473‑3099(17)30243‑8 28483415
    [Google Scholar]
  82. Boulware D.R. Rolfes M.A. Rajasingham R. von Hohenberg M. Qin Z. Taseera K. Schutz C. Kwizera R. Butler E.K. Meintjes G. Muzoora C. Bischof J.C. Meya D.B. Multisite validation of cryptococcal antigen lateral flow assay and quantification by laser thermal contrast. Emerg. Infect. Dis. 2014 20 1 45 53 10.3201/eid2001.130906 24378231
    [Google Scholar]
  83. Tang M.W. Clemons K.V. Katzenstein D.A. Stevens D.A. The cryptococcal antigen lateral flow assay: A point-of-care diagnostic at an opportune time. Crit. Rev. Microbiol. 2016 42 4 634 642 10.3109/1040841X.2014.982509 25612826
    [Google Scholar]
  84. Chen S.C.A. Meyer W. Sorrell T.C. Cryptococcus gattii infections. Clin. Microbiol. Rev. 2014 27 4 980 1024 10.1128/CMR.00126‑13 25278580
    [Google Scholar]
  85. Rivera V. Gaviria M. Muñoz-Cadavid C. Cano L. Naranjo T. Validation and clinical application of a molecular method for the identification of Cryptococcus neoformans/Cryptococcus gattii complex DNA in human clinical specimens. Braz. J. Infect. Dis. 2015 19 6 563 570 10.1016/j.bjid.2015.07.006 26365230
    [Google Scholar]
  86. Liu R. Xing Y. Shen J. Establishment and methodological evaluation of a rapid detection method for Cryptococcus neoformans and Cryptococcus gattii species complexes based on CRISPR-Cas12a technology. J. Microbiol. Methods 2024 225 107026 10.1016/j.mimet.2024.107026 39182694
    [Google Scholar]
  87. Taverna C.G. Arias B.A. Firacative C. Vivot M.E. Szusz W. Vivot W. Mazza M. Córdoba S.B. Canteros C.E. Genotypic diversity and antifungal susceptibility of clinical isolates of Cryptococcus gattii species complex from Argentina. Mycopathologia 2023 188 1-2 51 61 10.1007/s11046‑022‑00705‑x 36609823
    [Google Scholar]
  88. Taha M. Tartor Y. Ibrahim S. Abd El-Aziz R. Molecular typing and susceptibility profile of Cryptococcus neoformans and Cryptococcus gattii species complex: An updated review. Prod, J. Anim. Health. 2023 Prod s1 17 26 10.17582/journal.jahp/2020/9.s1.17.26
    [Google Scholar]
  89. Hong N. Chen M. Xu J. Molecular markers reveal epidemiological patterns and evolutionary histories of the human pathogenic Cryptococcus. Front. Cell. Infect. Microbiol. 2021 11 683670 10.3389/fcimb.2021.683670 34026667
    [Google Scholar]
  90. Morrissey C.O. Diagnosis and management of invasive fungal infections due to non- Aspergillus moulds. J. Antimicrob. Chemother. 2025 80 Suppl. 1 i17 i39 10.1093/jac/dkaf005 40085540
    [Google Scholar]
  91. Kauffman C.A. Miceli M.H. Other Respiratory Fungal Infections. Pulmonary and Critical Care Considerations of Hematopoietic Stem Cell. Transplantation. Springer 2023 129 140 10.1007/978‑3‑031‑28797‑8_9
    [Google Scholar]
  92. Jenks J.D. White P.L. Kidd S.E. Goshia T. Fraley S.I. Hoenigl M. Thompson G.R. An update on current and novel molecular diagnostics for the diagnosis of invasive fungal infections. Expert Rev. Mol. Diagn. 2023 23 12 1135 1152 10.1080/14737159.2023.2267977 37801397
    [Google Scholar]
  93. van Diepeningen A.D. Brankovics B. Iltes J. van der Lee T.A.J. Waalwijk C. Diagnosis of Fusarium infections: Approaches to identification by the clinical mycology laboratory. Curr. Fungal Infect. Rep. 2015 9 3 135 143 10.1007/s12281‑015‑0225‑2 26301000
    [Google Scholar]
  94. Falci D.R. Stadnik C.M.B. Pasqualotto A.C. A review of diagnostic methods for invasive fungal diseases: Challenges and perspectives. Infect. Dis. Ther. 2017 6 2 213 223 10.1007/s40121‑017‑0154‑1 28357708
    [Google Scholar]
  95. Gomes M.Z.R. Lewis R.E. Kontoyiannis D.P. Mucormycosis caused by unusual mucormycetes, non-Rhizopus, -Mucor, and -Lichtheimia species. Clin. Microbiol. Rev. 2011 24 2 411 445 10.1128/CMR.00056‑10 21482731
    [Google Scholar]
  96. Dadwal S.S. Kontoyiannis D.P. Recent advances in the molecular diagnosis of mucormycosis. Expert Rev. Mol. Diagn. 2018 18 10 845 854 10.1080/14737159.2018.1522250 30203997
    [Google Scholar]
  97. Seidel D. Meißner A. Lackner M. Piepenbrock E. Salmanton-García J. Stecher M. Mellinghoff S. Hamprecht A. Durán Graeff L. Köhler P. Cheng M.P. Denis J. Chedotal I. Chander J. Pakstis D.L. Los-Arcos I. Slavin M. Montagna M.T. Caggiano G. Mares M. Trauth J. Aurbach U. Vehreschild M.J.G.T. Vehreschild J.J. Duarte R.F. Herbrecht R. Wisplinghoff H. Cornely O.A. Prognostic factors in 264 adults with invasive Scedosporium spp. and Lomentospora prolificans infection reported in the literature and FungiScope ®. Crit. Rev. Microbiol. 2019 45 1 1 21 10.1080/1040841X.2018.1514366 30628529
    [Google Scholar]
  98. Ramirez-Garcia A. Pellon A. Rementeria A. Buldain I. Barreto-Bergter E. Rollin-Pinheiro R. de Meirelles J.V. Xisto M.I.D.S. Ranque S. Havlicek V. Vandeputte P. Govic Y.L. Bouchara J.P. Giraud S. Chen S. Rainer J. Alastruey-Izquierdo A. Martin-Gomez M.T. López-Soria L.M. Peman J. Schwarz C. Bernhardt A. Tintelnot K. Capilla J. Martin-Vicente A. Cano-Lira J. Nagl M. Lackner M. Irinyi L. Meyer W. de Hoog S. Hernando F.L. Scedosporium and Lomentospora: An updated overview of underrated opportunists. Med. Mycol. 2018 56 Suppl. 1 S102 S125 10.1093/mmy/myx113 29538735
    [Google Scholar]
  99. Apostolopoulou A. Fishman J.A. The pathogenesis and diagnosis of Pneumocystis jiroveci pneumonia. J. Fungi 2022 8 11 1167 10.3390/jof8111167 36354934
    [Google Scholar]
  100. Shoham S. Dioverti Prono M.V. Pneumocystis jiroveci in Transplant: Recognizing Risk, Understanding Prevention, and Implementing Treatment. In: Emerging Transplant. Infections: Clinical Challenges and Implications. Springer 2021 1183 1206 10.1007/978‑3‑030‑25869‑6_48
    [Google Scholar]
  101. Grønseth S. Pneumocystis pneumonia in immunosuppressed patients - Epidemiological characterization and identification of diagnostic and prognostic markers. Doctoral thesis 2023
    [Google Scholar]
  102. Sokulska M. Kicia M. Wesołowska M. Hendrich A.B. Pneumocystis jirovecii—From a commensal to pathogen: Clinical and diagnostic review. Parasitol. Res. 2015 114 10 3577 3585 10.1007/s00436‑015‑4678‑6 26281787
    [Google Scholar]
  103. Zhao Y. Zhang W. Zhang X. Application of metagenomic next-generation sequencing in the diagnosis of infectious diseases. Front. Cell. Infect. Microbiol. 2024 14 1458316 10.3389/fcimb.2024.1458316 39619659
    [Google Scholar]
  104. Wiegand C. Bauer A. Brasch J. Nenoff P. Schaller M. Mayser P. Hipler U.C. Elsner P. Are the classic diagnostic methods in mycology still state of the art? J. Dtsch. Dermatol. Ges. 2016 14 5 490 494 10.1111/ddg.12980 27119470
    [Google Scholar]
  105. Gohil M.R. Baxi S.N. Navadiya A. Bapodra M. Patel H. Comparative evaluation of histopathological analysis, KOH wet mount and fungal culture to diagnose fungal infections in post-COVID patients. Indian J. Pathol. Microbiol. 2023 66 3 540 544 10.4103/ijpm.ijpm_663_21 37530335
    [Google Scholar]
  106. Harrington B.J. Hageage G.J. Calcofluor white: A review of its uses and applications in clinical mycology and parasitology. Lab. Med. 2003 34 5 361 367 10.1309/EPH2TDT8335GH0R3
    [Google Scholar]
  107. Gonçalves A.B. Santos I.M. Paterson R.R.M. Lima N. FISH and Calcofluor staining techniques to detect in situ filamentous fungal biofilms in water. Rev. Iberoam. Micol. 2006 23 3 194 198 10.1016/S1130‑1406(06)70044‑4 17196030
    [Google Scholar]
  108. Thairu Y. Usman Y. Nasir I.A. Laboratory perspective of gram staining and its significance in investigations of infectious diseases. Sub-Sahar Afr J. Med. 2014 1 4 168 174 10.4103/2384‑5147.144725
    [Google Scholar]
  109. Siagian F.E. Paint it black: Staining of the yeast cryptococcus neoformans with India ink. Int. J. Pathog Res. 2024 13 3 56 64 10.9734/ijpr/2024/v13i3286
    [Google Scholar]
  110. Paes H.C. Frazão S.O. Rosa C.P. Albuquerque P. Casadevall A. Felipe M.S.S. Nicola A.M. Opsonin-free, real-time imaging of Cryptococcus neoformans capsule during budding. Virulence 2018 9 1 1483 1488 10.1080/21505594.2018.1515610 30165795
    [Google Scholar]
  111. Hong G. Miller H.B. Allgood S. Lee R. Lechtzin N. Zhang S.X. Use of selective fungal culture media increases rates of detection of fungi in the respiratory tract of cystic fibrosis patients. J. Clin. Microbiol. 2017 55 4 1122 1130 10.1128/JCM.02182‑16 28100601
    [Google Scholar]
  112. Ozcan K. Ilkit M. Ates A. Turac-Bicer A. Demirhindi H. Performance of Chromogenic Candida Agar and CHROMagar Candida in recovery and presumptive identification of monofungal and polyfungal vaginal isolates. Med. Mycol. 2010 48 1 29 34 10.3109/13693780802713224 19191167
    [Google Scholar]
  113. Heaton S.M. Weintrob A.C. Downing K. Keenan B. Aggarwal D. Shaikh F. Tribble D.R. Wells J. Group I.D.C.R.P.T.I.D.O.S. Histopathological techniques for the diagnosis of combat-related invasive fungal wound infections. BMC Clin. Pathol. 2016 16 1 11 10.1186/s12907‑016‑0033‑9 27398067
    [Google Scholar]
  114. Gupta P. Ahmad A. Khare V. Kumar A. Banerjee G. Verma N. Singh M. Comparative evaluation of pan‐fungal real‐time PCR, galactomannan and (1‐3)‐β‐D‐glucan assay for invasive fungal infection in paediatric cancer patients. Mycoses 2017 60 4 234 240 10.1111/myc.12584 27862370
    [Google Scholar]
  115. Lamoth F. Akan H. Andes D. Cruciani M. Marchetti O. Ostrosky-Zeichner L. Racil Z. Clancy C.J. Assessment of the Role of 1,3-β-d-Glucan Testing for the Diagnosis of Invasive Fungal Infections in Adults. Clin. Infect. Dis. 2021 72 Suppl. 2 S102 S108 10.1093/cid/ciaa1943 33709130
    [Google Scholar]
  116. McMullan B.J. Halliday C. Sorrell T.C. Judd D. Sleiman S. Marriott D. Olma T. Chen S.C.A. Clinical utility of the cryptococcal antigen lateral flow assay in a diagnostic mycology laboratory. PLoS One 2012 7 11 49541 10.1371/journal.pone.0049541 23166705
    [Google Scholar]
  117. Tananuvat N. Salakthuantee K. Vanittanakom N. Pongpom M. Ausayakhun S. Prospective comparison between conventional microbial work-up vs PCR in the diagnosis of fungal keratitis. Eye (Lond.) 2012 26 10 1337 1343 10.1038/eye.2012.162 22878442
    [Google Scholar]
  118. Luo G. Mitchell T.G. Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. J. Clin. Microbiol. 2002 40 8 2860 2865 10.1128/JCM.40.8.2860‑2865.2002 12149343
    [Google Scholar]
  119. Ish-Shalom S. Lichter A. Analysis of fungal gene expression by real time quantitative PCR. Molecular and Cell. Biology Methods for Fungi. Springer 2010 103 114 10.1007/978‑1‑60761‑611‑5_7
    [Google Scholar]
  120. Niessen L. Current state and future perspectives of loop-mediated isothermal amplification (LAMP)-based diagnosis of filamentous fungi and yeasts. Appl. Microbiol. Biotechnol. 2015 99 2 553 574 10.1007/s00253‑014‑6196‑3 25492418
    [Google Scholar]
  121. Chen P. Sun W. He Y. Comparison of the next-generation sequencing (NGS) technology with culture methods in the diagnosis of bacterial and fungal infections. J. Thorac. Dis. 2020 12 9 4924 4929 10.21037/jtd‑20‑930 33145066
    [Google Scholar]
  122. Patel R. A moldy application of MALDI: MALDI-ToF mass spectrometry for fungal identification. J. Fungi 2019 5 1 4 10.3390/jof5010004 30609833
    [Google Scholar]
  123. de Magaldi S.W. Mackenzie D.W.R. Specificity of antigens from pathogenic Aspergillus species. Med. Mycol. 1984 22 5 381 394 10.1080/00362178485380631 6209813
    [Google Scholar]
  124. Wack E.E. Ampel N.M. Sunenshine R.H. Galgiani J.N. The return of delayed-type hypersensitivity skin testing for coccidioidomycosis. Clin. Infect. Dis. 2015 61 5 787 791 10.1093/cid/civ388 25979308
    [Google Scholar]
  125. Monday L.M. Parraga Acosta T. Alangaden G. T2Candida for the diagnosis and management of invasive Candida infections. J. Fungi 2021 7 3 178 10.3390/jof7030178 33802391
    [Google Scholar]
  126. Ball B. Bermas A. Carruthers-Lay D. Geddes-McAlister J. Mass spectrometry-based proteomics of fungal pathogenesis, host–fungal interactions, and antifungal development. J. Fungi 2019 5 2 52 10.3390/jof5020052 31212923
    [Google Scholar]
  127. Shankar J. Thakur R. Clemons K.V. Stevens D.A. Interplay of cytokines and chemokines in aspergillosis. J. Fungi 2024 10 4 251 10.3390/jof10040251 38667922
    [Google Scholar]
  128. Song N. Li X. Liu W. Metagenomic next-generation sequencing (mNGS) for diagnosis of invasive fungal infectious diseases: A narrative review. J. Lab. Precis. Med. 2021 6 29 10.21037/jlpm‑21‑25
    [Google Scholar]
  129. Wang C. You Z. Fu J. Chen S. Bai D. Zhao H. Song P. Jia X. Yuan X. Xu W. Zhao Q. Pang F. Application of metagenomic next-generation sequencing in the diagnosis of pulmonary invasive fungal disease. Front. Cell. Infect. Microbiol. 2022 12 949505 10.3389/fcimb.2022.949505 36237437
    [Google Scholar]
  130. Berkow E.L. Lockhart S.R. Ostrosky-Zeichner, L Antifungal susceptibility testing: Current approaches. Clin. Microbiol. Rev. 2020 33 3 e00069 e19 10.1128/CMR.00069‑19 32349998
    [Google Scholar]
  131. Guarner J. Brandt M.E. Histopathologic diagnosis of fungal infections in the 21st century. Clin. Microbiol. Rev. 2011 24 2 247 280 10.1128/CMR.00053‑10 21482725
    [Google Scholar]
  132. Donnelly J.P. Chen S.C. Kauffman C.A. Steinbach W.J. Baddley J.W. Verweij P.E. Clancy C.J. Wingard J.R. Lockhart S.R. Groll A.H. Sorrell T.C. Bassetti M. Akan H. Alexander B.D. Andes D. Azoulay E. Bialek R. Bradsher R.W. Bretagne S. Calandra T. Caliendo A.M. Castagnola E. Cruciani M. Cuenca-Estrella M. Decker C.F. Desai S.R. Fisher B. Harrison T. Heussel C.P. Jensen H.E. Kibbler C.C. Kontoyiannis D.P. Kullberg B.J. Lagrou K. Lamoth F. Lehrnbecher T. Loeffler J. Lortholary O. Maertens J. Marchetti O. Marr K.A. Masur H. Meis J.F. Morrisey C.O. Nucci M. Ostrosky-Zeichner L. Pagano L. Patterson T.F. Perfect J.R. Racil Z. Roilides E. Ruhnke M. Prokop C.S. Shoham S. Slavin M.A. Stevens D.A. Thompson G.R. Vazquez J.A. Viscoli C. Walsh T.J. Warris A. Wheat L.J. White P.L. Zaoutis T.E. Pappas P.G. Revision and update of the consensus definitions of invasive fungal disease from the European organization for research and treatment of cancer and the mycoses study group education and research consortium. Clin. Infect. Dis. 2020 71 6 1367 1376 10.1093/cid/ciz1008 31802125
    [Google Scholar]
  133. Obayashi T. Negishi K. Suzuki T. Funata N. Reappraisal of the serum (1-->3)-β-D-glucan assay for the diagnosis of invasive fungal infections--A study based on autopsy cases from 6 years. Clin. Infect. Dis. 2008 46 12 1864 1870 10.1086/588295 18462174
    [Google Scholar]
  134. Giacobbe D.R. Del Bono V. Viscoli C. Mikulska M. Use of 1,3-β-D-glucan in invasive fungal diseases in hematology patients. Expert Rev. Anti Infect. Ther. 2017 15 12 1101 1112 10.1080/14787210.2017.1401467 29125373
    [Google Scholar]
  135. Rothe K. Dibos M. Haschka S.J. Schmid R.M. Busch D. Rasch S. Lahmer T. Galactomannan-antigen testing from non-directed bronchial lavage for rapid detection of invasive pulmonary aspergillosis in critically ill patients: A proof-of-concept study. Diagnostics 2023 13 6 1190 10.3390/diagnostics13061190 36980499
    [Google Scholar]
  136. Ye F. Zeng P. Li Z. Tang C. Liu W. Su D. Zhan Y. Li S. Detection of Aspergillus DNA in BALF by real-time PCR and galactomannan antigen for the early diagnosis of chronic pulmonary aspergillosis. Ann. Clin. Lab. Sci. 2021 51 5 698 704 34686513
    [Google Scholar]
  137. Olowo-okere A. Abubakar J. Kolawole J.A. Mohammed Y. Global burden of invasive fungal infections in hospital settings. Global Infection Prevention and Management in Healthcare. Global Alliance for Infections in Surgery 2024 173
    [Google Scholar]
  138. Miceli M.H. Díaz J.A. Lee S.A. Emerging opportunistic yeast infections. Lancet Infect. Dis. 2011 11 2 142 151 10.1016/S1473‑3099(10)70218‑8 21272794
    [Google Scholar]
  139. Page I.D. Richardson M. Denning D.W. Antibody testing in aspergillosis—quo vadis? Med. Mycol. 2015 53 5 417 439 10.1093/mmy/myv020 25980000
    [Google Scholar]
  140. Sekhawat V. A histopathological approach to diagnosis and classification of invasive fungal infections. Diagn. Histopathol. 2024 30 10 554 563 10.1016/j.mpdhp.2024.07.004
    [Google Scholar]
  141. Neofytos D. Progress and current challenges in the management of invasive fungal infections in hematologic malignancy patients and allogeneic hematopoietic cell transplant recipients. Privatdocent Thesis 2021 10.13097/archive‑ouverte/unige:155066
    [Google Scholar]
  142. Sedik S. Wolfgruber S. Hoenigl M. Kriegl L. Diagnosing fungal infections in clinical practice: A narrative review. Expert Rev. Anti Infect. Ther. 2024 22 11 935 949 10.1080/14787210.2024.2403017 39268795
    [Google Scholar]
  143. Perfect J.R. Dismukes W.E. Dromer F. Goldman D.L. Graybill J.R. Hamill R.J. Harrison T.S. Larsen R.A. Lortholary O. Nguyen M.H. Pappas P.G. Powderly W.G. Singh N. Sobel J.D. Sorrell T.C. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin. Infect. Dis. 2010 50 3 291 322 10.1086/649858 20047480
    [Google Scholar]
  144. Clancy C.J. Nguyen M.H. Finding the “missing 50%” of invasive candidiasis: How nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin. Infect. Dis. 2013 56 9 1284 1292 10.1093/cid/cit006 23315320
    [Google Scholar]
  145. Carlesse F. Daudt L.E. Seber A. Dutra Á.P. Melo A.S.A. Simões B. Macedo C.R.D. Bonfim C. Benites E. Gregianin L. Batista M.V. Abramczyk M. Tostes V. Lederman H.M. Lee M.L.M. Loggetto S. Galvão de Castro C. Junior Colombo A.L. A consensus document for the clinical management of invasive fungal diseases in pediatric patients with hematologic cancer and/or undergoing hematopoietic stem cell transplantation in Brazilian medical centers. Braz. J. Infect. Dis. 2019 23 6 395 409 10.1016/j.bjid.2019.09.005 31738887
    [Google Scholar]
  146. Du H. Bing J. Hu T. Ennis C.L. Nobile C.J. Huang G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020 16 10 1008921 10.1371/journal.ppat.1008921 33091071
    [Google Scholar]
  147. Zhang M. Rao Z. Ma T. Tang M. Xu T. He X. Li Z. Liu Y. Xu Q. Yang K. Gong Y. Xue J. Wu M. Xue X. Appropriate empirical antifungal therapy is associated with a reduced mortality rate in intensive care unit patients with invasive fungal infection: A real-world retrospective study based on the MIMIC-IV database. Front. Med. 2022 9 952611 10.3389/fmed.2022.952611 36203769
    [Google Scholar]
  148. Marriott D.J.E. Playford E.G. Chen S. Slavin M. Nguyen Q. Ellis D. Sorrell T.C. Determinants of mortality in non-neutropenic ICU patients with candidaemia. Crit. Care 2009 13 4 R115 10.1186/cc7964 19594912
    [Google Scholar]
  149. Pham D. Sivalingam V. Tang H.M. Montgomery J.M. Chen S.C.A. Halliday C.L. Molecular diagnostics for invasive fungal diseases: Current and future approaches. J. Fungi 2024 10 7 447 10.3390/jof10070447 39057332
    [Google Scholar]
  150. Durand C. Maubon D. Cornet M. Wang Y. Aldebert D. Garnaud C. Can we improve antifungal susceptibility testing? Front. Cell. Infect. Microbiol. 2021 11 720609 10.3389/fcimb.2021.720609 34568095
    [Google Scholar]
  151. Wang W. Yao Y. Li X. Zhang S. Zeng Z. Zhou H. Yang Q. Clinical impact of metagenomic next-generation sequencing of peripheral blood for the diagnosis of invasive mucormycosis: A single-center retrospective study. Microbiol. Spectr. 2024 12 1 e03553 e23 10.1128/spectrum.03553‑23 38095467
    [Google Scholar]
  152. Gu W. Deng X. Lee M. Sucu Y.D. Arevalo S. Stryke D. Federman S. Gopez A. Reyes K. Zorn K. Sample H. Yu G. Ishpuniani G. Briggs B. Chow E.D. Berger A. Wilson M.R. Wang C. Hsu E. Miller S. DeRisi J.L. Chiu C.Y. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat. Med. 2021 27 1 115 124 10.1038/s41591‑020‑1105‑z 33169017
    [Google Scholar]
  153. Yang L. Song J. Wang Y. Feng J. Metagenomic next-generation sequencing for pulmonary fungal infection diagnosis: Lung biopsy versus bronchoalveolar lavage fluid. Infect. Drug Resist. 2021 14 4333 4359 10.2147/IDR.S333818 34707378
    [Google Scholar]
  154. Liu X. Zhou S. Yan R. Xia C. Xue R. Wan Z. Li R. de Hoog S. Ahmed S.A. Wang Q. Song Y. Evaluation of metagenomic next-generation sequencing (mNGS) combined with quantitative PCR: Cutting-edge methods for rapid diagnosis of non-invasive fungal rhinosinusitis. Eur. J. Clin. Microbiol. Infect. Dis. 2025 44 1 17 26 10.1007/s10096‑024‑04962‑0 39441336
    [Google Scholar]
  155. Yuan H. Ma X. Xu J. Han P. Rao G. Chen G. Zhang K. Yang R. Han C. Jiang M. Application of metagenomic next-generation sequencing in the clinical diagnosis of infectious diseases after allo-HSCT: A single-center analysis. BMC Infect. Dis. 2024 24 1 279 10.1186/s12879‑024‑09153‑y 38438967
    [Google Scholar]
  156. Carvalho-Pereira J. Fernandes F. Araújo R. Springer J. Loeffler J. Buitrago M.J. Pais C. Sampaio P. Multiplex PCR based strategy for detection of fungal pathogen DNA in patients with suspected invasive fungal infections. J. Fungi 2020 6 4 308 10.3390/jof6040308 33238439
    [Google Scholar]
  157. Naik S. Kashyap D. Deep J. Darwish S. Cross J. Mansoor E. Garg V.K. Honnavar P. Utilizing next-generation sequencing: Advancements in the diagnosis of fungal infections. Diagnostics 2024 14 15 1664 10.3390/diagnostics14151664 39125540
    [Google Scholar]
  158. Florio W. Tavanti A. Ghelardi E. Lupetti A. MALDI-TOF MS applications to the detection of antifungal resistance: State of the art and future perspectives. Front. Microbiol. 2018 9 2577 10.3389/fmicb.2018.02577 30425693
    [Google Scholar]
  159. Mery A. Jawhara S. François N. Cornu M. Poissy J. Martinez-Esparza M. Poulain D. Sendid B. Guerardel Y. Identification of fungal trehalose for the diagnosis of invasive candidiasis by mass spectrometry. Biochim. Biophys. Acta, Gen. Subj. 2022 1866 4 130083 10.1016/j.bbagen.2022.130083 35033574
    [Google Scholar]
  160. Matsuo T. Wurster S. Hoenigl M. Kontoyiannis D.P. Current and emerging technologies to develop Point-of-Care Diagnostics in medical mycology. Expert Rev. Mol. Diagn. 2024 24 9 841 858 10.1080/14737159.2024.2397515 39294931
    [Google Scholar]
  161. Prattes J. Heldt S. Eigl S. Hoenigl M. Point of care testing for the diagnosis of fungal infections: Are we there yet? Curr. Fungal Infect. Rep. 2016 10 2 43 50 10.1007/s12281‑016‑0254‑5 27358661
    [Google Scholar]
  162. Posteraro B. De Carolis E. Vella A. Sanguinetti M. MALDI-TOF mass spectrometry in the clinical mycology laboratory: Identification of fungi and beyond. Expert Rev. Proteomics 2013 10 2 151 164 10.1586/epr.13.8 23573782
    [Google Scholar]
  163. Rajasingham R. Meya D.B. Boulware D.R. Integrating cryptococcal antigen screening and pre-emptive treatment into routine HIV care. J. Acquir. Immune Defic. Syndr. 2012 59 5 e85 e91 10.1097/QAI.0b013e31824c837e 22410867
    [Google Scholar]
  164. Enock K. Julius K. Griffith B.C. Abila D.B. Rutakingirwa M.K. Kasibante J. Kandole K.T. Kwizera R. Semeere A. Meya D.B. Evaluation of the initial 12 months of a routine cryptococcal antigen screening program in reduction of HIV-associated cryptococcal meningitis in Uganda. BMC Health Serv. Res. 2022 22 1 301 10.1186/s12913‑022‑07624‑z 35246128
    [Google Scholar]
  165. Tsitou V.M. Rallis D. Tsekova M. Yanev N. Microbiology in the era of artificial intelligence: Transforming medical and pharmaceutical microbiology. Biotechnol. Biotechnol. Equip. 2024 38 1 2349587 10.1080/13102818.2024.2349587
    [Google Scholar]
  166. Srivastava V. Kumar R. Wani M.Y. Robinson K. Ahmad A. Role of artificial intelligence in early diagnosis and treatment of infectious diseases. Infect. Dis. 2025 57 1 1 26 10.1080/23744235.2024.2425712 39540872
    [Google Scholar]
  167. Fuchs T.J. Buhmann J.M. Computational pathology: Challenges and promises for tissue analysis. Comput. Med. Imaging Graph. 2011 35 7-8 515 530 10.1016/j.compmedimag.2011.02.006 21481567
    [Google Scholar]
  168. Yssouf A. Socolovschi C. Leulmi H. Kernif T. Bitam I. Audoly G. Almeras L. Raoult D. Parola P. Identification of flea species using MALDI-TOF/MS. Comp. Immunol. Microbiol. Infect. Dis. 2014 37 3 153 157 10.1016/j.cimid.2014.05.002 24878069
    [Google Scholar]
  169. Wilson M.R. Sample H.A. Zorn K.C. Arevalo S. Yu G. Neuhaus J. Federman S. Stryke D. Briggs B. Langelier C. Berger A. Douglas V. Josephson S.A. Chow F.C. Fulton B.D. DeRisi J.L. Gelfand J.M. Naccache S.N. Bender J. Dien Bard J. Murkey J. Carlson M. Vespa P.M. Vijayan T. Allyn P.R. Campeau S. Humphries R.M. Klausner J.D. Ganzon C.D. Memar F. Ocampo N.A. Zimmermann L.L. Cohen S.H. Polage C.R. DeBiasi R.L. Haller B. Dallas R. Maron G. Hayden R. Messacar K. Dominguez S.R. Miller S. Chiu C.Y. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N. Engl. J. Med. 2019 380 24 2327 2340 10.1056/NEJMoa1803396 31189036
    [Google Scholar]
  170. Topol E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019 25 1 44 56 10.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  171. Rogers T.R. Verweij P.E. Castanheira M. Dannaoui E. White P.L. Arendrup M.C. Arendrup M.C. Arikan-Akdagli S. Barchiesi F. Buil J. Castanheira M. Chryssanthou E. Friberg N. Guinea J. Hamal P. Hilmarsdottir I. Klimko N. Kurzai O. Lagrou K. Lass-Flörl C. Matos T. Meletiadis J. Moore C. Muehlethaler K. Rogers T.R. Molecular mechanisms of acquired antifungal drug resistance in principal fungal pathogens and EUCAST guidance for their laboratory detection and clinical implications. J. Antimicrob. Chemother. 2022 77 8 2053 2073 10.1093/jac/dkac161 35703391
    [Google Scholar]
  172. Salam M.A. Al-Amin M.Y. Pawar J.S. Akhter N. Lucy I.B. Conventional methods and future trends in antimicrobial susceptibility testing. Saudi J. Biol. Sci. 2023 30 3 103582 10.1016/j.sjbs.2023.103582 36852413
    [Google Scholar]
  173. Hattab S. Ma A.H. Tariq Z. Vega Prado I. Drobish I. Lee R. Yee R. Rapid phenotypic and genotypic antimicrobial susceptibility testing approaches for use in the clinical laboratory. Antibiotics 2024 13 8 786 10.3390/antibiotics13080786 39200086
    [Google Scholar]
  174. Perlin D.S. Rautemaa-Richardson R. Alastruey-Izquierdo A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017 17 12 e383 e392 10.1016/S1473‑3099(17)30316‑X 28774698
    [Google Scholar]
  175. Cowen L.E. Sanglard D. Howard S.J. Rogers P.D. Perlin D.S. Mechanisms of antifungal drug resistance. Cold Spring Harb. Perspect. Med. 2015 5 7 a019752 10.1101/cshperspect.a019752 25384768
    [Google Scholar]
  176. Wiederhold N. Antifungal resistance: Current trends and future strategies to combat. Infect. Drug Resist. 2017 10 249 259 10.2147/IDR.S124918 28919789
    [Google Scholar]
  177. Smith K.D. Achan B. Hullsiek K.H. McDonald T.R. Okagaki L.H. Alhadab A.A. Akampurira A. Rhein J.R. Meya D.B. Boulware D.R. Nielsen K. Musubire A. Nabeta H.W. Williams D.A. Morawski B. Rolfes M.A. Ndyetukira J.F. Ahimbisibwe C. Kugonza F. Sadiq A. Dyal J. Neborak J.M. King A.M. Yueh N. Velamakanni S.S. Namudde A. Kandole T.K. Eva Laker J.K. Luggya T. Tugume L. Abassi M. Birkenkamp K. Butler E.K. Fujita A.W. Halupnick R. Strain A.K. Vedula P. Rajasingham R. Kambugu A. Bohjanen P.R. Increased antifungal drug resistance in clinical isolates of Cryptococcus neoformans in Uganda. Antimicrob. Agents Chemother. 2015 59 12 7197 7204 10.1128/AAC.01299‑15 26324276
    [Google Scholar]
  178. Ngece K. Ntondini T.L. Khwaza V. Paca A.M. Aderibigbe B.A. Polyene-based derivatives with antifungal activities. Pharmaceutics 2024 16 8 1065 10.3390/pharmaceutics16081065 39204411
    [Google Scholar]
  179. Chen S.C.A. Slavin M.A. Sorrell T.C. Echinocandin antifungal drugs in fungal infections: A comparison. Drugs 2011 71 1 11 41 10.2165/11585270‑000000000‑00000 21175238
    [Google Scholar]
  180. Pham C.D. Iqbal N. Bolden C.B. Kuykendall R.J. Harrison L.H. Farley M.M. Schaffner W. Beldavs Z.G. Chiller T.M. Park B.J. Cleveland A.A. Lockhart S.R. Role of FKS Mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob. Agents Chemother. 2014 58 8 4690 4696 10.1128/AAC.03255‑14 24890592
    [Google Scholar]
  181. Zobi C. Algul O. The significance of mono‐ and dual‐effective agents in the development of new antifungal strategies. Chem. Biol. Drug Des. 2025 105 1 70045 10.1111/cbdd.70045 39841631
    [Google Scholar]
  182. Hope W.W. Castagnola E. Groll A.H. Roilides E. Akova M. Arendrup M.C. Arikan-Akdagli S. Bassetti M. Bille J. Cornely O.A. Cuenca-Estrella M. Donnelly J.P. Garbino J. Herbrecht R. Jensen H.E. Kullberg B.J. Lass-Flörl C. Lortholary O. Meersseman W. Petrikkos G. Richardson M.D. Verweij P.E. Viscoli C. Ullmann A.J. ESCMID guideline for the diagnosis and management of Candida diseases 2012: Prevention and management of invasive infections in neonates and children caused by Candida spp. Clin. Microbiol. Infect. 2012 18 Suppl. 7 38 52 10.1111/1469‑0691.12040 23137136
    [Google Scholar]
  183. Kontoyiannis D.P. Marr K.A. Park B.J. Alexander B.D. Anaissie E.J. Walsh T.J. Ito J. Andes D.R. Baddley J.W. Brown J.M. Brumble L.M. Freifeld A.G. Hadley S. Herwaldt L.A. Kauffman C.A. Knapp K. Lyon G.M. Morrison V.A. Papanicolaou G. Patterson T.F. Perl T.M. Schuster M.G. Walker R. Wannemuehler K.A. Wingard J.R. Chiller T.M. Pappas P.G. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: Overview of the transplant-associated infection surveillance network (TRANSNET) database. Clin. Infect. Dis. 2010 50 8 1091 1100 10.1086/651263 20218877
    [Google Scholar]
  184. Maertens J.A. Raad I.I. Marr K.A. Patterson T.F. Kontoyiannis D.P. Cornely O.A. Bow E.J. Rahav G. Neofytos D. Aoun M. Baddley J.W. Giladi M. Heinz W.J. Herbrecht R. Hope W. Karthaus M. Lee D.G. Lortholary O. Morrison V.A. Oren I. Selleslag D. Shoham S. Thompson G.R. Lee M. Maher R.M. Schmitt-Hoffmann A.H. Zeiher B. Ullmann A.J. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial. Lancet 2016 387 10020 760 769 10.1016/S0140‑6736(15)01159‑9 26684607
    [Google Scholar]
  185. Lamoth F. Galactomannan and 1, 3-β-d-glucan testing for the diagnosis of invasive aspergillosis. J. Fungi 2016 2 3 22 10.3390/jof2030022 29376937
    [Google Scholar]
  186. Wingen-Heimann S.M. Cornely O.A. Bethe U. Seidel D. Revisiting diagnostics: Early and accurate diagnosis of invasive fungal infections: A health economic view on investing in innovative diagnostics. Clin. Microbiol. Infect. 2025 31 7 1089 1091 10.1016/j.cmi.2025.01.023 39864663
    [Google Scholar]
  187. Mudenda S. Global burden of fungal infections and antifungal resistance from 1961 to 2024: Findings and future implications. Pharmacol. Pharm. 2024 15 4 81 112 10.4236/pp.2024.154007
    [Google Scholar]
  188. Luethy P.M. Point-of-care testing for the diagnosis of fungal infections: Current testing applications and potential for the future. Clin. Lab. Med. 2023 43 2 209 220 10.1016/j.cll.2023.02.005 37169443
    [Google Scholar]
  189. Hilt E.E. Ferrieri P. Next generation and other sequencing technologies in diagnostic microbiology and infectious diseases. Genes 2022 13 9 1566 10.3390/genes13091566 36140733
    [Google Scholar]
  190. Sahu B.K. Mallick U. Hegde R. Turuk J. Sahu M.C. Panda S.K. Genetic diversity and antifungal resistance in Candida albicans from VVC cases in Indian women. BMC Microbiol. 2025 25 1 535 10.1186/s12866‑025‑04256‑1 40846914
    [Google Scholar]
  191. Peghin M. Vena A. Graziano E. Giacobbe D.R. Tascini C. Bassetti M. Improving management and antimicrobial stewardship for bacterial and fungal infections in hospitalized patients with COVID-19. Ther. Adv. Infect. Dis. 2022 9 20499361221095732 10.1177/20499361221095732 35591884
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010438113251117051548
Loading
/content/journals/cpb/10.2174/0113892010438113251117051548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test