Skip to content
2000
image of Exploring the Potential Role of Phospholipid Complexes in Drug Delivery Systems for Enhanced Applicability

Abstract

The oral route is thought to have the highest patient compliance among the several administration modes. The gastrointestinal tract's sensitivity to environmental changes is the primary issue associated with oral delivery. If the drug is poorly water soluble and fails to penetrate cellular membranes, its bioavailability may be further diminished. A drug-phospholipid complex method, which works similarly to the gastrointestinal tract's absorption of food components, could be used to overcome this obstacle. Drug-phospholipid complexes are excellent for oral administration because they are nontoxic and biodegradable. As a result, they are used as emulsifiers, matrix-forming excipients, and solubilizers in medications with limited solubility and permeability. Phospholipids have two different characteristics: high biocompatibility and outstanding amphiphilicity. Phospholipids have a wide range of applications in drug delivery systems, and their specific properties make them ideal to be utilized as important pharmacological excipients. The purpose of this research is to offer a thorough understanding of phospholipids, drug-phospholipid complex-building processes, phospholipids themselves, the mechanism by which they boost drug bioavailability, and some of the formulations' uses in drug delivery systems. Along with highlighting the links between phospholipid properties and applications, it will also explain how different phospholipid species influence medication delivery. The growing volume of current research on the strategy's use to boost drug oral bioavailability demonstrates its importance for effective oral administration.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010353686250413171451
2026-01-12
2026-01-31
Loading full text...

Full text loading...

References

  1. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  2. Raza K. Thotakura N. Kumar P. Joshi M. Bhushan S. Bhatia A. Kumar V. Malik R. Sharma G. Guru S.K. Katare O.P. C 60 -fullerenes for delivery of docetaxel to breast cancer cells: A promising approach for enhanced efficacy and better pharmacokinetic profile. Int. J. Pharm. 2015 495 1 551 559 10.1016/j.ijpharm.2015.09.016 26383841
    [Google Scholar]
  3. Mukherjee S. Pal C.K. Kotakonda M. Joshi M. Shit M. Ghosh P. Choudhury A.R. Biswas B. Solvent induced distortion in a square planar copper(II) complex containing an azo-functionalized Schiff base: Synthesis, crystal structure, in-vitro fungicidal and anti-proliferative, and catecholase activity. J. Mol. Struct. 2021 1245 131057 10.1016/j.molstruc.2021.131057
    [Google Scholar]
  4. Kuche K. Maheshwari R. Tambe V. Mak K.K. Jogi H. Raval N. Pichika M.R. Tekade K.R. Carbon nanotubes (CNTs) based advanced dermal therapeutics: Current trends and future potential. Nanoscale 2018 10 19 8911 8937 10.1039/C8NR01383G 29722421
    [Google Scholar]
  5. Yan C. Gu J. Lv Y. Shi W. Jing H. Improved intestinal absorption of water-soluble drugs by acetylation of G2 PAMAM dendrimer nanocomplexes in rat. Drug Deliv. Transl. Res. 2017 7 3 408 415 10.1007/s13346‑017‑0373‑8 28303451
    [Google Scholar]
  6. Kirtane A.R. Narayan P. Liu G. Panyam J. Polymer-surfactant nanoparticles for improving oral bioavailability of doxorubicin. J. Pharm. Investig. 2017 47 1 65 73 10.1007/s40005‑016‑0293‑5
    [Google Scholar]
  7. Chen J. Zheng Y. Gong S. Zheng Z. Hu J. Ma L. Li X. Yu H. Mechanisms of theaflavins against gout and strategies for improving the bioavailability. Phytomedicine 2023 114 154782 10.1016/j.phymed.2023.154782 36990009
    [Google Scholar]
  8. Pathak C.V. Gujarathi N.A. Rane B.R. Pawar S.P. A review on self microemulsifying drug delivery system. 2013 Available from: www.pharmasm.com
  9. Andonova V. Peneva P. Characterization methods for solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Curr. Pharm. Des. 2018 23 43 6630 6642 10.2174/1381612823666171115105721 29141534
    [Google Scholar]
  10. Semalty A. Semalty M. Rawat B.S. Singh D. Rawat M.S.M. Pharmacosomes: The lipid-based new drug delivery system. Expert Opin. Drug Deliv. 2009 6 6 599 612 10.1517/17425240902967607 19519287
    [Google Scholar]
  11. Yu J. Zhu Y. Wang L. Peng M. Tong S. Cao X. Qiu H. Xu X. Enhancement of oral bioavailability of the poorly water-soluble drug silybin by sodium cholate/phospholipid-mixed micelles. Acta Pharmacol. Sin. 2010 31 6 759 764 10.1038/aps.2010.55 20523347
    [Google Scholar]
  12. Gnananath K. Nataraj S.K. Rao G.B. Phospholipid complex technique for superior bioavailability of phytoconstituents. Adv. Pharm. Bull. 2017 7 1 35 42 10.15171/apb.2017.005 28507935
    [Google Scholar]
  13. Cullis P.R. Kruijff D.B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta Rev. Biomembr. 1979 559 4 399 420 10.1016/0304‑4157(79)90012‑1 391283
    [Google Scholar]
  14. Yang R. Zhang X. Li F. Ding L. Li B. Sun H. Gan Y. Role of phospholipids and copolymers in enhancing stability and controlling degradation of intravenous lipid emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013 436 434 442 10.1016/j.colsurfa.2013.07.022
    [Google Scholar]
  15. Shegokar R. Müller R.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm. 2010 399 1-2 129 139 10.1016/j.ijpharm.2010.07.044 20674732
    [Google Scholar]
  16. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  17. Hippalgaonkar K. Majumdar S. Kansara V. Injectable lipid emulsions-advancements, opportunities and challenges. AAPS Pharm. Sci. Tech. 2010 11 4 1526 1540 10.1208/s12249‑010‑9526‑5 20976577
    [Google Scholar]
  18. Rupp C. Steckel H. Müller B.W. Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine. Int. J. Pharm. 2010 395 1-2 272 280 10.1016/j.ijpharm.2010.05.025 20580793
    [Google Scholar]
  19. Bhattacharya S. Phytosomes: The new technology for enhancement of bioavailability of botanicals and nutraceuticals. Inter. J. Health Res. 2009 2 3 225 232 10.4314/ijhr.v2i3.47905
    [Google Scholar]
  20. Li J. Wang X. Zhang T. Wang C. Huang Z. Luo X. Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015 10 2 81 98 10.1016/j.ajps.2014.09.004
    [Google Scholar]
  21. Little A. Levy R. Chuaqui-Kidd P. Hand D. A double-blind, placebo controlled trial of high-dose lecithin in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 1985 48 8 736 742 10.1136/jnnp.48.8.736 3897460
    [Google Scholar]
  22. Dowhan W. Bogdanov M. Chapter 1 functional roles of lipids in membranes. Comprehen. Biochem. 2002 36 1 35 10.1016/S0167‑7306(02)36003‑4
    [Google Scholar]
  23. Pepeu G. Pepeu I.M. Amaducci L. A review of phosphatidylserine pharmacological and clinical effects. Is phosphatidylserine a drug for the ageing brain? Pharmacol. Res. 1996 33 2 73 80 10.1006/phrs.1996.0013 8870022
    [Google Scholar]
  24. Hoch F.L. Cardiolipins and biomembrane function. Biochim. Biophys. Acta Rev. Biomembr. 1992 1113 1 71 133 10.1016/0304‑4157(92)90035‑9 1550861
    [Google Scholar]
  25. Ali A.H. Zou X. Abed S.M. Korma S.A. Jin Q. Wang X. Natural phospholipids: Occurrence, biosynthesis, separation, identification, and beneficial health aspects. Crit. Rev. Food Sci. Nutr. 2019 59 2 253 275 10.1080/10408398.2017.1363714 28820277
    [Google Scholar]
  26. Alhajj M.J. Montero N. Yarce C.J. Salamanca C.H. Lecithins from vegetable, land, and marine animal sources and their potential applications for cosmetic, food, and pharmaceutical sectors. Cosmetics 2020 7 4 87 10.3390/cosmetics7040087
    [Google Scholar]
  27. Huopalahti R. López-Fandiño R. Anton M. Schade R. Recio I. Ramos M. Bioactive egg compounds. Cham Springer 2007 10.1007/978‑3‑540‑37885‑3
    [Google Scholar]
  28. Hager A.A. Paoli D.T. Ihlo J.E. Farach H.A. Poole C.P. Jr Stability study of lecithin liposomes during storage using ESR. Spectrochim. Acta A. 1993 49 13-14 1999 2005 10.1016/S0584‑8539(09)91011‑X
    [Google Scholar]
  29. Sreekanth V. Medatwal N. Kumar S. Pal S. Vamshikrishna M. Kar A. Bhargava P. Naaz A. Kumar N. Sengupta S. Bajaj A. Tethering of chemotherapeutic drug/imaging agent to bile acid-phospholipid increases the efficacy and bioavailability with reduced hepatotoxicity. Bioconjug. Chem. 2017 28 12 2942 2953 10.1021/acs.bioconjchem.7b00564 29083862
    [Google Scholar]
  30. Lorenzo D.F. Duda K.A. Lanzetta R. Silipo A. Castro D.C. Molinaro A. A journey from structure to function of bacterial lipopolysaccharides. Chem. Rev. 2022 122 20 15767 15821 10.1021/acs.chemrev.0c01321 34286971
    [Google Scholar]
  31. Koynova R. Caffrey M. Phases and phase transitions of the sphingolipids. Biochim. Biophys. Acta Lipids Lipid Metab. 1995 1255 3 213 236 10.1016/0005‑2760(94)00202‑A 7734437
    [Google Scholar]
  32. Burling H. Graverholt G. Milk – A new source for bioactive phospholipids for use in food formulations. Lipid Technol. 2008 20 10 229 231 10.1002/lite.200800058
    [Google Scholar]
  33. Chiu S.W. Vasudevan S. Jakobsson E. Mashl R.J. Scott H.L. Structure of sphingomyelin bilayers: A simulation study. Biophys. J. 2003 85 6 3624 3635 10.1016/S0006‑3495(03)74780‑8 14645055
    [Google Scholar]
  34. Bansal V.S. Majerus P.W. Phosphatidylinositol-derived precursors and signals. Annu. Rev. Cell Biol. 1990 6 1 41 67 10.1146/annurev.cb.06.110190.000353 2275819
    [Google Scholar]
  35. Fadok V.A. Cathelineau D.A. Daleke D.L. Henson P.M. Bratton D.L. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 2001 276 2 1071 1077 10.1074/jbc.M003649200 10986279
    [Google Scholar]
  36. Lentz B.R. Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog. Lipid Res. 2003 42 5 423 438 10.1016/S0163‑7827(03)00025‑0 12814644
    [Google Scholar]
  37. Cullis P.R. Hope M.J. Tilcock C.P.S. Lipid polymorphism and the roles of lipids in membranes. Chem. Phys. Lipids 1986 40 2-4 127 144 10.1016/0009‑3084(86)90067‑8 3742670
    [Google Scholar]
  38. Taylor K.M.G. Morris R.M. Thermal analysis of phase transition behaviour in liposomes. Thermochim. Acta 1995 248 289 301 10.1016/0040‑6031(94)01884‑J
    [Google Scholar]
  39. Upadhye S.S. Rafik I.N. Proniosomes: A novel vesicular drug delivery system. Amer. J. Pharm. Tech. Res. 2020 10 2 260 273 10.46624/ajptr.2020.v10.i2.019
    [Google Scholar]
  40. Gavhane Y.N. Yadav A.V. Loss of orally administered drugs in GI tract. Saudi Pharm. J. 2012 20 4 331 344 10.1016/j.jsps.2012.03.005 23960808
    [Google Scholar]
  41. Hoogevest V.P. Review – An update on the use of oral phospholipid excipients. Eur. J. Pharm. Sci. 2017 108 1 12 10.1016/j.ejps.2017.07.008 28711714
    [Google Scholar]
  42. Kaneko F. Yano J. Sato K. Diversity in the fatty-acid conformation and chain packing of cis-unsaturated lipids. Curr. Opin. Struct. Biol. 1998 8 4 417 425 10.1016/S0959‑440X(98)80117‑6 9729731
    [Google Scholar]
  43. Chaudhri O. Small C. Bloom S. Gastrointestinal hormones regulating appetite. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006 361 1471 1187 1209 10.1098/rstb.2006.1856 16815798
    [Google Scholar]
  44. Kossena G.A. Charman W.N. Wilson C.G. O’Mahony B. Lindsay B. Hempenstall J.M. Davison C.L. Crowley P.J. Porter C.J.H. Low dose lipid formulations: Effects on gastric emptying and biliary secretion. Pharm. Res. 2007 24 11 2084 2096 10.1007/s11095‑007‑9363‑8 17657595
    [Google Scholar]
  45. Higgins J.M. Fielding C.J. Lipoprotein lipase. Mechanism of formation of triglyceride-rich remnant particles from very low density lipoproteins and chylomicrons. Biochemistry 1975 14 11 2288 2293 10.1021/bi00682a002 166652
    [Google Scholar]
  46. Harde H. Das M. Jain S. Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv. 2011 8 11 1407 1424 10.1517/17425247.2011.604311 21831007
    [Google Scholar]
  47. Nestel P.J. Havel R.J. Bezman A. Sites of initial removal of chylomicron triglyceride fatty acids from the blood. J. Clin. Invest. 1962 41 10 1915 1921 10.1172/JCI104648 16695884
    [Google Scholar]
  48. Alexander A. Tripathi D.K. Verma T. Maurya J. Patel S. Review article mechanism responsible for mucoadhesion of mucoadhesive drug delivery system : A review. Int. J. Appl. Biol. Pharm. Technol. 2011 2 434 445
    [Google Scholar]
  49. Casariego Z. Pérez A. Utilidad del conocimiento de la mucosa oral como órgano blanco para inducir farmacoinmunoterapia. revisión sistemática knowledge of oral mucosa as a tarjet organ to induce pharma-immunotherapy. Clinica 2017 48 1 9 20
    [Google Scholar]
  50. Munnangi S.R. Youssef A.A.A. Narala N. Lakkala P. Narala S. Vemula S.K. Repka M. Drug complexes: Perspective from academic research and pharmaceutical market. Pharm. Res. 2023 40 6 1519 1540 10.1007/s11095‑023‑03517‑w 37138135
    [Google Scholar]
  51. Li N. Je Y.J. Yang M. Jiang X.H. Ma J.H. Pharmacokinetics of baicalin-phospholipid complex in rat plasma and brain tissues after intranasal and intravenous administration. Pharmazie 2011 66 5 374 377 10.1691/ph.2011.0783 21699072
    [Google Scholar]
  52. Yue P.F. Yuan H.L. Li X.Y. Yang M. Zhu W.F. Process optimization, characterization and evaluation in vivo of oxymatrine–phospholipid complex. Int. J. Pharm. 2010 387 1-2 139 146 10.1016/j.ijpharm.2009.12.008 20005937
    [Google Scholar]
  53. Maryana W. Rachmawati H. Mudhakir D. Formation of phytosome containing silymarin using thin layer-hydration technique aimed for oral delivery. Mater. Today Proc. 2016 3 3 855 866 10.1016/j.matpr.2016.02.019
    [Google Scholar]
  54. Qin X. Yang Y. Fan T. Gong T. Zhang X. Huang Y. Preparation, characterization and in vivo evaluation of bergenin-phospholipid complex. Acta Pharmacol. Sin. 2010 31 1 127 136 10.1038/aps.2009.171 19966834
    [Google Scholar]
  55. Dora C.P. Kushwah V. Katiyar S.S. Kumar P. Pillay V. Suresh S. Jain S. Improved oral bioavailability and therapeutic efficacy of erlotinib through molecular complexation with phospholipid. Int. J. Pharm. 2017 534 1-2 1 13 10.1016/j.ijpharm.2017.09.071 28970115
    [Google Scholar]
  56. Guo B. Liu H. Li Y. Zhao J. Yang D. Wang X. Zhang T. Application of phospholipid complex technique to improve the dissolution and pharmacokinetic of probucol by solvent-evaporation and co-grinding methods. Int. J. Pharm. 2014 474 1-2 50 56 10.1016/j.ijpharm.2014.08.006 25108049
    [Google Scholar]
  57. Sikarwar M.S. Sharma S. Jain A.K. Parial S.D. Preparation, characterization and evaluation of Marsupsin-phospholipid complex. AAPS Pharm. Sci. Tech. 2008 9 1 129 137 10.1208/s12249‑007‑9020‑x 18446473
    [Google Scholar]
  58. Li Y. Yang D.J. Chen S.L. Chen S.B. Chan A.S.C. Comparative physicochemical characterization of phospholipids complex of puerarin formulated by conventional and supercritical methods. Pharm. Res. 2008 25 3 563 577 10.1007/s11095‑007‑9418‑x 17828444
    [Google Scholar]
  59. Cui F. Shi K. Zhang L. Tao A. Kawashima Y. Biodegradable nanoparticles loaded with insulin–phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation. J. Control. Rel. 2006 114 2 242 250 10.1016/j.jconrel.2006.05.013 16859800
    [Google Scholar]
  60. Murugan V. Mukherjee K. Maiti K. Mukherjee P.K. Enhanced oral bioavailability and antioxidant profile of ellagic acid by phospholipids. J. Agric. Food Chem. 2009 57 11 4559 4565 10.1021/jf8037105 19449806
    [Google Scholar]
  61. Kuche K. Bhargavi N. Dora C.P. Jain S. Drug-phospholipid complex—a go through strategy for enhanced oral bioavailability. AAPS Pharm. Sci. Tech. 2019 20 2 43 10.1208/s12249‑018‑1252‑4 30610392
    [Google Scholar]
  62. Larkin P. Infrared and raman spectroscopy: Principles and spectral interpretation. Science 2011 1 9 10.1016/C2010‑0‑68479‑3
    [Google Scholar]
  63. Singh C. Bhatt T.D. Gill M.S. Suresh S. Novel rifampicin–phospholipid complex for tubercular therapy: Synthesis, physicochemical characterization and in-vivo evaluation. Int. J. Pharm. 2014 460 1-2 220 227 10.1016/j.ijpharm.2013.10.043 24188983
    [Google Scholar]
  64. Rajan S. Kang S.Y. Gutowsky H.S. Oldfield E. Phosphorus nuclear magnetic resonance study of membrane structure. Interactions of lipids with protein, polypeptide, and cholesterol. J. Biol. Chem. 1981 256 3 1160 1166 10.1016/S0021‑9258(19)69943‑6 6256387
    [Google Scholar]
  65. Semalty A. Semalty M. Singh D. Rawat M.S.M. Development and Characterization of Aspirin-Phospholipid Complex for Improved Drug Delivery. Inter. J. Pharm. Sci. Nanotech. 2010 3 2 940 947 10.37285/ijpsn.2010.3.2.7
    [Google Scholar]
  66. Liao H. Gao Y. Lian C. Zhang Y. Wang B. Yang Y. Ye J. Feng Y. Liu Y. Oral absorption and lymphatic transport of baicalein following drug–phospholipid complex incorporation in self-microemulsifying drug delivery systems. Int. J. Nanomed. 2019 14 7291 7306 10.2147/IJN.S214883 31564878
    [Google Scholar]
  67. Habbu P. Madagundi S. Kulkarni R. Jadav S. Vanakudri R. Kulkarni V. Preparation and evaluation of Bacopa–phospholipid complex for antiamnesic activity in rodents. Drug Invent. Today 2013 5 1 13 21 10.1016/j.dit.2013.02.004
    [Google Scholar]
  68. Zhang Z. Chen Y. Deng J. Jia X. Zhou J. Lv H. Solid dispersion of berberine–phospholipid complex/TPGS 1000/SiO2: Preparation, characterization and in vivo studies. Int. J. Pharm. 2014 465 1-2 306 316 10.1016/j.ijpharm.2014.01.023 24456672
    [Google Scholar]
  69. Lu Y. Zhang Y. Yang Z. Tang X. Formulation of an intravenous emulsion loaded with a clarithromycin–phospholipid complex and its pharmacokinetics in rats. Int. J. Pharm. 2009 366 1-2 160 169 10.1016/j.ijpharm.2008.09.008 18835427
    [Google Scholar]
  70. Maiti K. Mukherjee K. Gantait A. Saha B.P. Mukherjee P.K. Curcumin–phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int. J. Pharm. 2007 330 1-2 155 163 10.1016/j.ijpharm.2006.09.025 17112692
    [Google Scholar]
  71. Ge L. He X. Zhang Y. Zhang Y. Chai F. Jiang L. Webster T.J. Zheng C. A dabigatran etexilate phospholipid complex nanoemulsion system for further oral bioavailability by reducing drug-leakage in the gastrointestinal tract. Nanomedicine 2018 14 4 1455 1464 10.1016/j.nano.2017.08.009 28842377
    [Google Scholar]
  72. Liu D. Chen L. Jiang S. Zhu S. Qian Y. Wang F. Li R. Xu Q. Formulation and characterization of hydrophilic drug diclofenac sodium-loaded solid lipid nanoparticles based on phospholipid complexes technology. J. Liposome Res. 2014 24 1 17 26 10.3109/08982104.2013.826241 24236407
    [Google Scholar]
  73. Wang M. You S.K. Lee H.K. Han M.G. Lee H.M. Pham T.M.A. Na Y.G. Cho C.W. Development and evaluation of docetaxel-phospholipid complex loaded self-microemulsifying drug delivery system: Optimization and in vitro/ex vivo studies. Pharmaceutics 2020 12 6 544 10.3390/pharmaceutics12060544 32545452
    [Google Scholar]
  74. Hwang T. Han H.D. Song C.K. Seong H. Kim J.H. Chen X. Shin B.C. Anticancer drug-phospholipid conjugate for enhancement of intracellular drug delivery. Macromol. Symp. 2007 250 1 109 115 10.1002/masy.200750318
    [Google Scholar]
  75. Hüsch J. Dutagaci B. Glaubitz C. Geppert T. Schneider G. Harms M. Müller-Goymann C.C. Fink L. Schmidt M.U. Setzer C. Zirkel J. Rebmann H. Schubert-Zsilavecz M. Abdel-Tawab M. Structural properties of so-called NSAID-phospholipid-complexes. Eur. J. Pharm. Sci. 2011 44 1-2 103 116 10.1016/j.ejps.2011.06.010
    [Google Scholar]
  76. Pathan R.A. Bhandari U. Preparation & characterization of embelin–phospholipid complex as effective drug delivery tool. J. Incl. Phenom. Macrocycl. Chem. 2011 69 1-2 139 147 10.1007/s10847‑010‑9824‑2
    [Google Scholar]
  77. Tan Q. Liu S. Chen X. Wu M. Wang H. Yin H. He D. Xiong H. Zhang J. Design and evaluation of a novel evodiamine-phospholipid complex for improved oral bioavailability. AAPS Pharm. Sci. Tech. 2012 13 2 534 547 10.1208/s12249‑012‑9772‑9 22454136
    [Google Scholar]
  78. Khan J. Saraf S. Saraf S. Preparation and evaluation of luteolin–phospholipid complex as an effective drug delivery tool against GalN/LPS induced liver damage. Pharm. Dev. Technol. 2015 21 4 1 12 10.3109/10837450.2015.1022786 25831424
    [Google Scholar]
  79. Rathor S. Bhatt D.C. Formulation, characterization, and pharmacokinetic evaluation of novel glipizide-phospholipid nano-complexes with improved solubility and bio-availability. Pharm. Nanotechnol. 2022 10 2 125 136 10.2174/2211738510666220328151512 35346004
    [Google Scholar]
  80. Rathor S. Bhatt D.C. Novel Glibenclamide–Phospholipid Complex for Diabetic Treatment: Formulation, Physicochemical Characterization, and in-vivo Evaluation. Indian J. Pharm. Edu. Res. 2022 56 3 697 705 10.5530/ijper.56.3.118
    [Google Scholar]
  81. Cai X. Luan Y. Jiang Y. Song A. Shao W. Li Z. Zhao Z. Huperzine A–phospholipid complex-loaded biodegradable thermosensitive polymer gel for controlled drug release. Int. J. Pharm. 2012 433 1-2 102 111 10.1016/j.ijpharm.2012.05.009 22583846
    [Google Scholar]
  82. Kalita B. Patwary B.N. Formulation and in vitro evaluation of hesperidin-phospholipid complex and its antioxidant potential. Curr. Drug Ther. 2020 15 1 28 36 10.2174/1574885514666190226155933
    [Google Scholar]
  83. Zhang K. Gu L. Chen J. Zhang Y. Jiang Y. Zhao L. Bi K. Chen X. Preparation and evaluation of kaempferol–phospholipid complex for pharmacokinetics and bioavailability in SD rats. J. Pharm. Biomed. Anal. 2015 114 168 175 10.1016/j.jpba.2015.05.017 26051640
    [Google Scholar]
  84. Li B. Han L. Cao B. Yang X. Zhu X. Yang B. Zhao H. Qiao W. Use of magnoflorine-phospholipid complex to permeate blood-brain barrier and treat depression in the CUMS animal model. Drug Deliv. 2019 26 1 566 574 10.1080/10717544.2019.1616236 31104521
    [Google Scholar]
  85. Semalty A. Semalty M. Singh D. Rawat M.S.M. Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. J. Incl. Phenom. Macrocycl. Chem. 2010 67 3-4 253 260 10.1007/s10847‑009‑9705‑8
    [Google Scholar]
  86. Lu M. Qiu Q. Luo X. Liu X. Sun J. Wang C. Lin X. Deng Y. Song Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J. Pharm. Sci. 2019 14 3 265 274 10.1016/j.ajps.2018.05.011 32104457
    [Google Scholar]
  87. Li Y. Pan W.S. Chen S.L. Xu H.X. Yang D.J. Chan A.S.C. Pharmacokinetic, tissue distribution, and excretion of puerarin and puerarin-phospholipid complex in rats. Drug Dev. Ind. Pharm. 2006 32 4 413 422 10.1080/03639040600559123 16638679
    [Google Scholar]
  88. Singh D. Rawat M.S.M. Semalty A. Semalty M. Quercetin-phospholipid complex: An amorphous pharmaceutical system in herbal drug delivery. Curr. Drug Discov. Technol. 2012 9 1 17 24 10.2174/157016312799304507 21644920
    [Google Scholar]
  89. Singh D. Rawat M.S.M. Semalty A. Semalty M. Rutin-phospholipid complex: An innovative technique in novel drug delivery system- NDDS. Curr. Drug Deliv. 2012 9 3 305 314 10.2174/156720112800389070 22283645
    [Google Scholar]
  90. Singh D. Rawat M.S.M. Semalty A. Semalty M. Emodin–phospholipid complex. J. Therm. Anal. Calorim. 2012 108 1 289 298 10.1007/s10973‑011‑1759‑3
    [Google Scholar]
  91. Singh D. Singh Maniyari Rawat M. Semalty A. Semalty M. Gallic acid-phospholipid complex: Drug incorporation and physicochemical characterization. Lett. Drug Des. Discov. 2011 8 3 284 291 10.2174/157018011794578240
    [Google Scholar]
  92. Kassem A.A. Abd El-Alim S.H. Basha M. Salama A. Phospholipid complex enriched micelles: A novel drug delivery approach for promoting the antidiabetic effect of repaglinide. Eur. J. Pharm. Sci. 2017 99 75 84 10.1016/j.ejps.2016.12.005 27998799
    [Google Scholar]
  93. Beg S. Raza K. Kumar R. Chadha R. Katare O.P. Singh B. Improved intestinal lymphatic drug targeting via phospholipid complex-loaded nanolipospheres of rosuvastatin calcium. RSC Adv. 2016 6 10 8173 8187 10.1039/C5RA24278A
    [Google Scholar]
  94. Huang J. Chen P.X. Rogers M.A. Wettig S.D. Investigating the phospholipid effect on the bioaccessibility of rosmarinic acid-phospholipid complex through a dynamic gastrointestinal in vitro model. Pharmaceutics 2019 11 4 156 10.3390/pharmaceutics11040156 30987004
    [Google Scholar]
  95. Ebada H.M.K. Nasra M.M.A. Elnaggar Y.S.R. Abdallah O.Y. Novel rhein–phospholipid complex targeting skin diseases: Development, in vitro, ex vivo, and in vivo studies. Drug Deliv. Transl. Res. 2021 11 3 1107 1118 10.1007/s13346‑020‑00833‑1 32815084
    [Google Scholar]
  96. Li J. Liu P. Liu J.P. Yang J.K. Zhang W.L. Fan Y.Q. Kan S.L. Cui Y. Zhang W.J. Bioavailability and foam cells permeability enhancement of Salvianolic acid B pellets based on drug–phospholipids complex technique. Eur. J. Pharm. Biopharm. 2013 83 1 76 86 10.1016/j.ejpb.2012.09.021 23085582
    [Google Scholar]
  97. Jena S.K. Singh C. Dora C.P. Suresh S. Development of tamoxifen-phospholipid complex: Novel approach for improving solubility and bioavailability. Int. J. Pharm. 2014 473 1-2 1 9 10.1016/j.ijpharm.2014.06.056 24992316
    [Google Scholar]
  98. Liu Y. Zhao Y. Wang L. Ma C. Zhao K. Feng N. Preparation and characterization of tetrandrine-phospholipid complex loaded lipid nanocapsules as potential oral carriers. Int. J. Nanomedicine 2013 8 4169 4181 10.2147/IJN.S50557 24204145
    [Google Scholar]
  99. Biswas S. Mukherjee P.K. Harwansh R.K. Bannerjee S. Bhattacharjee P. Enhanced bioavailability and hepatoprotectivity of optimized ursolic acid–phospholipid complex. Drug Dev. Ind. Pharm. 2019 45 6 946 958 10.1080/03639045.2019.1583755 30767678
    [Google Scholar]
  100. Li Y. Jin W. Yan H. Liu H. Wang C. Development of intravenous lipid emulsion of vinorelbine based on drug–phospholipid complex technique. Int. J. Pharm. 2013 454 1 472 477 10.1016/j.ijpharm.2013.06.032 23806812
    [Google Scholar]
  101. Ma J. Chen D. Li Y. Chen Y. Liu Q. Zhou X. Qian K. Li Z. Ruan H. Hou Z. Zhu X. Zinc phthalocyanine-soybean phospholipid complex based drug carrier for switchable photoacoustic/fluorescence image, multiphase photothermal/photodynamic treatment and synergetic therapy. J. Control. Release 2018 284 1 14 10.1016/j.jconrel.2018.06.005 29886061
    [Google Scholar]
  102. Bautista J. Satrustegui J. Machado A. Machado, number 2 febs letters. 1979 Available from: https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/0014-5793%2879%2980520-7%0Ahttps://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/0014-5793%2879%2980642-0
  103. Hann I.M. Prentice H.G. Lipid-based amphotericin B: A review of the last 10 years of use. Int. J. Antimicrob. Agents 2001 17 3 161 169 10.1016/S0924‑8579(00)00341‑1 11282260
    [Google Scholar]
  104. Joshi M. Mayank S. 8 Implication of drug repurposing in the identification of drugs for renal disorders. Drug Repurposing, De Gruyter, Berlin. Poduri R. Joshi G. Sharma M. Kumar A. Berlin, Boston De Gruyter 2023 159 180 10.1515/9783110791150‑008
    [Google Scholar]
  105. Fan Y. Zhang Q. Development of liposomal formulations: From concept to clinical investigations. Asian J. Pharm. Sci. 2013 8 2 81 87 10.1016/j.ajps.2013.07.010
    [Google Scholar]
  106. Wang L. Hao Y. Liu N. Ma M. Yin Z. Zhang X. Enhance the dissolution rate and oral bioavailability of pranlukast by preparing nanosuspensions with high-pressure homogenizing method. Drug Dev. Ind. Pharm. 2012 38 11 1381 1389 10.3109/03639045.2011.652636 22300415
    [Google Scholar]
  107. Elnaggar Y.S.R. Shehata E.M.M. Galal S. Abdallah O.Y. Self-emulsifying preconcentrates of daidzein-phospholipid complex: Design, in vitro and in vivo appraisal. Nanomedicine 2017 12 8 893 910 10.2217/nnm‑2016‑0387 28338409
    [Google Scholar]
  108. Ma H. Chen H. Sun L. Tong L. Zhang T. Improving permeability and oral absorption of mangiferin by phospholipid complexation. Fitoterapia 2014 93 54 61 10.1016/j.fitote.2013.10.016 24220727
    [Google Scholar]
  109. Li Y. Ren X. Lio C. Sun W. Lai K. Liu Y. Zhang Z. Liang J. Zhou H. Liu L. Huang H. Ren J. Luo P. A chlorogenic acid-phospholipid complex ameliorates post-myocardial infarction inflammatory response mediated by mitochondrial reactive oxygen species in SAMP8 mice. Pharmacol. Res. 2018 130 110 122 10.1016/j.phrs.2018.01.006 29408518
    [Google Scholar]
  110. Bangham A.D. Liposomes: The babraham connection. Chem. Phys. Lipids 1993 64 1-3 275 285 10.1016/0009‑3084(93)90071‑A 8242839
    [Google Scholar]
  111. Gregoriadis G. Immunological adjuvants: A role for liposomes. Immunol. Today 1990 11 3 89 97 10.1016/0167‑5699(90)90034‑7 2186746
    [Google Scholar]
  112. Crommelin D.J.A. Hoogevest V.P. Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J. Control. Release 2020 318 256 263 10.1016/j.jconrel.2019.12.023 31846618
    [Google Scholar]
  113. Constantinides P.P. Lipid microemulsions for improving drug dissolution and oral absorption: Physical and biopharmaceutical aspects. Pharm. Res. 1995 12 11 1561 1572 10.1023/A:1016268311867 8592652
    [Google Scholar]
  114. Walstra P. Principles of emulsion formation. Chem. Eng. Sci. 1993 48 2 333 349 10.1016/0009‑2509(93)80021‑H
    [Google Scholar]
  115. Wei D. Zhang X. Solubility of puerarin in the binary system of methanol and acetic acid solvent mixtures. Fluid Phase Equilib. 2013 339 67 71 10.1016/j.fluid.2012.11.035
    [Google Scholar]
  116. Flavors for Nutraceutical and Functional Foods. Boca Raton, FL CRC Press 2018 10.1201/9781315160573
    [Google Scholar]
  117. Wu J.Y. Li Y.J. Han M. Hu X.B. Yang L. Wang J.M. Xiang D.X. A microemulsion of puerarin–phospholipid complex for improving bioavailability: Preparation, in vitro and in vivo evaluations. Drug Dev. Ind. Pharm. 2018 44 8 1336 1341 10.1080/03639045.2018.1449856 29513046
    [Google Scholar]
  118. Čerpnjak K. Zvonar A. Gašperlin M. Vrečer F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm. 2013 63 4 427 445 10.2478/acph‑2013‑0040 24451070
    [Google Scholar]
  119. Wu H. Long X. Yuan F. Chen L. Pan S. Liu Y. Stowell Y. Li X. Combined use of phospholipid complexes and self-emulsifying microemulsions for improving the oral absorption of a BCS class IV compound, baicalin. Acta Pharm. Sin. B 2014 4 3 217 226 10.1016/j.apsb.2014.03.002 26579386
    [Google Scholar]
  120. Rawat S. Jain S.K. Solubility enhancement of celecoxib using β-cyclodextrin inclusion complexes. Eur. J. Pharm. Biopharm. 2004 57 2 263 267 10.1016/j.ejpb.2003.10.020 15018983
    [Google Scholar]
  121. Joshi M. Choudhury R.A. Salts of amoxapine with improved solubility for enhanced pharmaceutical applicability. ACS Omega 2018 3 2 2406 2416 10.1021/acsomega.7b02023 30023832
    [Google Scholar]
  122. Joshi M. Mayank G. Carbon dots in bacterial sensing. Advanced Materials for Biomedical Applications. Biomedical Materials for Multi-functional Applications Adv. Rajput V.S. Bhinder J. Cham Springer 2024 185 207 10.1007/978‑981‑99‑6286‑0_9
    [Google Scholar]
  123. Xia H. Zhang Z. Jin X. Hu Q. Chen X.Y. Jia X. A novel drug–phospholipid complex enriched with micelles: Preparation and evaluation in vitro and in vivo. Int. J. Nanomedicine 2013 8 545 554 10.2147/IJN.S39526 23431115
    [Google Scholar]
  124. Munyendo W.L.L. Zhang Z. Abbad S. Waddad A.Y. Lv H. Baraza L.D. Zhou J. Micelles of TPGS modified apigenin phospholipid complex for oral administration: Preparation, in vitro and in vivo evaluation. J. Biomed. Nanotechnol. 2013 9 12 2034 2047 10.1166/jbn.2013.1704 24266259
    [Google Scholar]
  125. Jia X. Jin Zhang Z. Sun Qian Tan Preparation of a nanoscale baohuoside I-phospholipid complex and determination of its absorption: In vivo and in vitro evaluations. Int. J. Nanomedicine 2012 7 4907 4916 10.2147/IJN.S35965 23028219
    [Google Scholar]
  126. Ibrahim N.K. Samuels B. Page R. Doval D. Patel K.M. Rao S.C. Nair M.K. Bhar P. Desai N. Hortobagyi G.N. Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J. Clin. Oncol. 2005 23 25 6019 6026 10.1200/JCO.2005.11.013 16135470
    [Google Scholar]
  127. Tolaney S.M. Barry W.T. Dang C.T. Yardley D.A. Moy B. Marcom P.K. Albain K.S. Rugo H.S. Ellis M. Shapira I. Wolff A.C. Carey L.A. Overmoyer B.A. Partridge A.H. Guo H. Hudis C.A. Krop I.E. Burstein H.J. Winer E.P. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer. N. Engl. J. Med. 2015 372 2 134 141 10.1056/NEJMoa1406281 25564897
    [Google Scholar]
  128. Fountzila E. Ignatiadis M. Neoadjuvant immunotherapy in breast cancer: A paradigm shift? Ecanc. Med. Sci. 2020 14 1147 10.3332/ecancer.2020.1147 33574892
    [Google Scholar]
  129. Wart V.S. Mager D.E. Bednasz C.J. Huizing M. Carrillo N. Population pharmacokinetic model of N-acetylmannosamine (ManNAc) and N-acetylneuraminic acid (Neu5Ac) in subjects with GNE myopathy. Drugs R D. 2021 21 2 189 202 10.1007/s40268‑021‑00343‑6 33893973
    [Google Scholar]
  130. Radenkovic S. Ligezka A.N. Mokashi S.S. Driesen K. Dukes-Rimsky L. Preston G. Owuocha L.F. Sabbagh L. Mousa J. Lam C. Edmondson A. Larson A. Schultz M. Vermeersch P. Cassiman D. Witters P. Beamer L.J. Kozicz T. Flanagan-Steet H. Ghesquière B. Morava E. Tracer metabolomics reveals the role of aldose reductase in glycosylation. Cell Rep. Med. 2023 4 6 101056 10.1016/j.xcrm.2023.101056 37257447
    [Google Scholar]
  131. Ducreux M. Bennouna J. Adenis A. Conroy T. Lièvre A. Portales F. Jeanes J. Li L. Romano A. Efficacy and safety of nab-paclitaxel in patients with previously treated metastatic colorectal cancer: A phase II COLO-001 trial. Cancer Chemother. Pharmacol. 2017 79 1 9 16 10.1007/s00280‑016‑3193‑5 27866244
    [Google Scholar]
  132. Deshpande H.A. Gettinger S. Rowen E. Abu-Khalaf M.M. Clarke J. Burns A.J. Kelly W.K. A phase I study investigating the combination of orally bioavailable platinum and nanoparticle albumin-bound paclitaxel in advanced solid tumors. J. Clin. Oncol. 2009 27 15_suppl Suppl. e13501 10.1200/jco.2009.27.15_suppl.e13501
    [Google Scholar]
  133. Alva A. Daignault S. Smith D.C. Hussain M. Phase II trial of combination nab-paclitaxel, carboplatin and gemcitabine in first line therapy of advanced urothelial carcinoma. Invest. New Drugs 2014 32 1 188 194 10.1007/s10637‑013‑0054‑5 24318901
    [Google Scholar]
  134. Fujiwara Y. Mukai H. Saeki T. Ro J. Lin Y.C. Nagai S.E. Lee K.S. Watanabe J. Ohtani S. Kim S.B. Kuroi K. Tsugawa K. Tokuda Y. Iwata H. Park Y.H. Yang Y. Nambu Y. A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br. J. Cancer 2019 120 5 475 480 10.1038/s41416‑019‑0391‑z 30745582
    [Google Scholar]
  135. Tsimberidou A.M. Ye Y. Wheler J. Naing A. Hong D. Nwosu U. Hess K.R. Wolff R.A. A phase I study of hepatic arterial infusion of nab-paclitaxel in combination with intravenous gemcitabine and bevacizumab for patients with advanced cancers and predominant liver metastases. Cancer Chemother. Pharmacol. 2013 71 4 955 963 10.1007/s00280‑013‑2088‑y 23377373
    [Google Scholar]
  136. Berlin J. Haber T. Cornejo Y. Compositions and methods of modulating macrophage activity. US Patent 11554178B2 2023
  137. Wang T. Methods, compositions and therapeutical vaccine for autoimmune diseases and allergy treatment. US Patent 20220025015A1 2022
  138. Lichtenberger L.M. Compositions comprising lecithin oils and NSAIDs for protecting the gastrointestinal tract and providing enhanced therapeutic activity. US Patent 9687551B2 2014
  139. Curtis M.S. Storek M. Violette S.M. Kalled S.L. Fahnoe K.C. Huang C.R. Stark E.G. Taylor F.R. Caravella J.A. Holers V.M. Methods of treating complement mediated diseases with fusion protein constructs comprising anti-c3d antibody and a complement modulator. US Patent 11879008B2 2024
  140. Weeks BS Formulations of dietary supplements and herbal extracts for relaxation and anxiolytic action: Relarian. US Patent 9446100B2 2009
  141. SANTMARIA P. Nanoparticle compositions for sustained therapy. US Patent 20240299536A1 2016
  142. Drouin G Catheline D Guillocheau E Gueret P Baudry C Ruyet L.P Rioux V Legrand P Comparative effects of dietary n-3 docosapentaenoic acid (DPA), DHA and EPA on plasma lipid parameters, oxidative status and fatty acid tissue composition. US Patent 8906964B2 2019
  143. Haq M Suraiya S Ahmed S Chun BS Phospholipids from marine source: Extractions and forthcoming industrial applications. US Patent 8278351B2 2021
  144. Cohen D. Chumakov I. Nabirochkin S. Therapeutic approaches for treating alzheimer'S disease. US Patent 8809302B2 2014
  145. Maltzahn V.G.A. Milwid J.M. Mee M.T. Rubens J.R. Chess D. Trudeau K.M. Mahdaviani K. Feala J. McCully J.D. Cowan D.B. Methods and compositions relating to chondrisomes from blood products. US Patent 20200306316A1 2024
  146. Reddan JM White DJ Macpherson H Scholey A Pipingas A Glycerophospholipid supplementation as a potential intervention for supporting cerebral structure in older adults. Frontiers in Aging Neuroscience. US Patent 7935365B2 2018 10.3389/fnagi.2018.00049
  147. Schindler M Lussier AJ Principe E Mykytczuk N Understanding the release and fate of chromium in the environment. US Patent 10245325B2 2018
  148. Helson L. Chiu S. Intravenous curcumin and derivatives for treatment of neurodegenerative and stress disorders. US Patent 9393198B2 2016
  149. Klein R.D. Rosenthal A. Hynes M.A. Anti-neurturin receptor-A antibody compositions comprising cytokines or neurotrophic factors. US Patent 7785588B2 2010
  150. Ravi AD Sadhna D Nagpaal D Chawla L Needle free injection technology: A complete insight. US Patent 8876758B2 2010
  151. Siegwart D.J. Kejin Z.H. Compositions and methods for modulating gene or gene product in cells. US Patent 20220257792A1 2024
  152. Fukuda M. Sugihara K. Kanayama N. Methods and compositions related to annexin 1-binding compounds. US Patent 20210260202A1 2017
  153. Quay S. Leonard A. Costantino H. Method of treatment of a metabolic disease using intranasal administration of exendin peptide. US Patent 20060210614A1 2006
  154. Dworkin L. Gong R. Compositions and methods for detecting and treating renal injury and inflammation. US Patent 8110365B2 2012
  155. Guo S. Huang L. Ramishetti S. Lipid coated nanoparticles containing agents having low aqueous and lipid solubilities and methods thereof. US Patent 20150246137A1 2015
  156. Hinkle G. Borodovsky A. Complement component C3 irna compositions and methods of use thereof. US Patent 20210261959A1 2024
  157. Thorpe P.E. Liposomes comprising duramycin and anti-viral agents. US Patent 7976868B2 2011
  158. Lin YH Lin YC Chen CC Lysophosphatidic acid receptor antagonists and cancer: The current trends, clinical implications, and trials. US Patent 8541587B2 1629
  159. Schuurman J. Vink T. Winkel D.V.J. Labrijn A.F. Parren P. Beurskens F. Bleeker W.K. Berkel V.P. Method for extending the half-life of exogenous or endogenous soluble molecules. US Patent 20100291023A1 2010
  160. Nel A.E. Meng H. Allen S. Gsk3 inhibitor-loaded nano formulations as a cancer immunotherapeutic. US Patent 20230241000A1 2023
/content/journals/cpb/10.2174/0113892010353686250413171451
Loading
/content/journals/cpb/10.2174/0113892010353686250413171451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test