Skip to content
2000
Volume 26, Issue 15
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Ongoing competition between disease-causing bacteria and human hosts has resulted in the discovery of a wide array of antibacterials. The advent of antibacterials ushered in a promising period in the realm of microbiology, but its brilliance was short-lived and soon diminished. The excessive and incorrect use of antibacterials results in limited selection pressure on the targeted microorganisms, which in turn promotes the evolution of microbes instead of killing them. Consequently, antibacterial resistance has developed and given rise to strains that are resistant to many drugs, leading to a significant increase in mortality rates. The current review delves into the potential of novel natural phytocompounds as innovative solutions to combat these potential bacterial threats. The review begins by showcasing the modus operandi of conventional antibacterial drugs followed by addressing the mechanisms of resistance to antibacterial agents, which have significantly lowered the efficacy of conventional treatments. In contrast, the review explores the mechanism of antibacterial activity of plant-derived phytochemicals, unraveling the various ways in which natural compounds interact with bacterial targets. Furthermore, the review examines the synergism between plant phytochemicals and conventional antibiotics, showcasing the efficacy of this combinatorial approach in overcoming resistance. The review concludes by summarizing the current research and offering valuable insights into challenges in the use of plant phytochemicals as antibacterial therapeutics. This comprehensive overview reinforces the promise of incorporating modern scientific tools with traditional phytotherapy to develop effective strategies against resistant bacterial pathogens.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010344474241011070242
2024-10-21
2025-12-26
Loading full text...

Full text loading...

References

  1. WHO publishes list of bacteria for which new antibiotics are urgently needed.2017Available from: https://who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  2. WrightG.D. Molecular mechanisms of antibiotic resistance.Chem. Commun. (Camb.)201147144055406110.1039/c0cc05111j 21286630
    [Google Scholar]
  3. LinJ. NishinoK. RobertsM.C. TolmaskyM. AminovR.I. ZhangL. Mechanisms of antibiotic resistance.Front. Microbiol.201563410.3389/fmicb.2015.00034 25699027
    [Google Scholar]
  4. DugassaJ. ShukuriN. Review on antibiotic resistance and its mechanism of development.J Health Med Nursing.20171317
    [Google Scholar]
  5. DarbyE.M. TrampariE. SiasatP. GayaM.S. AlavI. WebberM.A. BlairJ.M.A. Molecular mechanisms of antibiotic resistance revisited.Nat. Rev. Microbiol.202321528029510.1038/s41579‑022‑00820‑y 36411397
    [Google Scholar]
  6. PetersonE. KaurP. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens.Front. Microbiol.20189292810.3389/fmicb.2018.02928 30555448
    [Google Scholar]
  7. von WintersdorffC.J.H. PendersJ. van NiekerkJ.M. MillsN.D. MajumderS. van AlphenL.B. SavelkoulP.H.M. WolffsP.F.G. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer.Front. Microbiol.2016717310.3389/fmicb.2016.00173 26925045
    [Google Scholar]
  8. PartridgeS.R. KwongS.M. FirthN. JensenS.O. Mobile genetic elements associated with antimicrobial resistance.Clin. Microbiol. Rev.2018314e00088e1710.1128/CMR.00088‑17 30068738
    [Google Scholar]
  9. El SalabiA. WalshT.R. ChouchaniC. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.Crit. Rev. Microbiol.201339211312210.3109/1040841X.2012.691870 22667455
    [Google Scholar]
  10. CheY. YangY. XuX. BřindaK. PolzM.F. HanageW.P. ZhangT. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes.Proc. Natl. Acad. Sci. USA20211186e200873111810.1073/pnas.2008731118 33526659
    [Google Scholar]
  11. PerryJ.A. WrightG.D. The antibiotic resistance “mobilome”: searching for the link between environment and clinic.Front. Microbiol.2013413810.3389/fmicb.2013.00138 23755047
    [Google Scholar]
  12. YangQ. GaoY. KeJ. ShowP.L. GeY. LiuY. GuoR. Chen, J. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods.Bioengineered20211217376741610.1080/21655979.2021.1974657 34612807
    [Google Scholar]
  13. KraemerS.A. RamachandranA. PerronG.G. Antibiotic pollution in the environment: From microbial ecology to public policy.Microorganisms20197618010.3390/microorganisms7060180 31234491
    [Google Scholar]
  14. Manyi-LohC. MamphweliS. MeyerE. OkohA. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications.Molecules201823479510.3390/molecules23040795 29601469
    [Google Scholar]
  15. CycońM. MrozikA. Piotrowska-SegetZ. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity.Front. Microbiol.20191033810.3389/fmicb.2019.00338 30906284
    [Google Scholar]
  16. Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health.J. Glob. Antimicrob. Resist.20212710111110.1016/j.jgar.2021.08.001 34454098
    [Google Scholar]
  17. KaberaJ.N. SemanaE. MussaA.R. HeX. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties.J. Pharm. Pharmacol.201427377392
    [Google Scholar]
  18. RahmanM.M. RahamanM.S. IslamM.R. HossainM.E. Mannan MithiF. AhmedM. SaldíasM. AkkolE.K. Sobarzo-SánchezE. Multifunctional therapeutic potential of phytocomplexes and natural extracts for antimicrobial properties.Antibiotics (Basel)2021109107610.3390/antibiotics10091076 34572660
    [Google Scholar]
  19. BilalM. RasheedT. IqbalH.M.N. HuH. WangW. ZhangX. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance.Int. J. Biol. Macromol.201710355457410.1016/j.ijbiomac.2017.05.071 28528940
    [Google Scholar]
  20. BarbieriR. CoppoE. MarcheseA. DagliaM. Sobarzo-SánchezE. NabaviS.F. NabaviS.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity.Microbiol. Res.2017196446810.1016/j.micres.2016.12.003 28164790
    [Google Scholar]
  21. AyazM. UllahF. SadiqA. UllahF. OvaisM. AhmedJ. DevkotaH.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance.Chem. Biol. Interact.201930829430310.1016/j.cbi.2019.05.050 31158333
    [Google Scholar]
  22. PhitaktimS. ChomnawangM. SirichaiwetchakoonK. DunkhunthodB. HobbsG. EumkebG. Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus.BMC Microbiol.201616119510.1186/s12866‑016‑0814‑4 27566110
    [Google Scholar]
  23. Al-hebshiN. Al-haroniM. SkaugN. In vitro antimicrobial and resistance-modifying activities of aqueous crude khat extracts against oral microorganisms.Arch. Oral Biol.200651318318810.1016/j.archoralbio.2005.08.001 16248981
    [Google Scholar]
  24. GibbonsS. OluwatuyiM. VeitchN.C. GrayA.I. Bacterial resistance modifying agents from Lycopus europaeus.Phytochemistry2003621838710.1016/S0031‑9422(02)00446‑6 12475623
    [Google Scholar]
  25. AbreuA.C. McBainA.J. SimõesM. Plants as sources of new antimicrobials and resistance-modifying agents.Nat. Prod. Rep.20122991007102110.1039/c2np20035j 22786554
    [Google Scholar]
  26. VaouN. StavropoulouE. VoidarouC. TsigalouC. BezirtzoglouE. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives.Microorganisms2021910204110.3390/microorganisms9102041 34683362
    [Google Scholar]
  27. SchneiderT. SahlH.G. An oldie but a goodie – cell wall biosynthesis as antibiotic target pathway.Int. J. Med. Microbiol.20103002-316116910.1016/j.ijmm.2009.10.005 20005776
    [Google Scholar]
  28. WalshC. Where will new antibiotics come from?Nat. Rev. Microbiol.200311657010.1038/nrmicro727 15040181
    [Google Scholar]
  29. Ayoub MoubareckC. Polymyxins and bacterial membranes: A review of antibacterial activity and mechanisms of resistance.Membranes (Basel)202010818110.3390/membranes10080181 32784516
    [Google Scholar]
  30. NaeemA. BadshahS. MuskaM. AhmadN. KhanK. The current case of quinolones: synthetic approaches and antibacterial activity.Molecules201621426810.3390/molecules21040268 27043501
    [Google Scholar]
  31. GactoM. MadridM. FrancoA. SotoT. CansadoJ. Vicente-SolerJ. The cornerstone of nucleic acid-affecting antibiotics in bacteria.In: Antimicrobial Compounds: Current Strategies and New Alternatives.Springer201714917510.1007/978‑3‑642‑40444‑3_6
    [Google Scholar]
  32. DrlicaK. ZhaoX. DNA gyrase, topoisomerase IV, and the 4-quinolones.Microbiol. Mol. Biol. Rev.1997613377392 9293187
    [Google Scholar]
  33. SchweitzerB.I. DickerA.P. BertinoJ.R. Dihydrofolate reductase as a therapeutic target.FASEB J.1990482441245210.1096/fasebj.4.8.2185970 2185970
    [Google Scholar]
  34. EstradaA. WrightD.L. AndersonA.C. Antibacterial antifolates: From development through resistance to the next generation.Cold Spring Harb. Perspect. Med.201668a02832410.1101/cshperspect.a028324 27352799
    [Google Scholar]
  35. GoldsteinE.J.C. ProctorR.A. Role of folate antagonists in the treatment of methicillin-resistant Staphylococcus aureus infection.Clin. Infect. Dis.200846458459310.1086/525536 18197761
    [Google Scholar]
  36. FosterT.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects.FEMS Microbiol. Rev.201741343044910.1093/femsre/fux007 28419231
    [Google Scholar]
  37. LiK. WangX. YangS. GuJ. DengJ. ZhangX.E. Anti-folates potentiate bactericidal effects of other antimicrobial agents.J. Antibiot. (Tokyo)201770328529110.1038/ja.2016.159 28074051
    [Google Scholar]
  38. VestergaardM. Nøhr-MeldgaardK. BojerM.S. Krogsgård NielsenC. MeyerR.L. SlavetinskyC. PeschelA. IngmerH. Inhibition of the ATP synthase eliminates the intrinsic resistance of Staphylococcus aureus towards polymyxins.MBio201785e01114e0111710.1128/mBio.01114‑17 28874470
    [Google Scholar]
  39. FerriM. RanucciE. RomagnoliP. GiacconeV. Antimicrobial resistance: A global emerging threat to public health systems.Crit. Rev. Food Sci. Nutr.201757132857287610.1080/10408398.2015.1077192 26464037
    [Google Scholar]
  40. AbdiS.N. GhotaslouR. GanbarovK. MobedA. TanomandA. YousefiM. AsgharzadehM. KafilH.S. Acinetobacter baumannii efflux pumps and antibiotic resistance.Infect. Drug Resist.20201342343410.2147/IDR.S228089 32104014
    [Google Scholar]
  41. LomovskayaO. BostianK.A. Practical applications and feasibility of efflux pump inhibitors in the clinic—A vision for applied use.Biochem. Pharmacol.200671791091810.1016/j.bcp.2005.12.008 16427026
    [Google Scholar]
  42. GhoshJ. PalitP. MaityS. DwivediV. DasJ. SinhaC. ChattopadhyayD. Traditional medicine in the management of microbial infections as antimicrobials: Pros and cons.Antibiotics - Therapeutic Spectrum and Limitations.Academic Press202339143410.1016/B978‑0‑323‑95388‑7.00020‑6.
    [Google Scholar]
  43. VergalliJ. BodrenkoI.V. MasiM. MoyniéL. Acosta-GutiérrezS. NaismithJ.H. Davin-RegliA. CeccarelliM. van den BergB. WinterhalterM. PagèsJ.M. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria.Nat. Rev. Microbiol.202018316417610.1038/s41579‑019‑0294‑2 31792365
    [Google Scholar]
  44. ZavasckiA.P. CarvalhaesC.G. PicãoR.C. GalesA.C. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: Resistance mechanisms and implications for therapy.Expert Rev. Anti Infect. Ther.201081719310.1586/eri.09.108 20014903
    [Google Scholar]
  45. IyerR. MoussaS.H. Durand-RévilleT.F. TommasiR. MillerA. Acinetobacter baumannii OmpA is a selective antibiotic permeant porin.ACS Infect. Dis.20184337338110.1021/acsinfecdis.7b00168 29260856
    [Google Scholar]
  46. VranakisI. GoniotakisI. PsaroulakiA. SandalakisV. TselentisY. GevaertK. TsiotisG. Proteome studies of bacterial antibiotic resistance mechanisms.J. Proteomics201497889910.1016/j.jprot.2013.10.027 24184230
    [Google Scholar]
  47. TookeC.L. HinchliffeP. BraggintonE.C. ColensoC.K. HirvonenV.H.A. TakebayashiY. SpencerJ. β-lactamases and β-lactamase inhibitors in the 21st century.J. Mol. Biol.2019431183472350010.1016/j.jmb.2019.04.002 30959050
    [Google Scholar]
  48. LivermoreD.M. Defining an extended-spectrum β-lactamase.Clin. Microbiol. Infect.20081431010.1111/j.1469‑0691.2007.01857.x 18154524
    [Google Scholar]
  49. TalebiM. PourshafieM.R. OskouiiM. EshraghiS.S. Molecular analysis of vanHAX element in vancomycin resistant enterococci isolated from hospitalized patients in Tehran. Iran.Biomed. J.2008124223228 19079536
    [Google Scholar]
  50. LuthraS. RominskiA. SanderP. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance.Front. Microbiol.20189217910.3389/fmicb.2018.02179 30258428
    [Google Scholar]
  51. BrooksB.D. BrooksA.E. Therapeutic strategies to combat antibiotic resistance.Adv. Drug Deliv. Rev.201478142710.1016/j.addr.2014.10.027 25450262
    [Google Scholar]
  52. WilsonD.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance.Nat. Rev. Microbiol.2014121354810.1038/nrmicro3155 24336183
    [Google Scholar]
  53. de la Fuente-NúñezC. ReffuveilleF. FernándezL. HancockR.E.W. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies.Curr. Opin. Microbiol.201316558058910.1016/j.mib.2013.06.013 23880136
    [Google Scholar]
  54. LiY. GeX. Role of berberine as a potential efflux pump inhibitor against mdfa from Escherichia coli: In vitro and in silico studies.Microbiol. Spectr.2023112e03324e2210.1128/spectrum.03324‑22 36786641
    [Google Scholar]
  55. LiY. WenH. GeX. Hormesis effect of berberine against Klebsiella pneumoniae is mediated by up-regulation of the efflux pump kmrA.J. Nat. Prod.202184112885289210.1021/acs.jnatprod.1c00642 34665637
    [Google Scholar]
  56. SuF. WangJ. Berberine inhibits the MexXY-OprM efflux pump to reverse imipenem resistance in a clinical carbapenem-resistant Pseudomonas aeruginosa isolate in a planktonic state.Exp. Ther. Med.2018151467472 29387199
    [Google Scholar]
  57. AryaM NishaAR SujithS RaniSS ThomasN Berberine as an efflux pump inhibitor against quinolone resistant Staphylococcus aureus.J Animal Res202313449350010.30954/2277‑940X.04.2023.2
    [Google Scholar]
  58. WangZ.C. WeiB. PeiF.N. YangT. TangJ. YangS. YuL.F. YangC.G. YangF. Capsaicin derivatives with nitrothiophene substituents: Design, synthesis and antibacterial activity against multidrug-resistant S. aureus.Eur. J. Med. Chem.202019811235210.1016/j.ejmech.2020.112352 32387838
    [Google Scholar]
  59. PeeyananjarassriS. SrisawatP. DuanjamrunS. The efficiency of capsaicin in chilli on antibacterial activity of salmonella.Int J Curr Sci Rese Rev2022583206321010.47191/ijcsrr/V5‑i8‑49
    [Google Scholar]
  60. KhamenehB. IranshahyM. GhandadiM. Ghoochi AtashbeykD. Fazly BazzazB.S. IranshahiM. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus.Drug Dev. Ind. Pharm.201541698999410.3109/03639045.2014.920025 24842547
    [Google Scholar]
  61. Rodrigues dos SantosE.A. Ereno TadieloL. Arruda SchmiedtJ. Silva OrisioP.H. de Cássia Lima BrugeffE. Sossai PossebonF. Olivia PereiraM. Gonçalves PereiraJ. dos Santos BersotL. Inhibitory effects of piperine and black pepper essential oil on multispecies biofilm formation by Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa.Lebensm. Wiss. Technol.202318211485110.1016/j.lwt.2023.114851
    [Google Scholar]
  62. ParaiD. BanerjeeM. DeyP. MukherjeeS.K. Reserpine attenuates biofilm formation and virulence of Staphylococcus aureus.Microb. Pathog.202013810379010.1016/j.micpath.2019.103790 31605761
    [Google Scholar]
  63. ParaiD. BanerjeeM. DeyP. ChakrabortyA. IslamE. MukherjeeS.K. Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation.Biofouling201834332033410.1080/08927014.2018.1437910 29482361
    [Google Scholar]
  64. SrideviD. ShankarC. PrakashP. ParkJ.H. ThamaraiselviK. Inhibitory effects of reserpine against efflux pump activity of antibiotic resistance bacteria.Chem. Biol. Lett.2017426972
    [Google Scholar]
  65. LangloisJ.P. LaroseA. BrouilletteE. DelbrouckJ.A. BoudreaultP.L. MalouinF. Mode of antibacterial action of tomatidine C3 -diastereoisomers.Molecules202429234310.3390/molecules29020343 38257256
    [Google Scholar]
  66. GuayI. BoulangerS. IsabelleC. BrouilletteE. ChagnonF. BouarabK. MarsaultE. MalouinF. Tomatidine and analog FCo4–100 possess bactericidal activities against Listeria, Bacillus and Staphylococcus spp.BMC Pharmacol. Toxicol.2018191710.1186/s40360‑018‑0197‑2 29439722
    [Google Scholar]
  67. DelbrouckJ.A. MurzaA. DiachenkoI. Ben JamaaA. DeviR. LaroseA. ChamberlandS. MalouinF. BoudreaultP.L. From garden to lab: C-3 chemical modifications of tomatidine unveil broad-spectrum ATP synthase inhibitors to combat bacterial resistance.Eur. J. Med. Chem.202326211588610.1016/j.ejmech.2023.115886 37924710
    [Google Scholar]
  68. SongX. LiR. ZhangQ. HeS. WangY. Antibacterial effect and possible mechanism of salicylic acid microcapsules against Escherichia coli and Staphylococcus aureus.Int. J. Environ. Res. Public Health202219191276110.3390/ijerph191912761 36232061
    [Google Scholar]
  69. LiK. GuanG. ZhuJ. WuH. SunQ. Antibacterial activity and mechanism of a laccase-catalyzed chitosan–gallic acid derivative against Escherichia coli and Staphylococcus aureus.Food Control20199623424310.1016/j.foodcont.2018.09.021
    [Google Scholar]
  70. BorgesA. FerreiraC. SaavedraM.J. SimõesM. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria.Microb. Drug Resist.201319425626510.1089/mdr.2012.0244 23480526
    [Google Scholar]
  71. KnidelC. PereiraM.F. BarcelosD.H.F. GomesD.C.O. GuimarãesM.C.C. SchuenckR.P. Epigallocatechin gallate has antibacterial and antibiofilm activity in methicillin resistant and susceptible Staphylococcus aureus of different lineages in non-cytotoxic concentrations.Nat. Prod. Res.202135224643464710.1080/14786419.2019.1698575 34798693
    [Google Scholar]
  72. KannanP. RamadeviS.R. HopperW. Antibacterial activity of Terminalia chebula fruit extract.Afr. J. Microbiol. Res.200934180184
    [Google Scholar]
  73. RaoM. PadyanaS. DipinK. KumarS. NayakB. VarelaM.F. Antimicrobial compounds of plant origin as efflux pump inhibitors: new avenues for controlling multidrug resistant pathogens.J. Antimicrob. Agents20184100015924721212
    [Google Scholar]
  74. IvanovaA. IvanovaK. FiandraL. ManteccaP. CatelaniT. NatanM. BaninE. JacobiG. TzanovT. Antibacterial, antibiofilm, and antiviral farnesol-containing nanoparticles prevent Staphylococcus aureus from drug resistance development.Int. J. Mol. Sci.20222314752710.3390/ijms23147527 35886883
    [Google Scholar]
  75. DecarvalhoC. DafonsecaM. Carvone: Why and how should one bother to produce this terpene.Food Chem.200695341342210.1016/j.foodchem.2005.01.003
    [Google Scholar]
  76. KachurK. SuntresZ. The antibacterial properties of phenolic isomers, carvacrol and thymol.Crit. Rev. Food Sci. Nutr.202060183042305310.1080/10408398.2019.1675585 31617738
    [Google Scholar]
  77. DoyleA.A. StephensJ.C. A review of cinnamaldehyde and its derivatives as antibacterial agents.Fitoterapia201913910440510.1016/j.fitote.2019.104405 31707126
    [Google Scholar]
  78. HasanvandT. MohammadiM. AbdollahpourF. KamarehieB. JafariA. GhaderpooriA. KaramiM.A. A comparative study on antibacterial activity of carvacrol and glutaraldehyde on Pseudomonas aeruginosa and Staphylococcus aureus isolates: An in vitro study.J. Environ. Health Sci. Eng.202119147548210.1007/s40201‑021‑00620‑1 34150251
    [Google Scholar]
  79. HodákK. JakesováV. DadákV. On the antibiotic effects of natural coumarins. VI. The relation of structure to the antibacterial effects of some natural coumarins and the neutralization of such effects.Cesk. Farm.19671628691 6044315
    [Google Scholar]
  80. BasileA. SorboS. SpadaroV. BrunoM. MaggioA. FaraoneN. RosselliS. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae).Molecules200914393995210.3390/molecules14030939 19255552
    [Google Scholar]
  81. WeiJ. GuoN. LiangJ. YuanP. ShiQ. TangX. YuL. DNA microarray gene expression profile of Mycobacterium tuberculosis when exposed to osthole.Pol. J. Microbiol.2013621233010.33073/pjm‑2013‑003 23829074
    [Google Scholar]
  82. TanN. Yazıcı-TütünişS. BilginM. TanE. MiskiM. Antibacterial activities of pyrenylated coumarins from the roots of Prangos hulusii.Molecules2017227109810.3390/molecules22071098 28671568
    [Google Scholar]
  83. BezlonG. ShanmughaS.D. RinuE.R. Design and stabilization of natural antibacterial compound allicin against methicillin-resistant Staphylococcus aureus for treatment as a novel antibiotic.Res. J. Engin. Technol.201344179181
    [Google Scholar]
  84. BhatwalkarS.B. MondalR. KrishnaS.B.N. AdamJ.K. GovenderP. AnupamR. Antibacterial properties of organosulfur compounds of garlic (Allium sativum).Front. Microbiol.20211261307710.3389/fmicb.2021.613077 34394014
    [Google Scholar]
  85. KamilawatiY. JunitasariA. RosahdiT.D. Comparison of antibacterial power of garlic (Allium sativum) and shallot (Allium ascalonicum L) against Staphylococcus aureus ATCC 6538.Proceedings of the Symposium on Advance of Sustainable Engineering 2021 (SIMASE 2021): Post Covid-19 Pandemic: Challenges and Opportunities in Environment, Science, and Engineering Research202310.1063/5.0114208
    [Google Scholar]
  86. RathiB. GuptaS. KumarP. KesarwaniV. DhandaR.S. KushwahaS.K. YadavM. Anti-biofilm activity of caffeine against uropathogenic E. coli is mediated by curli biogenesis.Sci. Rep.20221211890310.1038/s41598‑022‑23647‑2 36344808
    [Google Scholar]
  87. WoziwodzkaA. Krychowiak-MaśnickaM. GołuńskiG. ŁosiewskaA. BorowikA. WyrzykowskiD. PiosikJ. New life of an old drug: Caffeine as a modulator of antibacterial activity of commonly used antibiotics.Pharmaceuticals (Basel)202215787210.3390/ph15070872 35890171
    [Google Scholar]
  88. SiriyongT. ChusriS. SrimanoteP. TipmaneeV. VoravuthikunchaiS.P. Holarrhena antidysenterica extract and its steroidal alkaloid, conessine, as resistance-modifying agents against extensively drug-resistant Acinetobacter baumannii.Microb. Drug Resist.201622427328210.1089/mdr.2015.0194 26745443
    [Google Scholar]
  89. SiriyongT. SrimanoteP. ChusriS. YingyongnarongkulB. SuaisomC. TipmaneeV. VoravuthikunchaiS.P. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa.BMC Complement. Altern. Med.201717140510.1186/s12906‑017‑1913‑y 28806947
    [Google Scholar]
  90. FarooquiA. KhanA. BorghettoI. KazmiS.U. RubinoS. PagliettiB. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.PLoS One2015102e011843110.1371/journal.pone.0118431 25719410
    [Google Scholar]
  91. MarquezB. NeuvilleL. MoreauN.J. GenetJ.P. dos SantosA.F. Caño de AndradeM.C. Goulart Sant’AnaA.E. Multidrug resistance reversal agent from Jatropha elliptica.Phytochemistry200566151804181110.1016/j.phytochem.2005.06.008 16051285
    [Google Scholar]
  92. MorelC. StermitzF.R. TegosG. LewisK. Isoflavones as potentiators of antibacterial activity.J. Agric. Food Chem.200351195677567910.1021/jf0302714 12952418
    [Google Scholar]
  93. ChovanováR. MikulášováM. VaverkováŠ. In vitro antibacterial and antibiotic resistance modifying effect of bioactive plant extracts on methicillin-resistant Staphylococcus epidermidis.Int. J. Microbiol.201320131710.1155/2013/760969 24222768
    [Google Scholar]
  94. ChusriS. VillanuevaI. VoravuthikunchaiS.P. DaviesJ. Enhancing antibiotic activity: A strategy to control Acinetobacter infections.J. Antimicrob. Chemother.20096461203121110.1093/jac/dkp381 19861335
    [Google Scholar]
  95. GallucciN. CaseroC. OlivaM. ZygadloJ. DemoM. Interaction between terpenes and penicillin on bacterial strains resistant to beta-lactam antibiotics.Mol. Med. Chem.20061013032
    [Google Scholar]
  96. JayaramanP. SakharkarM.K. LimC.S. TangT.H. SakharkarK.R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro .Int. J. Biol. Sci.20106655656810.7150/ijbs.6.556 20941374
    [Google Scholar]
  97. SakharkarM.K. JayaramanP. SoeW.M. ChowV.T. SingL.C. SakharkarK.R. In vitro combinations of antibiotics and phytochemicals against Pseudomonas aeruginosa.J. Microbiol. Immunol. Infect.2009425364370 20182664
    [Google Scholar]
  98. LacmataS.T. KueteV. DzoyemJ.P. TankeoS.B. TekeG.N. KuiateJ.R. PagesJ.M. Antibacterial activities of selected Cameroonian plants and their synergistic effects with antibiotics against bacteria expressing MDR phenotypes.Evid. Based Complement. Alternat. Med.2012201211110.1155/2012/623723 22474511
    [Google Scholar]
  99. CoimbraA. MiguelS. RibeiroM. CoutinhoP. SilvaL. DuarteA.P. FerreiraS. Thymus zygis essential oil: phytochemical characterization, bioactivity evaluation and synergistic effect with antibiotics against Staphylococcus aureus.Antibiotics (Basel)202211214610.3390/antibiotics11020146 35203749
    [Google Scholar]
  100. DemgneO.M.F. DamenF. FankamA.G. GuefackM.G.F. WambaB.E.N. NayimP. MbavengA.T. BitchagnoG.T.M. TapondjouL.A. PenlapV.B. TaneP. EfferthT. KueteV. Botanicals and phytochemicals from the bark of Hypericum roeperianum (Hypericaceae) had strong antibacterial activity and showed synergistic effects with antibiotics against multidrug-resistant bacteria expressing active efflux pumps.J. Ethnopharmacol.202127711425710.1016/j.jep.2021.114257 34062249
    [Google Scholar]
  101. TrabelsiA. El KaibiM.A. AbbassiA. HorchaniA. Chekir-GhediraL. GhediraK. Phytochemical study and antibacterial and antibiotic modulation activity of Punica granatum (pomegranate) leaves.Scientifica (Cairo)202020201710.1155/2020/8271203 32318311
    [Google Scholar]
  102. Ramata-StundaA. PetriņaZ. ValkovskaV. BorodušķisM. GibnereL. GurkovskaE. NikolajevaV. Synergistic effect of polyphenol-rich complex of plant and green propolis extracts with antibiotics against respiratory infections causing bacteria.Antibiotics (Basel)202211216010.3390/antibiotics11020160 35203763
    [Google Scholar]
  103. KuokC.F. HoiS.O. HoiC.F. ChanC.H. FongI.H. NgokC.K. MengL.R. FongP. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study.Exp. Biol. Med. (Maywood)2017242773174310.1177/1535370216689828 28118725
    [Google Scholar]
  104. AiyegoroO.A. AfolayanA.J. OkohA.I. In vitro antibacterial activities of crude extracts of the leaves of Helichrysum longifolium in combination with selected antibiotics.Afr. J. Pharm. Pharmacol.200936293300
    [Google Scholar]
  105. BaylanB. ErdalB. Investigation of antibacterial activity of curcumin and synergistic effect with gentamicin sulfate.Namık Kemal Med J2024121273310.4274/nkmj.galenos.2024.18199
    [Google Scholar]
  106. EladlA. AttiaR. AbdullatifH.K. El-GaninyA.M. The effect of combinations of antibiotics and natural products on the antimicrobial resistance of Staphylococcus aureus and Pseudomonas aeruginosa.Open Infect. Dis. J.202416110.2174/0118742793303419240422094438
    [Google Scholar]
  107. Odabaş KöseE. Koyuncu ÖzyurtÖ. BilmenS. ErH. KilitC. AydemirE. Quercetin: Synergistic interaction with antibiotics against colistin-resistant Acinetobacter baumannii.Antibiotics (Basel)202312473910.3390/antibiotics12040739 37107101
    [Google Scholar]
  108. LuoS. KangX. LuoX. LiC. WangG. Study on the inhibitory effect of quercetin combined with gentamicin on the formation of Pseudomonas aeruginosa and its bioenvelope.Microb. Pathog.202318210627410.1016/j.micpath.2023.106274 37516213
    [Google Scholar]
  109. GulS. BibiS. NazneenH. AlamM.A. KhanA. KhanZ.U. Evaluation of the anti-bacterial potential of Allium sativum against some resistant human pathogenic isolates and its synergy with antibiotics.Pak. J. Med. Health Sci.2023170246910.53350/pjmhs2023172469
    [Google Scholar]
  110. AkulaR. RavishankarG.A. Influence of abiotic stress signals on secondary metabolites in plants.Plant Signal. Behav.20116111720173110.4161/psb.6.11.17613 22041989
    [Google Scholar]
  111. VermaN. ShuklaS. Impact of various factors responsible for fluctuation in plant secondary metabolites.J. Appl. Res. Med. Aromat. Plants20152410511310.1016/j.jarmap.2015.09.002
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010344474241011070242
Loading
/content/journals/cpb/10.2174/0113892010344474241011070242
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test