Skip to content
2000
Volume 26, Issue 16
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Microneedles have been explored as a novel way of delivering active ingredients into the skin. They have various advantages, such as quick and efficient drug delivery, mechanical stability, minimal pain, variable capacity and easy use. Microneedles are enabled for the delivery of vaccine, peptides, medicinal components and in cosmetology, which couldn’t go unnoticed. The novel approaches in the transdermal drug delivery system have increased the efficiency of drug delivery into the skin by crossing the skin barriers. This platform has a wide range of applications and can also be used to deliver non-transdermal biomedicals. The variety in the design of microneedles has demanded similar diversity in their methods of fabrication; micro molding and drawing lithography may be useful methods. There are different types of polymers and materials for the fabrication of microneedles. Several synthetic and natural materials are used in the fabrication of microneedles. Unique shapes, materials, and mechanical properties are modified for organ-specific applications in microneedle engineering. In this review, we discuss several factors and their roles to cross the biological barriers for transdermal drug delivery in various sites, such as in ocular, vascular, oral, and mucosal tissue. Additionally, this article highlights the future scope of transdermal drug delivery systems through microneedles.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010310769240924053724
2024-11-04
2025-12-14
Loading full text...

Full text loading...

References

  1. PriceG. PatelD.A. Drug Bioavailability.Statpearls10.1016/B978‑008055232‑3.60035‑2
    [Google Scholar]
  2. The administration of medicines.2007Available from: https://www.nursingtimes.net/clinical-archive/medicine-management/the-administration-of-medicines-19-11-2007/ (accessed on 30-8-2024)
  3. AlkilaniA. McCruddenM.T. DonnellyR. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum.Pharmaceutics20157443847010.3390/pharmaceutics7040438 26506371
    [Google Scholar]
  4. PrausnitzM.R. LangerR. Transdermal drug delivery.Nat. Biotechnol.200826111261126810.1038/nbt.1504 18997767
    [Google Scholar]
  5. YousefH. AlhajjM. SharmaS. Anatomy, Skin (Integument), Epidermis.StatPearlsStatPearls Publisher2021
    [Google Scholar]
  6. ÉvoraA.S. AdamsM.J. JohnsonS.A. ZhangZ. Corneocytes: Relationship between Structural and Biomechanical Properties.Skin Pharmacol. Physiol.202134314616110.1159/000513054 33780956
    [Google Scholar]
  7. LindbergM.R. LampsL.W. Sustained drug delivery to reduce the extent of burn progression..PhD thesis, Nanyang Technological University202410.1016/B978‑0‑323‑54803‑8.50015‑2
    [Google Scholar]
  8. OrphanidouC. McCargarL. BirminghamC.L. MathiesonJ. GoldnerE. Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography.J. Am. Diet. Assoc.199494885585810.1016/0002‑8223(94)92363‑9 8046177
    [Google Scholar]
  9. KirkbyM. HuttonA.R.J. DonnellyR.F. Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations.Pharm. Res.202037611710.1007/s11095‑020‑02844‑6 32488611
    [Google Scholar]
  10. MdandaS. UbanakoP. KondiahP.P.D. KumarP. ChoonaraY.E. Recent advances in microneedle platforms for transdermal drug delivery technologies.Polymers (Basel)20211315240510.3390/polym13152405 34372008
    [Google Scholar]
  11. Khaled AldawoodF. AndarA. DesaiS. GiammonaG. Fabiola CraparoE. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications.Polymers1316281510.3390/polym13162815
    [Google Scholar]
  12. YuanW. Xiaoyun Hong ZaozhanWu LizhuChen LiuZ. FeiWu Liangming WeiL. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine.Drug Des. Devel. Ther.2013794595210.2147/DDDT.S44401 24039404
    [Google Scholar]
  13. JungJ.H. JinS.G. Microneedle for transdermal drug delivery: current trends and fabrication.J. Pharm. Investig.202151550351710.1007/s40005‑021‑00512‑4 33686358
    [Google Scholar]
  14. DugamS. TadeR. DholeR. NangareS. Emerging era of microneedle array for pharmaceutical and biomedical applications: recent advances and toxicological perspectives.Future J. Pharm. Sci.20217112610.1186/s43094‑020‑00176‑1
    [Google Scholar]
  15. TucakA. SirbubaloM. HindijaL. Microneedles: Characteristics, materials, production methods and commercial development.Micromachines2020111196110.3390/mi11110961
    [Google Scholar]
  16. CoulmanS. AllenderC. BirchallJ. Microneedles and other physical methods for overcoming the stratum corneum barrier for cutaneous gene therapy.Crit. Rev. Ther. Drug Carrier Syst.200623320525810.1615/CritRevTherDrugCarrierSyst.v23.i3.20 17206925
    [Google Scholar]
  17. GuillotA.J. CordeiroA.S. DonnellyR.F. MontesinosM.C. GarriguesT.M. MeleroA. Microneedle-based delivery: An overview of current applications and trends.Pharmaceutics202012656910.3390/pharmaceutics12060569
    [Google Scholar]
  18. YangJ. LiuX. FuY. SongY. Recent advances of microneedles for biomedical applications: drug delivery and beyond.Acta Pharm. Sin. B20199346948310.1016/j.apsb.2019.03.007 31193810
    [Google Scholar]
  19. YangJ. YangJ. GongX. Recent progress in microneedles-mediated diagnosis, therapy, and theranostic systems.Adv. Healthc. Mater.1110e210254710.1002/adhm.202102547
    [Google Scholar]
  20. SivagnanamG. Microneedles for painless immunization.J. Pharmacol. Pharmacother.20101213
    [Google Scholar]
  21. HanM. HyunD.H. ParkH.H. LeeS.S. KimC.H. KimC. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer.J. Micromech. Microeng.20071761184119110.1088/0960‑1317/17/6/012
    [Google Scholar]
  22. LarrañetaE. LuttonR.E.M. WoolfsonA.D. DonnellyR.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development.Mater. Sci. Eng. Rep.201610413210.1016/j.mser.2016.03.001
    [Google Scholar]
  23. YadavS. SinghA. Microneedling: Advances and widening horizons.Indian Dermatol. Online J.20167424425410.4103/2229‑5178.185468 27559496
    [Google Scholar]
  24. Executive summary best practices pain management best practices inter-agency task force report.
    [Google Scholar]
  25. Guidances, DrugsAvailable from: https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (accessed on 30-8-2024)
  26. LiuT. ChenM. FuJ. SunY. LuC. QuanG. PanX. WuC. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs.Acta Pharm. Sin. B20211182326234310.1016/j.apsb.2021.03.003 34522590
    [Google Scholar]
  27. RaiV.K. MishraN. YadavK.S. YadavN.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications.J. Control. Release201827020322510.1016/j.jconrel.2017.11.049 29199062
    [Google Scholar]
  28. DeStefanoV. KhanS. TabadaA. Applications of PLA in modern medicine.Engineered Regeneration20201768710.1016/j.engreg.2020.08.002 38620328
    [Google Scholar]
  29. AmarnaniR. ShendeP. Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system.Biomed. Microdevices2022241410.1007/s10544‑021‑00604‑w 34878589
    [Google Scholar]
  30. BilalM. MehmoodS. RazaA. HayatU. RasheedT. IqbalH.M.N. Microneedles in Smart Drug Delivery.Adv. Wound Care (New Rochelle)202110420421910.1089/wound.2019.1122 32320365
    [Google Scholar]
  31. TariqN. AshrafM.W. TayyabaS. A Review on Solid Microneedles for Biomedical Applications.J. Pharm. Innov.2021202112010.1007/s12247‑021‑09586‑x
    [Google Scholar]
  32. ParkJ.H. AllenM.G. PrausnitzM.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery.J. Control. Release20051041516610.1016/j.jconrel.2005.02.002 15866334
    [Google Scholar]
  33. Ortigoza-DiazJ. ScholtenK. LarsonC. Techniques and considerations in the microfabrication of parylene c microelectromechanical systems.Micromachines20189942210.3390/mi9090422
    [Google Scholar]
  34. SattiA.T. ParkJ. KimH. ChoS. Fabrication of parylene-coated microneedle array electrode for wearable ECG Device.Sensors202020518310.3390/s20185183
    [Google Scholar]
  35. AldawoodF.K. AndarA. DesaiS. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications.Polymers (Basel)20211316281510.3390/polym13162815 34451353
    [Google Scholar]
  36. DamiriF. KommineniN. EbhodagheS.O. BulusuR. JyothiV.G.S.S. SayedA.A. AwajiA.A. GermoushM.O. Al-malkyH.S. NasrullahM.Z. RahmanM.H. Abdel-DaimM.M. BerradaM. Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges.Pharmaceuticals (Basel)202215219010.3390/ph15020190 35215302
    [Google Scholar]
  37. ZhuangJ. RaoF. WuD. HuangY. XuH. GaoW. ZhangJ. SunJ. Study on the fabrication and characterization of tip-loaded dissolving microneedles for transdermal drug delivery.Eur. J. Pharm. Biopharm.2020157667310.1016/j.ejpb.2020.10.002 33059004
    [Google Scholar]
  38. KamelS. AliN. JahangirK. ShahS.M. El-GendyA.A. Pharmaceutical significance of cellulose: A review.Express Polym. Lett.200821175877810.3144/expresspolymlett.2008.90
    [Google Scholar]
  39. DonnellyR.F. SinghT.R.R. WoolfsonA.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety.Drug Deliv.201017418720710.3109/10717541003667798 20297904
    [Google Scholar]
  40. MakadiaH.K. SiegelS.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier.Polymers (Basel)2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  41. ShravanthS.H. OsmaniR.A.M. L, J.S.; Anupama, V.P.; Rahamathulla, M.; Gangadharappa, H.V. Microneedles-based drug delivery for the treatment of psoriasis.J. Drug Deliv. Sci. Technol.20216410266810.1016/j.jddst.2021.102668
    [Google Scholar]
  42. WaghuleT. SinghviG. DubeyS.K. PandeyM.M. GuptaG. SinghM. DuaK. Microneedles: A smart approach and increasing potential for transdermal drug delivery system.Biomed. Pharmacother.20191091249125810.1016/j.biopha.2018.10.078 30551375
    [Google Scholar]
  43. McAlisterE. KirkbyM. DonnellyR.F. Microneedles for drug delivery and monitoring.Microfluidic Devices for Biomedical Applications202110.1016/B978‑0‑12‑819971‑8.00015‑9
    [Google Scholar]
  44. DardanoP. De MartinoS. BattistiM. MirandaB. ReaI. De StefanoL. One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography.Polymers (Basel)202113452010.3390/polym13040520 33572383
    [Google Scholar]
  45. LiY. ZhangH. YangR. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics.Microsystems. Nanoeng.20195111110.1038/s41378‑019‑0077‑y
    [Google Scholar]
  46. HsuC.C. ChenY.T. TsaiC.H. KangS.W. Fabrication of Microneedles.2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems 16-19 Jan, 2007, Bangkok, Thailand, 2007, pp. 639-642.10.1109/NEMS.2007.352099
    [Google Scholar]
  47. MenonI. BagweP. GomesK.B. BajajL. GalaR. UddinM.N. D’SouzaM.J. ZughaierS.M. Microneedles: A new generation vaccine delivery system.Micromachines (Basel)202112443510.3390/mi12040435 33919925
    [Google Scholar]
  48. TucakA. SirbubaloM. HindijaL. RahićO. HadžiabdićJ. MuhamedagićK. ČekićA. VranićE. Microneedles: Characteristics, materials, production methods and commercial development.Micromachines (Basel)2020111196110.3390/mi11110961 33121041
    [Google Scholar]
  49. MengF. HasanA. Mahdi Nejadi BabadaeiM. Hashemi KaniP. Jouya TalaeiA. SharifiM. CaiT. FalahatiM. CaiY. Polymeric-based microneedle arrays as potential platforms in the development of drugs delivery systems.J. Adv. Res.20202613714710.1016/j.jare.2020.07.017 33133689
    [Google Scholar]
  50. MakvandiP. JamaledinR. ChenG. BaghbantaraghdariZ. ZareE.N. Di NataleC. OnestoV. VecchioneR. LeeJ. TayF.R. NettiP. MattoliV. JaklenecA. GuZ. LangerR. Stimuli-responsive transdermal microneedle patches.Mater. Today20214720622210.1016/j.mattod.2021.03.012 36338772
    [Google Scholar]
  51. QindeelM. AhmedN. SabirF. KhanS. Ur-RehmanA. Development of novel pH-sensitive nanoparticles loaded hydrogel for transdermal drug delivery.Drug Dev. Ind. Pharm.201945462964110.1080/03639045.2019.1569031
    [Google Scholar]
  52. Microneedle-array patches with glucose-responsive matrix for closed-loop insulin delivery.Patent WO2020041787A12019
  53. DupinD. ChenS. MiyazakiT. A porous reservoir-backed boronate gel microneedle for efficient skin penetration and sustained glucose-responsive insulin delivery.Gels2022827410.3390/gels8020074
    [Google Scholar]
  54. DonnellyR.F. SinghT.R.R. GarlandM.J. MigalskaK. MajithiyaR. McCruddenC.M. KoleP.L. MahmoodT.M.T. McCarthyH.O. WoolfsonA.D. Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery.Adv. Funct. Mater.201222234879489010.1002/adfm.201200864 23606824
    [Google Scholar]
  55. DonnellyR.F. SinghT.R.R. AlkilaniA.Z. McCruddenM.T.C. O’NeillS. O’MahonyC. ArmstrongK. McLooneN. KoleP. WoolfsonA.D. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: Potential for enhanced patient safety.Int. J. Pharm.20134511-2769110.1016/j.ijpharm.2013.04.045 23644043
    [Google Scholar]
  56. HardyJ.G. LarrañetaE. DonnellyR.F. McGoldrickN. MigalskaK. McCruddenM.T.C. IrwinN.J. DonnellyL. McCoyC.P. Hydrogel-Forming Microneedle Arrays Made from Light-Responsive Materials for On-Demand Transdermal Drug Delivery.Mol. Pharm.201613390791410.1021/acs.molpharmaceut.5b00807 26795883
    [Google Scholar]
  57. MurthyN.S. ShivakumarH.N. Topical and Transdermal Drug Delivery.Handbook of Non-Invasive Drug Delivery Systems.William Andrew Applied Science Publisher201010.1016/B978‑0‑8155‑2025‑2.10001‑0
    [Google Scholar]
  58. StewartS.A. Domínguez-RoblesJ. DonnellyR.F. LarrañetaE. Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications.Polymers (Basel)20181012137910.3390/polym10121379 30961303
    [Google Scholar]
  59. TraversoG. SchoellhammerC.M. SchroederA. MaaR. LauwersG.Y. PolatB.E. AndersonD.G. BlankschteinD. LangerR. Microneedles for drug delivery via the gastrointestinal tract.J. Pharm. Sci.2015104236236710.1002/jps.24182 25250829
    [Google Scholar]
  60. KimS. ShettyS. PriceD. BhansaliS. Skin Penetration of Silicon Dioxide Microneedle Arrays.2006 International Conference of the IEEE Engineering in Medicine and Biology Society30 Aug - 03 Sept, 2006, New York, NY, USA20064088409110.1109/IEMBS.2006.260142
    [Google Scholar]
  61. Manufacturing of Silicon Materials for Microelectronics and PVAvailable from: https://www.osti.gov/biblio/1497235 (accessed on 27-8-2024)
  62. HeX. SunJ. ZhuangJ. XuH. LiuY. WuD. Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects.Dose Response201917410.1177/1559325819878585 31662709
    [Google Scholar]
  63. Alumina Ceramic: What is it? How Is It Made, Products.Available from: https://www.iqsdirectory.com/articles/ceramic/alumina-ceramic.html (accessed on 30-8-2024)
  64. ItaK. Ceramic microneedles and hollow microneedles for transdermal drug delivery: Two decades of research.J. Drug Deliv. Sci. Technol.20184431432210.1016/j.jddst.2018.01.004
    [Google Scholar]
  65. LeeK. LeeC.Y. JungH. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose.Biomaterials201132113134314010.1016/j.biomaterials.2011.01.014 21292317
    [Google Scholar]
  66. KimY.C. ParkJ.H. PrausnitzM.R. Microneedles for drug and vaccine delivery.Adv. Drug Deliv. Rev.201264141547156810.1016/j.addr.2012.04.005 22575858
    [Google Scholar]
  67. ChowdhuryA. KunjiappanS. PanneerselvamT. SomasundaramB. BhattacharjeeC. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases.Int. Nano Lett.2017729112210.1007/s40089‑017‑0208‑0
    [Google Scholar]
  68. ChenW. LiH. ShiD. LiuZ. YuanW. Microneedles as a delivery system for gene therapy.Front. Pharmacol.20167MAY13710.3389/fphar.2016.00137 27303298
    [Google Scholar]
  69. MakvandiP. KirkbyM. HuttonA.R.J. Engineering microneedle patches for improved penetration: Analysis, skin models and factors affecting needle insertion.Nano-Micro Lett.202113114110.1007/s40820‑021‑00611‑9
    [Google Scholar]
  70. GuptaJ. GillH.S. AndrewsS.N. PrausnitzM.R. Kinetics of skin resealing after insertion of microneedles in human subjects.J. Control. Release2011154214815510.1016/j.jconrel.2011.05.021 21640148
    [Google Scholar]
  71. PahwaM. PahwaP. ZaheerA. “Tram track effect” after treatment of acne scars using a microneedling device.Dermatol. Surg.20123871107110810.1111/j.1524‑4725.2012.02441.x 22587597
    [Google Scholar]
  72. YadavS. DograS. A Cutaneous Reaction to Microneedling for Postacne Scarring Caused by Nickel Hypersensitivity.Aesthet. Surg. J.2016364NP168NP17010.1093/asj/sjv229 26961992
    [Google Scholar]
  73. DonnellyR.F. SinghT.R.R. TunneyM.M. MorrowD.I.J. McCarronP.A. O’MahonyC. WoolfsonA.D. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro.Pharm. Res.200926112513252210.1007/s11095‑009‑9967‑2 19756972
    [Google Scholar]
  74. GillH.S. DensonD.D. BurrisB.A. PrausnitzM.R. Effect of microneedle design on pain in human volunteers.Clin. J. Pain200824758559410.1097/AJP.0b013e31816778f9 18716497
    [Google Scholar]
  75. NarayananP.S. RaghavanS. Solid silicon microneedles for drug delivery applications.Int. J. Adv. Manuf. Technol.201693140742210.1007/s00170‑016‑9698‑6
    [Google Scholar]
  76. JeongS.Y. ParkJ.H. LeeY.S. KimY.S. ParkJ.Y. KimS.Y. pharmaceutics The Current Status of Clinical Research Involving Microneedles.Syst. Rev.10.3390/pharmaceutics12111113 33228098
    [Google Scholar]
  77. PaudelK.S. MilewskiM. SwadleyC.L. BrogdenN.K. GhoshP. StinchcombA.L. Challenges and Opportunities in dermal/transdermal Delivery.Ther. Deliv.20101110913110.4155/tde.10.16 21132122
    [Google Scholar]
  78. CheungK. DasD.B. Microneedles for drug delivery: trends and progress.Drug Deliv.201423723382354
    [Google Scholar]
  79. Tuan-MahmoodT.M. McCruddenM.T.C. TorrisiB.M. McAlisterE. GarlandM.J. SinghT.R.R. DonnellyR.F. Microneedles for intradermal and transdermal drug delivery.Eur. J. Pharm. Sci.201350562363710.1016/j.ejps.2013.05.005 23680534
    [Google Scholar]
  80. ZhangW. ZhangW. LiC. ZhangJ. QinL. LaiY. Recent Advances of Microneedles and Their Application in Disease Treatment.Int. J. Mol. Sci.2022235240110.3390/ijms23052401 35269545
    [Google Scholar]
  81. JeongW.Y. KwonM. ChoiH.E. KimK.S. Recent advances in transdermal drug delivery systems: a review.Biomater. Res.20212512410.1186/s40824‑021‑00226‑6 34321111
    [Google Scholar]
  82. BariyaS.H. GohelM.C. MehtaT.A. SharmaO.P. Microneedles: an emerging transdermal drug delivery system.J. Pharm. Pharmacol.2011641112910.1111/j.2042‑7158.2011.01369.x 22150668
    [Google Scholar]
  83. SoJ.W. ParkH.H. LeeS.S. KimD.C. ShinS.C. ChoC.W. Effect of microneedle on the pharmacokinetics of ketoprofen from its transdermal formulations.Drug Deliv.2009161525610.1080/10717540802518082 19555309
    [Google Scholar]
  84. JiangJ. MooreJ.S. EdelhauserH.F. PrausnitzM.R. Intrascleral drug delivery to the eye using hollow microneedles.Pharm. Res.200926239540310.1007/s11095‑008‑9756‑3 18979189
    [Google Scholar]
  85. MarshallS. SahmL.J. MooreA.C. The success of microneedle-mediated vaccine delivery into skin.Hum. Vaccin. Immunother.201612112975298310.1080/21645515.2016.1171440 27050528
    [Google Scholar]
  86. DardanoP. ReaI. De StefanoL. Microneedles-based electrochemical sensors: New tools for advanced biosensing.Curr. Opin. Electrochem.20191712112710.1016/j.coelec.2019.05.012
    [Google Scholar]
  87. GuptaJ. ParkS.S. BondyB. FelnerE.I. PrausnitzM.R. Infusion pressure and pain during microneedle injection into skin of human subjects.Biomaterials201132286823683110.1016/j.biomaterials.2011.05.061 21684001
    [Google Scholar]
  88. GowdaA. A Systematic Review Examining the Potential Adverse Effects of Microneedling.J. Clin. Aesthet. Dermatol.20211414554
    [Google Scholar]
  89. HalderJ. GuptaS. KumariR. GuptaG.D. RaiV.K. Microneedle Array: Applications, Recent Advances, and Clinical Pertinence in Transdermal Drug Delivery.J. Pharm. Innov.202116355856510.1007/s12247‑020‑09460‑2 32837607
    [Google Scholar]
  90. ZhangW. CaiL. GanJ. ZhaoY. Photothermal responsive porous hollow microneedles as Chinese medicine versatile delivery system for wound healing.Smart Med.20242024e2024000710.1002/SMMD.20240007
    [Google Scholar]
  91. LiW. YangX. LaiP. ShangL. Bio-inspired adhesive hydrogel for biomedicine—principles and design strategies.Smart Medicine202211e2022002410.1002/SMMD.20220024
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010310769240924053724
Loading
/content/journals/cpb/10.2174/0113892010310769240924053724
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test