Skip to content
2000
Volume 26, Issue 15
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Colorectal Cancer (CRC) is a malignancy in which the cells of the colon and rectum grow uncontrollably. This disease initially appears as an adenomatous polyp, which, over time, turns into an advanced adenoma with high-grade dysplasia and becomes the basis of invasive cancer. Dysbiosis refers to the reduction of microbial diversity and disruption of the balance in the population of beneficial (microbiota) and harmful (pathogenic) microorganisms. The disruption of the balance causes an increase in pathogenic microbial species, which play a role in creating a pro-inflammatory environment. Therefore, dysbiosis can disrupt the balance of the microbiota population, leading to Gastrointestinal (GI) disorders like cancer. According to research, it has been established that certain pathogenic bacteria, specifically are capable of thriving in a state of dysbiosis and can significantly contribute to the progression of CRC. This study aims to discover the role and various mechanisms of the mentioned pathogenic bacteria in the development and progression of CRC and their effect on cellular and immune changes. The findings of this research could highlight the importance of diagnosis and treatment of these microorganisms in the context of CRC and lay the groundwork for future research in this field.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010338997241216053634
2025-01-14
2025-12-27
Loading full text...

Full text loading...

References

  1. QureshiU.F. AslamM.N. AnsariM.N. KhanM. Role of aspirin as prophylaxis against colorectal cancer.Pakis. Postgrad. Med. J.2018291161910.51642/ppmj.v29i1.55
    [Google Scholar]
  2. VogelsteinB. KinzlerK.W. The genetic basis of human cancer2nd Ed.McGraw-Hill ProfessionalNew York, US2002821
    [Google Scholar]
  3. LibuttiS.K. Cancer of the colon, in Devita, Hellman, and Rosenberg's Cancer: Principles & Practice of Oncology10th Ed.Wolters Kluwer Health Adis (ESP)Alphen aan den Rijn, Netherlands20151172
    [Google Scholar]
  4. ComptonC. Colon cancer. Abeloff’s clinical oncology.4th edPhiladelphiaChurchill Livingstone20081477152510.1016/B978‑0‑443‑06694‑8.50085‑3
    [Google Scholar]
  5. MarkowitzS.D. DawsonD.M. WillisJ. WillsonJ.K.V. Focus on colon cancer.Cancer Cell20021323323610.1016/S1535‑6108(02)00053‑3 12086859
    [Google Scholar]
  6. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  7. WuZ. ChenK. LiJ. DaiX. The global, regional, and national burden of colorectal cancer in 204 countries and territories from 1990 to 2019.J. Public Health202432460961810.1007/s10389‑023‑01831‑6
    [Google Scholar]
  8. TheodoratouE. TimofeevaM. LiX. MengX. IoannidisJ.P.A. Nature, Nurture and cancer risks: Genetic and nutritional contributions to cancer.Annu. Rev. Nutr.201737129332010.1146/annurev‑nutr‑071715‑051004 28826375
    [Google Scholar]
  9. LevinB. LiebermanD.A. McFarlandB. AndrewsK.S. BrooksD. BondJ. DashC. GiardielloF.M. GlickS. JohnsonD. JohnsonC.D. LevinT.R. PickhardtP.J. RexD.K. SmithR.A. ThorsonA. WinawerS.J. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology.Gastroenterology200813451570159510.1053/j.gastro.2008.02.002 18384785
    [Google Scholar]
  10. EadenJ.A. AbramsK.R. MayberryJ.F. The risk of colorectal cancer in ulcerative colitis: a meta-analysis.Gut200148452653510.1136/gut.48.4.526 11247898
    [Google Scholar]
  11. CanavanC. AbramsK.R. MayberryJ. Meta‐analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease.Aliment. Pharmacol. Ther.20062381097110410.1111/j.1365‑2036.2006.02854.x 16611269
    [Google Scholar]
  12. JohnsL.E. HoulstonR.S. A systematic review and meta-analysis of familial colorectal cancer risk.Am. J. Gastroenterol.200196102992300310.1111/j.1572‑0241.2001.04677.x 11693338
    [Google Scholar]
  13. De CedrónM.G. de MolinaA.R. Precision nutrition to target lipid metabolism alterations in cancer.Precision medicine for investigators, practitioners and providersElsevier202029129910.1016/B978‑0‑12‑819178‑1.00028‑9
    [Google Scholar]
  14. LouisP. HoldG.L. FlintH.J. The gut microbiota, bacterial metabolites and colorectal cancer.Nat. Rev. Microbiol.2014121066167210.1038/nrmicro3344 25198138
    [Google Scholar]
  15. SheflinA.M. WhitneyA.K. WeirT.L. Cancer-promoting effects of microbial dysbiosis.Curr. Oncol. Rep.2014161040610.1007/s11912‑014‑0406‑0 25123079
    [Google Scholar]
  16. McLeanM.H. DieguezD.Jr MillerL.M. YoungH.A. Does the microbiota play a role in the pathogenesis of autoimmune diseases?Gut201564233234110.1136/gutjnl‑2014‑308514 25416067
    [Google Scholar]
  17. GarrettW.S. Cancer and the microbiota.Science20153486230808610.1126/science.aaa4972 25838377
    [Google Scholar]
  18. HasanN. YangH. Factors affecting the composition of the gut microbiota, and its modulation.PeerJ20197e750210.7717/peerj.7502 31440436
    [Google Scholar]
  19. QinJ. A human gut microbial gene catalogue established by metagenomic sequencing.Nature20104647285596510.1038/nature08821 20203603
    [Google Scholar]
  20. WikoffW.R. AnforaA.T. LiuJ. SchultzP.G. LesleyS.A. PetersE.C. SiuzdakG. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites.Proc. Natl. Acad. Sci. USA2009106103698370310.1073/pnas.0812874106 19234110
    [Google Scholar]
  21. UrsellL.K. KnightR. Xenobiotics and the human gut microbiome: metatranscriptomics reveal the active players.Cell Metab.201317331731810.1016/j.cmet.2013.02.013 23473028
    [Google Scholar]
  22. MirzaeiR. KavyaniB. NabizadehE. KadkhodaH. Asghari OzmaM. AbdiM. Microbiota metabolites in the female reproductive system: Focused on the short-chain fatty acids.Heliyon202393e1456210.1016/j.heliyon.2023.e14562 36967966
    [Google Scholar]
  23. SperandioV. Virulence or Competition?Science201233660861238123910.1126/science.1223303 22582015
    [Google Scholar]
  24. MazmanianS.K. RoundJ.L. KasperD.L. A microbial symbiosis factor prevents intestinal inflammatory disease.Nature2008453719562062510.1038/nature07008 18509436
    [Google Scholar]
  25. NezhadiJ. Ahangarzadeh RezaeeM. Asghari OzmaM. GanbarovK. Samadi KafilH. Gut microbiota exchange in domestic animals and rural-urban people axis.Curr. Pharm. Biotechnol.202425782583710.2174/0113892010261535230920062107 37877143
    [Google Scholar]
  26. LiS. ZhuS. YuJ. The role of gut microbiota and metabolites in cancer chemotherapy.J. Adv. Res.20236422323510.1016/j.jare.2023.11.027 38013112
    [Google Scholar]
  27. ZouS. YangC. ZhangJ. ZhongD. MengM. ZhangL. ChenH. FangL. Multi-omic profiling reveals associations between the gut microbiome, host genome and transcriptome in patients with colorectal cancer.J. Transl. Med.202422117510.1186/s12967‑024‑04984‑4 38369542
    [Google Scholar]
  28. KassamZ. Fecal microbiota transplantation for clostridium difficileinfection: systematic review and meta-analysis.J. Amer. Coll. Gastroenterol.2013108450050810.1038/ajg.2013.59 23511459
    [Google Scholar]
  29. YuH. LiX.X. HanX. ChenB.X. ZhangX.H. GaoS. XuD.Q. WangY. GaoZ.K. YuL. ZhuS.L. YaoL.C. LiuG.R. LiuS.L. MuX.Q. Fecal microbiota transplantation inhibits colorectal cancer progression: Reversing intestinal microbial dysbiosis to enhance anti-cancer immune responses.Front. Microbiol.202314112680810.3389/fmicb.2023.1126808 37143538
    [Google Scholar]
  30. MesaF. Mesa-LópezM.J. Egea-ValenzuelaJ. Benavides-ReyesC. NibaliL. IdeM. MainasG. RizzoM. Magan-FernandezA. A new comorbidity in periodontitis: Fusobacterium nucleatum and colorectal cancer.Medicina202258454610.3390/medicina58040546 35454384
    [Google Scholar]
  31. YangN.Y. ZhangQ. LiJ.L. YangS.H. ShiQ. Progression of periodontal inflammation in adolescents is associated with increased number of Porphyromonas gingivalis, Prevotella intermedia, Tannerella for sythensis, and Fusobacterium nucleatum.Int. J. Paediatr. Dent.201424322623310.1111/ipd.12065 24025042
    [Google Scholar]
  32. KistlerJ.O. BoothV. BradshawD.J. WadeW.G. Bacterial community development in experimental gingivitis.PLoS One201388e7122710.1371/journal.pone.0071227 23967169
    [Google Scholar]
  33. FujiiR. SaitoY. TokuraY. NakagawaK.I. OkudaK. IshiharaK. Characterization of bacterial flora in persistent apical periodontitis lesions.Oral Microbiol. Immunol.200924650250510.1111/j.1399‑302X.2009.00534.x 19832803
    [Google Scholar]
  34. KrejsG.J. Pancreatic cancer: epidemiology and risk factors.Dig. Dis.201028235535810.1159/000319414 20814212
    [Google Scholar]
  35. HanY.W. RedlineR.W. LiM. YinL. HillG.B. McCormickT.S. Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth.Infect. Immun.20047242272227910.1128/IAI.72.4.2272‑2279.2004 15039352
    [Google Scholar]
  36. MitsuhashiK. NoshoK. SukawaY. MatsunagaY. ItoM. KuriharaH. KannoS. IgarashiH. NaitoT. AdachiY. TachibanaM. TanumaT. MaguchiH. ShinoharaT. HasegawaT. ImamuraM. KimuraY. HirataK. MaruyamaR. SuzukiH. ImaiK. YamamotoH. ShinomuraY. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis.Oncotarget2015697209722010.18632/oncotarget.3109 25797243
    [Google Scholar]
  37. GallimidiA.B. FischmanS. RevachB. BulvikR. MaliutinaA. RubinsteinA.M. NussbaumG. ElkinM. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model.Oncotarget2015626226132262310.18632/oncotarget.4209 26158901
    [Google Scholar]
  38. WuZ. MaQ. GuoY. YouF. The role of Fusobacterium nucleatum in colorectal cancer cell proliferation and migration.Cancers20221421535010.3390/cancers14215350 36358769
    [Google Scholar]
  39. AhmedZ. BansalS.K. DhillonS. Pyogenic liver abscess caused by Fusobacterium in a 21-year-old immunocompetent male.World J. Gastroenterol.201521123731373510.3748/wjg.v21.i12.3731 25834342
    [Google Scholar]
  40. YonedaM. KatoS. MawatariH. KirikoshiH. ImajoK. FujitaK. EndoH. TakahashiH. InamoriM. KobayashiN. KubotaK. SaitoS. TohnaiI. WatanukiK. WadaK. MaedaS. NakajimaA. Liver abscess caused by periodontal bacterial infection with Fusobacterium necrophorum.Hepatol. Res.201141219419610.1111/j.1872‑034X.2010.00748.x 21269389
    [Google Scholar]
  41. Yarden-BilavskyH. RavehE. LivniG. ScheuermanO. AmirJ. BilavskyE. Fusobacterium necrophorum mastoiditis in children – Emerging pathogen in an old disease.Int. J. Pediatr. Otorhinolaryngol.2013771929610.1016/j.ijporl.2012.10.003 23102657
    [Google Scholar]
  42. JensenA. KristensenL.H. PragJ. Detection of Fusobacterium necrophorum subsp. funduliforme in tonsillitis in young adults by real-time PCR.Clin. Microbiol. Infect.200713769570110.1111/j.1469‑0691.2007.01719.x 17403128
    [Google Scholar]
  43. FinegoldS.M. FlynnM.J. RoseF.V. Jousimies-SomerH. JakielaszekC. McTeagueM. WexlerH.M. BerkowitzE. WynneB. Bacteriologic findings associated with chronic bacterial maxillary sinusitis in adults.Clin. Infect. Dis.200235442843310.1086/341899 12145727
    [Google Scholar]
  44. SalöM. MarungruangN. RothB. SundbergT. StenströmP. ArnbjörnssonE. FåkF. OhlssonB. Evaluation of the microbiome in children’s appendicitis.Int. J. Colorectal Dis.2017321192810.1007/s00384‑016‑2639‑x 27613729
    [Google Scholar]
  45. CastellarinM. WarrenR.L. FreemanJ.D. DreoliniL. KrzywinskiM. StraussJ. BarnesR. WatsonP. Allen-VercoeE. MooreR.A. HoltR.A. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma.Genome Res.201222229930610.1101/gr.126516.111 22009989
    [Google Scholar]
  46. McCoyA.N. Araújo-PérezF. Azcárate-PerilA. YehJ.J. SandlerR.S. KekuT.O. Fusobacterium is associated with colorectal adenomas.PLoS One201381e5365310.1371/journal.pone.0053653 23335968
    [Google Scholar]
  47. MimaK. SukawaY. NishiharaR. QianZ.R. YamauchiM. InamuraK. KimS.A. MasudaA. NowakJ.A. NoshoK. KosticA.D. GiannakisM. WatanabeH. BullmanS. MilnerD.A. HarrisC.C. GiovannucciE. GarrawayL.A. FreemanG.J. DranoffG. ChanA.T. GarrettW.S. HuttenhowerC. FuchsC.S. OginoS. Fusobacterium nucleatum and T cells in colorectal carcinoma.JAMA Oncol.20151565366110.1001/jamaoncol.2015.1377 26181352
    [Google Scholar]
  48. ItoM. KannoS. NoshoK. SukawaY. MitsuhashiK. KuriharaH. IgarashiH. TakahashiT. TachibanaM. TakahashiH. YoshiiS. TakenouchiT. HasegawaT. OkitaK. HirataK. MaruyamaR. SuzukiH. ImaiK. YamamotoH. ShinomuraY. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway.Int. J. Cancer201513761258126810.1002/ijc.29488 25703934
    [Google Scholar]
  49. FlanaganL. SchmidJ. EbertM. SoucekP. KunickaT. LiskaV. BruhaJ. NearyP. DezeeuwN. TommasinoM. JenabM. PrehnJ.H.M. HughesD.J. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome.Eur. J. Clin. Microbiol. Infect. Dis.20143381381139010.1007/s10096‑014‑2081‑3 24599709
    [Google Scholar]
  50. RubinsteinM.R. WangX. LiuW. HaoY. CaiG. HanY.W. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin.Cell Host Microbe201314219520610.1016/j.chom.2013.07.012 23954158
    [Google Scholar]
  51. RanjbarM. SalehiR. Haghjooy JavanmardS. RafieeL. FarajiH. jafarporS. FernsG.A. Ghayour-MobarhanM. ManianM. NedaeiniaR. The dysbiosis signature of Fusobacterium nucleatum in colorectal cancer-cause or consequences? A systematic review.Cancer Cell Int.202121119410.1186/s12935‑021‑01886‑z 33823861
    [Google Scholar]
  52. MimaK. NishiharaR. QianZ.R. CaoY. SukawaY. NowakJ.A. YangJ. DouR. MasugiY. SongM. KosticA.D. GiannakisM. BullmanS. MilnerD.A. BabaH. GiovannucciE.L. GarrawayL.A. FreemanG.J. DranoffG. GarrettW.S. HuttenhowerC. MeyersonM. MeyerhardtJ.A. ChanA.T. FuchsC.S. OginoS. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis.Gut201665121973198010.1136/gutjnl‑2015‑310101 26311717
    [Google Scholar]
  53. WuJ. LiQ. FuX. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity.Transl. Oncol.201912684685110.1016/j.tranon.2019.03.003 30986689
    [Google Scholar]
  54. AbedJ. EmgårdJ.E.M. ZamirG. FarojaM. AlmogyG. GrenovA. SolA. NaorR. PikarskyE. AtlanK.A. MellulA. ChaushuS. MansonA.L. EarlA.M. OuN. BrennanC.A. GarrettW.S. BachrachG. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc.Cell Host Microbe201620221522510.1016/j.chom.2016.07.006 27512904
    [Google Scholar]
  55. ProençaM.A. BiselliJ.M. SucciM. SeverinoF.E. BerardinelliG.N. CaetanoA. ReisR.M. HughesD.J. SilvaA.E. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis.World J. Gastroenterol.201824475351536510.3748/wjg.v24.i47.5351 30598580
    [Google Scholar]
  56. HanY.W. IkegamiA. RajannaC. KawsarH.I. ZhouY. LiM. SojarH.T. GencoR.J. KuramitsuH.K. DengC.X. Identification and characterization of a novel adhesin unique to oral fusobacteria.J. Bacteriol.2005187155330534010.1128/JB.187.15.5330‑5340.2005 16030227
    [Google Scholar]
  57. XuM. YamadaM. LiM. LiuH. ChenS.G. HanY.W. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells.J. Biol. Chem.200728234250002500910.1074/jbc.M611567200 17588948
    [Google Scholar]
  58. DangC.V. c-Myc target genes involved in cell growth, apoptosis, and metabolism.Mol. Cell. Biol.199919111110.1128/MCB.19.1.1 9858526
    [Google Scholar]
  59. BaldinV. LukasJ. MarcoteM.J. PaganoM. DraettaG. Cyclin D1 is a nuclear protein required for cell cycle progression in G1.Genes Dev.19937581282110.1101/gad.7.5.812 8491378
    [Google Scholar]
  60. IbrahimW.S. Abdel Hamid TabakS. El SayedA.M. How do cyclin D1, EGFR, and COX-2 attribute to colorectal carcinoma prognosis? An immunohistochemical study on tissue microarray.Egypt. J. Pathol.201131161210.1097/01.XEJ.0000398105.42899.bc
    [Google Scholar]
  61. MaedaK. ChungY.S. KangS.M. OgawaM. OnodaN. NakataB. NishiguchiY. IkeharaT. OkunoM. SowaM. Overexpression of cyclin D1 and p53 associated with disease recurrence in colorectal adenocarcinoma.Int. J. Cancer199774331031510.1002/(SICI)1097‑0215(19970620)74:3<310::AID‑IJC13>3.0.CO;2‑F 9221810
    [Google Scholar]
  62. LiY. WeiJ. XuC. ZhaoZ. YouT. Prognostic significance of cyclin D1 expression in colorectal cancer: a meta-analysis of observational studies.PLoS One201494e9450810.1371/journal.pone.0094508 24728073
    [Google Scholar]
  63. EllisT.N. KuehnM.J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles.Microbiol. Mol. Biol. Rev.2010741819410.1128/MMBR.00031‑09 20197500
    [Google Scholar]
  64. ChatterjeeD. ChaudhuriK. Vibrio cholerae O395 outer membrane vesicles modulate intestinal epithelial cells in a NOD1 protein-dependent manner and induce dendritic cell-mediated Th2/Th17 cell responses.J. Biol. Chem.201328864299430910.1074/jbc.M112.408302 23275338
    [Google Scholar]
  65. KafilH.S. OzmaM.A. KhodadadiE. RezaeeM.A. AsgharzadehM. AghazadehM. ZeinalzadehE. GanbarovK. Bacterial proteomics and its application in pathogenesis studies.Curr. Pharm. Biotechnol.202223101245125610.2174/1389201022666210908153234 34503411
    [Google Scholar]
  66. LiuJ. HsiehC.L. GelincikO. DevolderB. SeiS. ZhangS. LipkinS.M. ChangY.F. Proteomic characterization of outer membrane vesicles from gut mucosa-derived fusobacterium nucleatum.J. Proteomics201919512513710.1016/j.jprot.2018.12.029 30634002
    [Google Scholar]
  67. WuY. WuJ. ChenT. LiQ. PengW. LiH. TangX. FuX. Fusobacterium nucleatum potentiates intestinal tumorigenesis in mice via a toll-like receptor 4/p21-activated kinase 1 cascade.Dig. Dis. Sci.20186351210121810.1007/s10620‑018‑4999‑2 29508166
    [Google Scholar]
  68. EngevikM.A. DanhofH.A. RuanW. EngevikA.C. Chang-GrahamA.L. EngevikK.A. ShiZ. ZhaoY. BrandC.K. KrystofiakE.S. VenableS. LiuX. HirschiK.D. HyserJ.M. SpinlerJ.K. BrittonR.A. VersalovicJ. Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation.MBio2021122e02706e0272010.1128/mBio.02706‑20 33653893
    [Google Scholar]
  69. HurK. ToiyamaY. SchetterA.J. OkugawaY. HarrisC.C. BolandC.R. GoelA. Identification of a metastasis-specific MicroRNA signature in human colorectal cancer.J. Natl. Cancer Inst.20151073dju49210.1093/jnci/dju492 25663689
    [Google Scholar]
  70. HurK. ToiyamaY. OkugawaY. IdeS. ImaokaH. BolandC.R. GoelA. Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer.Gut201766465466510.1136/gutjnl‑2014‑308737 26701878
    [Google Scholar]
  71. ShiC. YangY. XiaY. OkugawaY. YangJ. LiangY. ChenH. ZhangP. WangF. HanH. WuW. GaoR. GascheC. QinH. MaY. GoelA. Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer.Gut20166591470148110.1136/gutjnl‑2014‑308455 25994220
    [Google Scholar]
  72. YamadaA. HorimatsuT. OkugawaY. NishidaN. HonjoH. IdaH. KouT. KusakaT. SasakiY. YagiM. HigurashiT. YukawaN. AmanumaY. KikuchiO. MutoM. UenoY. NakajimaA. ChibaT. BolandC.R. GoelA. Serum miR-21, miR-29a, and miR-125b Are Promising Biomarkers for the Early Detection of Colorectal Neoplasia.Clin. Cancer Res.201521184234424210.1158/1078‑0432.CCR‑14‑2793 26038573
    [Google Scholar]
  73. YangY. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor− κB, and up-regulating expression of microRNA-21.Gastroenterol.2017152485186610.1053/j.gastro.2016.11.018 27876571
    [Google Scholar]
  74. OhtaM. SetoM. IjichiH. MiyabayashiK. KudoY. MohriD. AsaokaY. TadaM. TanakaY. IkenoueT. KanaiF. KawabeT. OmataM. Decreased expression of the RAS-GTPase activating protein RASAL1 is associated with colorectal tumor progression.Gastroenterology2009136120621610.1053/j.gastro.2008.09.063 18992247
    [Google Scholar]
  75. KosticA.D. ChunE. RobertsonL. GlickmanJ.N. GalliniC.A. MichaudM. ClancyT.E. ChungD.C. LochheadP. HoldG.L. El-OmarE.M. BrennerD. FuchsC.S. MeyersonM. GarrettW.S. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment.Cell Host Microbe201314220721510.1016/j.chom.2013.07.007 23954159
    [Google Scholar]
  76. KapatralV. AndersonI. IvanovaN. ReznikG. LosT. LykidisA. BhattacharyyaA. BartmanA. GardnerW. GrechkinG. ZhuL. VasievaO. ChuL. KoganY. ChagaO. GoltsmanE. BernalA. LarsenN. D’SouzaM. WalunasT. PuschG. HaselkornR. FonsteinM. KyrpidesN. OverbeekR. Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586.J. Bacteriol.200218472005201810.1128/JB.184.7.2005‑2018.2002 11889109
    [Google Scholar]
  77. ShangF.M. LiuH.L. Fusobacterium nucleatum and colorectal cancer: A review.World J. Gastrointest. Oncol.2018103718110.4251/wjgo.v10.i3.71 29564037
    [Google Scholar]
  78. ArthurJ.C. Intestinal inflammation targets cancer-inducing activity of the microbiota.Science2012338610312012310.1126/science.1224820 22903521
    [Google Scholar]
  79. TariqH. NoreenZ. AhmadA. KhanL. AliM. MalikM. JavedA. RasheedF. FatimaA. KocagozT. SezermanU. BokhariH. Colibactin possessing E. coli isolates in association with colorectal cancer and their genetic diversity among Pakistani population.PLoS One20221711e026266210.1371/journal.pone.0262662 36367873
    [Google Scholar]
  80. SwidsinskiA. KhilkinM. KerjaschkiD. SchreiberS. OrtnerM. WeberJ. LochsH. Association between intraepithelial Escherichia coli and colorectal cancer.Gastroenterology1998115228128610.1016/S0016‑5085(98)70194‑5 9679033
    [Google Scholar]
  81. MartinH.M. CampbellB.J. HartC.A. MpofuC. NayarM. SinghR. EnglystH. WilliamsH.F. RhodesJ.M. Enhanced escherichia coli adherence and invasion in crohn’s disease and colon cancer 1 1the authors thank professor t. k. korhonen (division of general microbiology, university of helsinki, finland), who kindly donated escherichia coli ih11165; professor j.-f. colombel (laboratoire de recherche sur les maladies inflammatoire de l’intestine, centre hospitalier universitaire, lille, france) and professor a. darfeuille-michaud (faculte de pharmacie, clermont-ferrand, france), who kindly donated the crohn’s disease ileal isolates lf10 and lf82; and dr. keith leiper (gastroenterology unit, royal liverpool & broadgreen university hospitals trust, liverpool, uk) for his cooperation in obtaining colorectal tissue specimens.as a consequence of the work described herein, a patent application has been filed by the university of liverpool regarding the use of soluble plantain fiber in crohn’s disease.Gastroenterology20041271809310.1053/j.gastro.2004.03.054 15236175
    [Google Scholar]
  82. OzmaM.A. AbbasiA. AsgharzadehM. PaglianoP. GuarinoA. KöseŞ. Samadi KafilH. Antibiotic therapy for pan-drug-resistant infections.Infez. Med.2022304525531 36482958
    [Google Scholar]
  83. Darfeuille-MichaudA. NeutC. BarnichN. LedermanE. Di MartinoP. DesreumauxP. GambiezL. JolyB. CortotA. ColombelJ.F. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease.Gastroenterology199811561405141310.1016/S0016‑5085(98)70019‑8 9834268
    [Google Scholar]
  84. Darfeuille-MichaudA. BoudeauJ. BuloisP. NeutC. GlasserA.L. BarnichN. BringerM.A. SwidsinskiA. BeaugerieL. ColombelJ.F. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease.Gastroenterology2004127241242110.1053/j.gastro.2004.04.061 15300573
    [Google Scholar]
  85. LaxA.J. Bacterial toxins and cancer — a case to answer?Nat. Rev. Microbiol.20053434334910.1038/nrmicro1130 15806096
    [Google Scholar]
  86. ThelestamM. FrisanT. Cytolethal distending toxins.Rev. Physiol. Biochem. Pharmacol.200415211113310.1007/s10254‑004‑0030‑8 15338430
    [Google Scholar]
  87. FalzanoL. FilippiniP. TravaglioneS. MiragliaA.G. FabbriA. FiorentiniC. Escherichia coli cytotoxic necrotizing factor 1 blocks cell cycle G2/M transition in uroepithelial cells.Infect. Immun.20067473765377210.1128/IAI.01413‑05 16790748
    [Google Scholar]
  88. MarkelovaN.N. SemenovaE.F. SinevaO.N. SadykovaV.S. The role of cyclomodulins and some microbial metabolites in bacterial microecology and macroorganism carcinogenesis.Int. J. Mol. Sci.202223191170610.3390/ijms231911706 36233008
    [Google Scholar]
  89. Cuevas-RamosG. PetitC.R. MarcqI. BouryM. OswaldE. NougayrèdeJ.P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells.Proc. Natl. Acad. Sci. USA201010725115371154210.1073/pnas.1001261107 20534522
    [Google Scholar]
  90. FaïsT. DelmasJ. SerresA. BonnetR. DalmassoG. Impact of CDT toxin on human diseases.Toxins20168722010.3390/toxins8070220 27429000
    [Google Scholar]
  91. TaiebF. NougayrèdeJ.P. WatrinC. Samba-LouakaA. OswaldE. Escherichia coli cyclomodulin Cif induces G 2 arrest of the host cell cycle without activation of the DNA-damage checkpoint-signalling pathway.Cell. Microbiol.20068121910192110.1111/j.1462‑5822.2006.00757.x 16848790
    [Google Scholar]
  92. FabbriA. TravaglioneS. FiorentiniC. Escherichia coli cytotoxic necrotizing factor 1 (CNF1): toxin biology, in vivo applications and therapeutic potential.Toxins20102228329610.3390/toxins2020282 22069584
    [Google Scholar]
  93. BalskusE.P. Colibactin: understanding an elusive gut bacterial genotoxin.Nat. Prod. Rep.201532111534154010.1039/C5NP00091B 26390983
    [Google Scholar]
  94. RezaeeM.A. NouriR. HasaniA. ShiraziK.M. AlivandM.R. SepehriB. SotoodehS. HemmatiF. Escherichia coli and colorectal cancer: Unfolding the enigmatic relationship.Curr. Pharm. Biotechnol.202223101257126810.2174/1389201022666210910094827 34514986
    [Google Scholar]
  95. JinY. TangS. LiW. NgS.C. ChanM.W.Y. SungJ.J.Y. YuJ. Hemolytic E. coli promotes colonic tumorigenesis in females.Cancer Res.201676102891290010.1158/0008‑5472.CAN‑15‑2083 27013198
    [Google Scholar]
  96. MagdyA. ElhadidyM. Abd EllatifM.E. El NakeebA. AbdallahE. ThabetW. YoussefM. KhafagyW. MorshedM. FaridM. Enteropathogenic Escherichia coli (EPEC): Does it have a role in colorectal tumourigenesis? a prospective cohort study.Int. J. Surg.20151816917310.1016/j.ijsu.2015.04.077 25937151
    [Google Scholar]
  97. LiJ.P. LiF.Y.L. XuA. ChengB. TsaoS.W. FungM.L. LeungW.K. Lipopolysaccharide and hypoxia-induced HIF-1 activation in human gingival fibroblasts.J. Periodontol.201283681682410.1902/jop.2011.110458 22087807
    [Google Scholar]
  98. MimounaS. GonçalvèsD. BarnichN. Darfeuille-MichaudA. HofmanP. Vouret-CraviariV. Crohn disease-associated Escherichia coli promote gastrointestinal inflammatory disorders by activation of HIF-dependent responses.Gut Microbes20112633534610.4161/gmic.18771 22157238
    [Google Scholar]
  99. ZhongH. De MarzoA.M. LaughnerE. LimM. HiltonD.A. ZagzagD. BuechlerP. IsaacsW.B. SemenzaG.L. SimonsJ.W. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases.Cancer Res.1999592258305835 10582706
    [Google Scholar]
  100. WhelanK.A. CaldwellS.A. ShahriariK.S. JacksonS.R. FranchettiL.D. JohannesG.J. ReginatoM.J. Hypoxia suppression of Bim and Bmf blocks anoikis and luminal clearing during mammary morphogenesis.Mol. Biol. Cell201021223829383710.1091/mbc.e10‑04‑0353 20861305
    [Google Scholar]
  101. Hernández-LunaM.A. Lagunes-ServinH.E. Lopez-BrionesS. The role of Escherichia coli in the development and progression of cancer.ARC J. Can. Sci.201631111
    [Google Scholar]
  102. KhanA.A. KhanZ. MalikA. KalamM.A. CashP. AshrafM.T. AlshamsanA. Colorectal cancer-inflammatory bowel disease nexus and felony of Escherichia coli.Life Sci.2017180606710.1016/j.lfs.2017.05.016 28506682
    [Google Scholar]
  103. SchulzE. SchumannM. SchneemannM. DonyV. FrommA. NagelO. SchulzkeJ.D. BückerR. Escherichia coli alpha-hemolysin HlyA induces host cell polarity changes, epithelial barrier dysfunction and cell detachment in human colon carcinoma Caco-2 cell model via PTEN-dependent dysregulation of cell junctions.Toxins202113852010.3390/toxins13080520 34437391
    [Google Scholar]
  104. XingJ. LiaoY. ZhangH. ZhangW. ZhangZ. ZhangJ. WangD. TangD. Impacts of MicroRNAs induced by the gut microbiome on regulating the development of colorectal cancer.Front. Cell. Infect. Microbiol.20221280468910.3389/fcimb.2022.804689 35493741
    [Google Scholar]
  105. O'DonnellK.A. c-Myc-regulated microRNAs modulate E2F1 expression.Nature2005435704383984310.1038/nature03677 15944709
    [Google Scholar]
  106. NougayrèdeJ.P. HomburgS. TaiebF. BouryM. BrzuszkiewiczE. GottschalkG. BuchrieserC. HackerJ. DobrindtU. OswaldE. Escherichia coli induces DNA double-strand breaks in eukaryotic cells.Science2006313578884885110.1126/science.1127059 16902142
    [Google Scholar]
  107. YatesK.E. KorbelG.A. ShtutmanM. RoninsonI.B. DiMaioD. Repression of the SUMO‐specific protease Senp1 induces p53‐dependent premature senescence in normal human fibroblasts.Aging Cell20087560962110.1111/j.1474‑9726.2008.00411.x 18616636
    [Google Scholar]
  108. FasseuM. TrétonX. GuichardC. PedruzziE. Cazals-HatemD. RichardC. AparicioT. DanielF. SouléJ.C. MoreauR. BouhnikY. LaburtheM. GroyerA. Ogier-DenisE. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease.PLoS One2010510e1316010.1371/journal.pone.0013160 20957151
    [Google Scholar]
  109. NguyenH.T.T. DalmassoG. MüllerS. CarrièreJ. SeiboldF. Darfeuille-MichaudA. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy.Gastroenterology2014146250851910.1053/j.gastro.2013.10.021 24148619
    [Google Scholar]
  110. RubinszteinD.C. CodognoP. LevineB. Autophagy modulation as a potential therapeutic target for diverse diseases.Nat. Rev. Drug Discov.201211970973010.1038/nrd3802 22935804
    [Google Scholar]
  111. SnezhkinaA.V. KrasnovG.S. LipatovaA.V. SadritdinovaA.F. KardymonO.L. FedorovaM.S. MelnikovaN.V. StepanovO.A. ZaretskyA.R. KaprinA.D. AlekseevB.Y. DmitrievA.A. KudryavtsevaA.V. The dysregulation of polyamine metabolism in colorectal cancer is associated with overexpression of c‐Myc and C/EBP β rather than enterotoxigenic Bacteroides fragilis infection.Oxid. Med. Cell. Longev.201620161235356010.1155/2016/2353560 27433286
    [Google Scholar]
  112. HullarM.A.J. CurtisK.R. HarrisonT.A. LinY. SteinfelderR.S. BerndtS.I. BuchananD.D. ChanA.T. DrewD. FigueiredoJ.C. FrenchA.J. GoodeE.L. JenkinsM.A. MelakuY.A. MorenoV. OginoS. ThibideauS.N. PhippsA.I. PetersU. Abstract PR008: Evaluation of intra-tumoral pathogenic bacteria pks+E. coli, enterotoxigenic B. fragilis and fusobacterium nucleatum in 3695 colorectal cancer cases.Cancer Res.20228223Suppl. 1PR008PR00810.1158/1538‑7445.CRC22‑PR008
    [Google Scholar]
  113. SabahiS. Homayouni RadA. Aghebati-MalekiL. SangtarashN. OzmaM.A. KarimiA. HosseiniH. AbbasiA. Postbiotics as the new frontier in food and pharmaceutical research.Crit. Rev. Food Sci. Nutr.202363268375840210.1080/10408398.2022.2056727 35348016
    [Google Scholar]
  114. BoleijA. HechenbleiknerE.M. GoodwinA.C. BadaniR. SteinE.M. LazarevM.G. EllisB. CarrollK.C. AlbesianoE. WickE.C. PlatzE.A. PardollD.M. SearsC.L. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients.Clin. Infect. Dis.201560220821510.1093/cid/ciu787 25305284
    [Google Scholar]
  115. SearsC.L. GeisA.L. HousseauF. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis.J. Clin. Invest.2014124104166417210.1172/JCI72334 25105360
    [Google Scholar]
  116. LvY. YeT. WangH.P. ZhaoJ.Y. ChenW.J. WangX. ShenC.X. WuY.B. CaiY.K. Suppression of colorectal tumorigenesis by recombinant Bacteroides fragilis enterotoxin-2 in vivo.World J. Gastroenterol.201723460361310.3748/wjg.v23.i4.603 28216966
    [Google Scholar]
  117. PierceJ.V. BernsteinH.D. Genomic diversity of enterotoxigenic strains of Bacteroides fragilis.PLoS One2016116e015817110.1371/journal.pone.0158171 27348220
    [Google Scholar]
  118. KamberA. Bulut AlbayrakC. HarsaH.S. Studies on the probiotic, adhesion, and induction properties of artisanal lactic acid bacteria: to customize a gastrointestinal niche to trigger anti-obesity functions.Probiotics Antimicrob. Proteins2024112310.1007/s12602‑024‑10357‑6 39382740
    [Google Scholar]
  119. OzmaM.A. AbbasiA. AkramiS. LahoutyM. ShahbaziN. GanbarovK. PaglianoP. SabahiS. KöseŞ. YousefiM. DaoS. AsgharzadehM. HosseiniH. KafilH.S. Postbiotics as the key mediators of the gut microbiota-host interactions.Infez. Med.2022302180193 35693065
    [Google Scholar]
  120. YuH. PardollD. JoveR. STATs in cancer inflammation and immunity: a leading role for STAT3.Nat. Rev. Cancer200991179880910.1038/nrc2734 19851315
    [Google Scholar]
  121. WangZ. ZhuM. LuoC. zhenY. MuJ. ZhangW. OuyangQ. ZhangH. High level of IgG4 as a biomarker for a new subset of inflammatory bowel disease.Sci. Rep.2018811001810.1038/s41598‑018‑28397‑8 29968792
    [Google Scholar]
  122. RébéC. VégranF. BergerH. GhiringhelliF. STAT3 activation.JAK-STAT201321e2301010.4161/jkst.23010 24058791
    [Google Scholar]
  123. BystromJ. TaherT.E. MuhyaddinM.S. ClanchyF.I. MangatP. JawadA.S. WilliamsR.O. MageedR.A. Harnessing the therapeutic potential of Th17 cells.Mediators Inflamm.20152015120515610.1155/2015/205156 26101460
    [Google Scholar]
  124. MorikawaT. BabaY. YamauchiM. KuchibaA. NoshoK. ShimaK. TanakaN. HuttenhowerC. FrankD.A. FuchsC.S. OginoS. STAT3 expression, molecular features, inflammation patterns, and prognosis in a database of 724 colorectal cancers.Clin. Cancer Res.20111761452146210.1158/1078‑0432.CCR‑10‑2694 21310826
    [Google Scholar]
  125. WickE.C. RabizadehS. AlbesianoE. WuX. WuS. ChanJ. RheeK.J. OrtegaG. HusoD.L. PardollD. HousseauF. SearsC.L. Stat3 activation in murine colitis induced by enterotoxigenic Bacteroides fragilis.Inflamm. Bowel Dis.201420582183410.1097/MIB.0000000000000019 24704822
    [Google Scholar]
  126. WuS. RheeK.J. AlbesianoE. RabizadehS. WuX. YenH.R. HusoD.L. BrancatiF.L. WickE. McAllisterF. HousseauF. PardollD.M. SearsC.L. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses.Nat. Med.20091591016102210.1038/nm.2015 19701202
    [Google Scholar]
  127. WangL. YiT. ZhangW. PardollD.M. YuH. IL-17 enhances tumor development in carcinogen-induced skin cancer.Cancer Res.20107024101121012010.1158/0008‑5472.CAN‑10‑0775 21159633
    [Google Scholar]
  128. CasterlineB.W. HechtA.L. ChoiV.M. Bubeck WardenburgJ. The Bacteroides fragilis pathogenicity island links virulence and strain competition.Gut Microbes20178437438310.1080/19490976.2017.1290758 28632016
    [Google Scholar]
  129. SuY.L. BanerjeeS. WhiteS.V. KortylewskiM. STAT3 in tumor-associated myeloid cells: multitasking to disrupt immunity.Int. J. Mol. Sci.2018196180310.3390/ijms19061803 29921770
    [Google Scholar]
  130. WickE.C. LeBlancR.E. OrtegaG. RobinsonC. PlatzE. PardollD.M. Iacobuzio-DonahueC. SearsC.L. Shift from pStat6 to pStat3 predominance is associated with inflammatory bowel disease-associated dysplasia.Inflamm. Bowel Dis.20121871267127410.1002/ibd.21908 22021169
    [Google Scholar]
  131. LaurenceA. TatoC.M. DavidsonT.S. KannoY. ChenZ. YaoZ. BlankR.B. MeylanF. SiegelR. HennighausenL. ShevachE.M. O’SheaJ.J. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation.Immunity200726337138110.1016/j.immuni.2007.02.009 17363300
    [Google Scholar]
  132. ChenY. HainesC.J. GutcherI. HochwellerK. BlumenscheinW.M. McClanahanT. HämmerlingG. LiM.O. CuaD.J. McGeachyM.J. Foxp3(+) regulatory T cells promote T helper 17 cell development in vivo through regulation of interleukin-2.Immunity201134340942110.1016/j.immuni.2011.02.011 21435588
    [Google Scholar]
  133. GeisA.L. FanH. WuX. WuS. HusoD.L. WolfeJ.L. SearsC.L. PardollD.M. HousseauF. Regulatory T-cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis.Cancer Discov.20155101098110910.1158/2159‑8290.CD‑15‑0447 26201900
    [Google Scholar]
  134. PandiyanP. ContiH.R. ZhengL. PetersonA.C. MathernD.R. Hernández-SantosN. EdgertonM. GaffenS.L. LenardoM.J. CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model.Immunity201134342243410.1016/j.immuni.2011.03.002 21435589
    [Google Scholar]
  135. ZakharzhevskayaN.B. VanyushkinaA.A. AltukhovI.A. ShavardaA.L. ButenkoI.O. RakitinaD.V. NikitinaA.S. ManolovA.I. EgorovaA.N. KulikovE.E. VishnyakovI.E. FisunovG.Y. GovorunV.M. Outer membrane vesicles secreted by pathogenic and nonpathogenic Bacteroides fragilis represent different metabolic activities.Sci. Rep.201771500810.1038/s41598‑017‑05264‑6 28694488
    [Google Scholar]
  136. TelesfordK.M. YanW. Ochoa-ReparazJ. PantA. KircherC. ChristyM.A. Begum-HaqueS. KasperD.L. KasperL.H. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39 + Foxp3 + T cells and T reg function.Gut Microbes20156423424210.1080/19490976.2015.1056973 26230152
    [Google Scholar]
  137. JiangF. MengD. WengM. ZhuW. WuW. KasperD. WalkerW.A. The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1β-induced inflammation in human fetal enterocytes via toll receptors 2 and 4.PLoS One2017123e017273810.1371/journal.pone.0172738 28278201
    [Google Scholar]
  138. GeisA.L. HousseauF. Procarcinogenic regulatory T cells in microbial-induced colon cancer.OncoImmunology201654e111860110.1080/2162402X.2015.1118601 27141400
    [Google Scholar]
  139. BrockmannL. GiannouA. GaglianiN. HuberS. Regulation of TH17 cells and associated cytokines in wound healing, tissue regeneration, and carcinogenesis.Int. J. Mol. Sci.2017185103310.3390/ijms18051033 28492497
    [Google Scholar]
  140. BaileyS.R. NelsonM.H. HimesR.A. LiZ. MehrotraS. PaulosC.M. Th17 cells in cancer: the ultimate identity crisis.Front. Immunol.2014527610.3389/fimmu.2014.00276 24987392
    [Google Scholar]
  141. YangB. KangH. FungA. ZhaoH. WangT. MaD. The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis.Mediators Inflamm.20142014111210.1155/2014/623759 25110397
    [Google Scholar]
  142. LlosaN.J. GeisA.L. Thiele OrbergE. HousseauF. Interleukin-17 and type 17 helper T cells in cancer management and research.ImmunoTargets Ther.20143395410.2147/ITT.S56529 27471699
    [Google Scholar]
  143. NumasakiM. FukushiJ. OnoM. NarulaS.K. ZavodnyP.J. KudoT. RobbinsP.D. TaharaH. LotzeM.T. Interleukin-17 promotes angiogenesis and tumor growth.Blood200310172620262710.1182/blood‑2002‑05‑1461 12411307
    [Google Scholar]
  144. WangL. YiT. KortylewskiM. PardollD.M. ZengD. YuH. IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway.J. Exp. Med.200920671457146410.1084/jem.20090207 19564351
    [Google Scholar]
  145. ColemanO.I. NunesT. Role of the microbiota in colorectal cancer: updates on microbial associations and therapeutic implications.Biores. Open Access20165127928810.1089/biores.2016.0028 27790385
    [Google Scholar]
  146. Thiele OrbergE. FanH. TamA.J. DejeaC.M. Destefano ShieldsC.E. WuS. ChungL. FinardB.B. WuX. FathiP. GangulyS. FuJ. PardollD.M. SearsC.L. HousseauF. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis.Mucosal Immunol.201710242143310.1038/mi.2016.53 27301879
    [Google Scholar]
  147. HabermannW. ZimmermannK. SkarabisH. KunzeR. RuschV. [The effect of a bacterial immunostimulant (human Enterococcus faecalis bacteria) on the occurrence of relapse in patients with].Arzneimittelforschung20015111931937 11765597
    [Google Scholar]
  148. GongJ. BaiT. ZhangL. QianW. SongJ. HouX. Inhibition effect of Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis and their related products on human colonic smooth muscle in vitro.PLoS One20171212e018925710.1371/journal.pone.0189257 29216305
    [Google Scholar]
  149. OzmaM.A. MoaddabS.R. HosseiniH. KhodadadiE. GhotaslouR. AsgharzadehM. AbbasiA. KamounahF.S. Aghebati MalekiL. GanbarovK. Samadi KafilH. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics.Crit. Rev. Food Sci. Nutr.2024642696379655 37203933
    [Google Scholar]
  150. HuyckeM.M. AbramsV. MooreD.R. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA.Carcinogenesis200223352953610.1093/carcin/23.3.529 11895869
    [Google Scholar]
  151. DadashiM. SahebiA. Arjmand-TeymouriR. MirzaiiM. MousavianM. YaslianifardS. Evaluation of Enterococcus faecalis, Lactobacillus acidophilus, and Lactobacillus plantarum in biopsy samples of colorectal cancer and polyp patients compared to healthy people.Arch. Clin. Infect. Dis.202217110.5812/archcid‑116165
    [Google Scholar]
  152. FearonE.R. Molecular genetics of colorectal cancer.Annu. Rev. Pathol.20116147950710.1146/annurev‑pathol‑011110‑130235 21090969
    [Google Scholar]
  153. SteckN. HoffmannM. SavaI.G. KimS.C. HahneH. TonkonogyS.L. MairK. KruegerD. PruteanuM. ShanahanF. VogelmannR. SchemannM. KusterB. SartorR.B. HallerD. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation.Gastroenterology2011141395997110.1053/j.gastro.2011.05.035 21699778
    [Google Scholar]
  154. ShoganB.D. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak.Sci. Transl. Med.20157286286ra6810.1126/scitranslmed.3010658
    [Google Scholar]
  155. HaoL. ZhangC. QiuY. WangL. LuoY. JinM. ZhangY. GuoT.B. MatsushimaK. ZhangY. Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer.Cancer Lett.20072531344210.1016/j.canlet.2007.01.005 17306924
    [Google Scholar]
  156. OzmaM.A. KhodadadiE. RezaeeM.A. KamounahF.S. AsgharzadehM. GanbarovK. AghazadehM. YousefiM. PirzadehT. KafilH.S. Induction of proteome changes involved in biofilm formation of Enterococcus faecalis in response to gentamicin.Microb. Pathog.202115710500310.1016/j.micpath.2021.105003 34087388
    [Google Scholar]
  157. PrakashS. RodesL. Coussa-CharleyM. Tomaro-DuchesneauC. Tomaro-DuchesneauC. Coussa-Charley Rodes, Gut microbiota: next frontier in understanding human health and development of biotherapeutics.Biologics20115718610.2147/BTT.S19099 21847343
    [Google Scholar]
  158. ZhouY. HeH. XuH. LiY. LiZ. DuY. HeJ. ZhouY. WangH. NieY. Association of oncogenic bacteria with colorectal cancer in South China.Oncotarget2016749807948080210.18632/oncotarget.13094 27821805
    [Google Scholar]
  159. PerilloF. AmorosoC. StratiF. GiuffrèM.R. Díaz-BasabeA. LattanziG. FacciottiF. Gut microbiota manipulation as a tool for colorectal cancer management: recent advances in its use for therapeutic purposes.Int. J. Mol. Sci.20202115538910.3390/ijms21155389 32751239
    [Google Scholar]
  160. SchlegelL. GrimontF. AgeronE. GrimontP.A.D. BouvetA. Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov.Int. J. Syst. Evol. Microbiol.200353363164510.1099/ijs.0.02361‑0 12807180
    [Google Scholar]
  161. SchlegelL. GrimontF. GrimontP.A.D. BouvetA. Identification of major Streptococcal species by rrn-amplified ribosomal DNA restriction analysis.J. Clin. Microbiol.200341265766610.1128/JCM.41.2.657‑666.2003 12574263
    [Google Scholar]
  162. BoleijA. TjalsmaH. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer.Biol. Rev. Camb. Philos. Soc.201287370173010.1111/j.1469‑185X.2012.00218.x 22296522
    [Google Scholar]
  163. SearsC.L. GarrettW.S. Microbes, microbiota, and colon cancer.Cell Host Microbe201415331732810.1016/j.chom.2014.02.007 24629338
    [Google Scholar]
  164. TjalsmaH. BoleijA. MarchesiJ.R. DutilhB.E. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects.Nat. Rev. Microbiol.201210857558210.1038/nrmicro2819 22728587
    [Google Scholar]
  165. KamaliN. Talebi Bezmin AbadiA. AbadiB. RahimiF. ForootanM. Identification of Streptococcus gallolyticus in tumor samples of Iranian patients diagnosed with colorectal cancer.BMC Res. Notes202215131610.1186/s13104‑022‑06207‑9 36199123
    [Google Scholar]
  166. XuY. KumarR. TaylorJ. XuJ. Abstract 5141: Streptococcus gallolyticus in colorectal cancer development.Cancer Res.20187813_Supplement)(Suppl.5141514110.1158/1538‑7445.AM2018‑5141
    [Google Scholar]
  167. KumarR. HeroldJ.L. SchadyD. DavisJ. KopetzS. Martinez-MoczygembaM. MurrayB.E. HanF. LiY. CallawayE. ChapkinR.S. DashwoodW.M. DashwoodR.H. BerryT. MackenzieC. XuY. Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development.PLoS Pathog.2017137e100644010.1371/journal.ppat.1006440 28704539
    [Google Scholar]
  168. AbdulamirA.S. HafidhR.R. BakarF. Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8.Mol. Cancer20109124910.1186/1476‑4598‑9‑249 20846456
    [Google Scholar]
  169. AlfaroukK.O. BashirA.H.H. AljarbouA.N. RamadanA.M. MuddathirA.K. AlHoufieS.T.S. HifnyA. ElhassanG.O. IbrahimM.E. AlqahtaniS.S. AlSharariS.D. SupuranC.T. RauchC. CardoneR.A. ReshkinS.J. FaisS. HarguindeyS. The possible role of Helicobacter pylori in gastric cancer and its management.Front. Oncol.201997510.3389/fonc.2019.00075 30854333
    [Google Scholar]
  170. HooiJ.K.Y. LaiW.Y. NgW.K. SuenM.M.Y. UnderwoodF.E. TanyingohD. MalfertheinerP. GrahamD.Y. WongV.W.S. WuJ.C.Y. ChanF.K.L. SungJ.J.Y. KaplanG.G. NgS.C. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis.Gastroenterology2017153242042910.1053/j.gastro.2017.04.022 28456631
    [Google Scholar]
  171. CorreaP. HoughtonJ. Carcinogenesis of Helicobacter pylori.Gastroenterology2007133265967210.1053/j.gastro.2007.06.026 17681184
    [Google Scholar]
  172. IarcL. Schistosomes, liver flukes and Helicobacter pylori.IARC Monogr. Eval. Carcinog. Risks Hum.1994611241 7715068
    [Google Scholar]
  173. FranceschiF. GasbarriniA. PolyzosS.A. KountourasJ. Extragastric diseases and Helicobacter pylori.Helicobacter201520S1Suppl. 1404610.1111/hel.12256 26372824
    [Google Scholar]
  174. VeneritoM. VasapolliR. RokkasT. DelchierJ.C. MalfertheinerP. Helicobacter pylori, gastric cancer and other gastrointestinal malignancies.Helicobacter201722S1e1241310.1111/hel.12413 28891127
    [Google Scholar]
  175. GrahnN. Hmani-AifaM. FransénK. SöderkvistP. MonsteinH.J. Molecular identification of Helicobacter DNA present in human colorectal adenocarcinomas by 16S rDNA PCR amplification and pyrosequencing analysis.J. Med. Microbiol.200554111031103510.1099/jmm.0.46122‑0 16192433
    [Google Scholar]
  176. SoyluA. OzkaraS. AlısH. DolayK. KalaycıM. YasarN. KumbasarA.B. Immunohistochemical testing for Helicobacter Pyloriexistence in neoplasms of the colon.BMC Gastroenterol.2008813510.1186/1471‑230X‑8‑35 18702825
    [Google Scholar]
  177. ButtJ. EppleinM. Helicobacter pylori and colorectal cancer—A bacterium going abroad?PLoS Pathog.2019158e100786110.1371/journal.ppat.1007861 31393968
    [Google Scholar]
  178. JacksonL. BrittonJ. LewisS.A. McKeeverT.M. AthertonJ. FullertonD. FogartyA.W. A population-based epidemiologic study of Helicobacter pylori infection and its association with systemic inflammation.Helicobacter200914546046510.1111/j.1523‑5378.2009.00711.x 19751435
    [Google Scholar]
  179. SiregarG. HalimS. SitepuR. Serum IL-10, MMP-7, MMP-9 levels in Helicobacter pylori infection and correlation with degree of gastritis.Open Access Maced. J. Med. Sci.20164335936310.3889/oamjms.2016.099 27703556
    [Google Scholar]
  180. BrennerH. KloorM. PoxC.P. Colorectal cancer.Lancet201438399271490150210.1016/S0140‑6736(13)61649‑9 24225001
    [Google Scholar]
  181. GaoJ.J. ZhangY. GerhardM. Mejias-LuqueR. ZhangL. ViethM. MaJ.L. BajboujM. SuchanekS. LiuW.D. UlmK. QuanteM. LiZ.X. ZhouT. SchmidR. ClassenM. LiW.Q. YouW.C. PanK.F. Association between gut microbiota and Helicobacter pylori-related gastric lesions in a high-risk population of gastric cancer.Front. Cell. Infect. Microbiol.2018820210.3389/fcimb.2018.00202 29971220
    [Google Scholar]
  182. TongtaweeT. SimawaranonT. WattanawongdonW. Role of screening colonoscopy for colorectal tumors in Helicobacter pylori-related chronic gastritis with MDM2 SNP309 G/G homozygous: A prospective cross-sectional study in Thailand.Turk. J. Gastroenterol.201829555556010.5152/tjg.2018.17608 30260777
    [Google Scholar]
  183. TongtaweeT. KaewpitoonS. KaewpitoonN. DechsukhumC. LeeanansaksiriW. LoydR.A. MatrakoolL. PanpimanmasS. Helicobacter pylori associated gastritis increases risk of colorectal polyps: a hospital based-cross-sectional study in Nakhon Ratchasima Province, Northeastern Thailand.Asian Pac. J. Cancer Prev.201617134134510.7314/APJCP.2016.17.1.341 26838234
    [Google Scholar]
  184. BaeR.C. JeonS.W. ChoH.J. JungM.K. KweonY.O. KimS.K. Gastric dysplasia may be an independent risk factor of anadvanced colorectal neoplasm.World J. Gastroenterol.200915455722572610.3748/wjg.15.5722 19960571
    [Google Scholar]
  185. QingY. WangM. LinY.M. WuD. ZhuJ.Y. GaoL. LiuY.Y. YinT.F. Correlation between Helicobacter pylori -associated gastric diseases and colorectal neoplasia.World J. Gastroenterol.201622184576458410.3748/wjg.v22.i18.4576 27182167
    [Google Scholar]
  186. GeorgopoulosS.D. PolymerosD. TriantafyllouK. SpiliadiC. MentisA. KaramanolisD.G. LadasS.D. Hypergastrinemia is associated with increased risk of distal colon adenomas.Digestion2006741424610.1159/000096593 17068397
    [Google Scholar]
  187. FiremanZ. TrostL. KopelmanY. SegalA. SternbergA. Helicobacter pylori: seroprevalence and colorectal cancer.Isr. Med. Assoc. J.20002169 10892362
    [Google Scholar]
  188. HartwichA. KonturekS.J. PierzchalskiP. ZuchowiczM. LabzaH. KonturekP.C. KarczewskaE. BielanskiW. MarliczK. StarzynskaT. LawniczakM. HahnE.G. Helicobacter pylori infection, gastrin, cyclooxygenase-2, and apoptosis in colorectal cancer.Int. J. Colorectal Dis.200116420221010.1007/s003840100288 11515678
    [Google Scholar]
  189. D’OnghiaV. LeonciniR. CarliR. SantoroA. GiglioniS. SorbelliniF. MarzoccaG. BerniniA. CampagnaS. MarinelloE. VannoniD. Circulating gastrin and ghrelin levels in patients with colorectal cancer: Correlation with tumour stage, Helicobacter pylori infection and BMI.Biomed. Pharmacother.2007612-313714110.1016/j.biopha.2006.08.007 17258885
    [Google Scholar]
  190. Machida-MontaniA. SasazukiS. InoueM. NatsukawaS. ShauraK. KoizumiY. KasugaY. HanaokaT. TsuganeS. Atrophic gastritis, Helicobacter pylori, and colorectal cancer risk: a case-control study.Helicobacter200712432833210.1111/j.1523‑5378.2007.00513.x 17669106
    [Google Scholar]
  191. StrofilasA. LagoudianakisE.E. SeretisC. PappasA. KoronakisN. KeramidarisD. KoukoutsisI. ChrysikosI. ManourasI. ManourasA. Association of helicobacter pylori infection and colon cancer.J. Clin. Med. Res.20124317217610.4021/jocmr880w 22719803
    [Google Scholar]
  192. LinY.L. ChiangJ.K. LinS.M. TsengC.E. Helicobacter pylori infection concomitant with metabolic syndrome further increase risk of colorectal adenomas.World J. Gastroenterol.201016303841384610.3748/wjg.v16.i30.3841 20698048
    [Google Scholar]
  193. HuK.C. WuM.S. ChuC.H. WangH.Y. LinS.C. LiuS.C. LiuC.C. SuT.H. ChenC.L. LiuC.J. ShihS.C. Synergistic effect of hyperglycemia and Helicobacter pylori infection status on colorectal adenoma risk.J. Clin. Endocrinol. Metab.201710282744275010.1210/jc.2017‑00257 28475740
    [Google Scholar]
  194. Spanòٍ, S. Mechanisms of Salmonella typhi host restriction.Adv. Exp. Med. Biol.201691528329410.1007/978‑3‑319‑32189‑9_17
    [Google Scholar]
  195. SunJ. Impact of bacterial infection and intestinal microbiome on colorectal cancer development.Chin. Med. J.2022135440040810.1097/CM9.0000000000001979 35089888
    [Google Scholar]
  196. Mughini-GrasL. SchaapveldM. KramersJ. MooijS. Neefjes-BorstE.A. PeltW. NeefjesJ. Increased colon cancer risk after severe Salmonella infection.PLoS One2018131e018972110.1371/journal.pone.0189721 29342165
    [Google Scholar]
  197. KoshiolJ. WozniakA. CookP. AdanielC. AcevedoJ. AzócarL. HsingA.W. RoaJ.C. PasettiM.F. MiquelJ.F. LevineM.M. FerreccioC. Salmonella enterica serovar Typhi and gallbladder cancer: a case–control study and meta‐analysis.Cancer Med.20165113310323510.1002/cam4.915 27726295
    [Google Scholar]
  198. LaRockD.L. ChaudharyA. MillerS.I. Salmonellae interactions with host processes.Nat. Rev. Microbiol.201513419120510.1038/nrmicro3420 25749450
    [Google Scholar]
  199. KuperH. AdamiH.O. TrichopoulosD. Infections as a major preventable cause of human cancer.J. Intern. Med.2001249S741617410.1046/j.1365‑2796.2001.00742.x 10971784
    [Google Scholar]
  200. YeZ. PetrofE.O. BooneD. ClaudE.C. SunJ. Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination.Am. J. Pathol.2007171388289210.2353/ajpath.2007.070220 17690189
    [Google Scholar]
  201. LuR. BoslandM. XiaY. ZhangY. KatoI. SunJ. Presence of Salmonella AvrA in colorectal tumor and its precursor lesions in mouse intestine and human specimens.Oncotarget2017833551045511510.18632/oncotarget.19052 28903406
    [Google Scholar]
  202. LuR. WuS. LiuX. XiaY. ZhangY. SunJ. Chronic effects of a Salmonella type III secretion effector protein AvrA in vivo.PLoS One201055e1050510.1371/journal.pone.0010505 20463922
    [Google Scholar]
  203. LuR. LiuX. WuS. XiaY. ZhangY. PetrofE.O. ClaudE.C. SunJ. Consistent activation of the β-catenin pathway by Salmonella type-three secretion effector protein AvrA in chronically infected intestine.Am. J. Physiol. Gastrointest. Liver Physiol.201230310G1113G112510.1152/ajpgi.00453.2011 22982337
    [Google Scholar]
  204. LiuX. LuR. XiaY. WuS. SunJ. Eukaryotic signaling pathways targeted by Salmonella effector protein AvrA in intestinal infection in vivo.BMC Microbiol.201010132610.1186/1471‑2180‑10‑326 21182782
    [Google Scholar]
  205. LiuX. LuR. WuS. SunJ. Salmonella regulation of intestinal stem cells through the Wnt/β‐catenin pathway.FEBS Lett.2010584591191610.1016/j.febslet.2010.01.024 20083111
    [Google Scholar]
  206. LuR. WuS. ZhangY. XiaY. LiuX. ZhengY. ChenH. SchaeferK.L. ZhouZ. BissonnetteM. LiL. SunJ. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway.Oncogenesis201436e105e10510.1038/oncsis.2014.20 24911876
    [Google Scholar]
  207. LuR. WuS. ZhangY. XiaY. ZhouZ. KatoI. DongH. BissonnetteM. SunJ. Salmonella protein AvrA activates the STAT3 signaling pathway in colon cancer.Neoplasia201618530731610.1016/j.neo.2016.04.001 27237322
    [Google Scholar]
  208. LuR. ZhangY. SunJ. STAT3 activation in infection and infection-associated cancer.Mol. Cell. Endocrinol.2017451808710.1016/j.mce.2017.02.023 28223148
    [Google Scholar]
  209. WuS. YeZ. LiuX. ZhaoY. XiaY. SteinerA. PetrofE.O. ClaudE.C. SunJ. Salmonella typhimurium infection increases p53 acetylation in intestinal epithelial cells.Am. J. Physiol. Gastrointest. Liver Physiol.20102985G784G79410.1152/ajpgi.00526.2009 20224008
    [Google Scholar]
  210. YamaguchiH. WoodsN.T. PilusoL.G. LeeH.H. ChenJ. BhallaK.N. MonteiroA. LiuX. HungM.C. WangH.G. p53 acetylation is crucial for its transcription-independent proapoptotic functions.J. Biol. Chem.200928417111711118310.1074/jbc.M809268200 19265193
    [Google Scholar]
  211. YoungK.T. DavisL.M. DiRitaV.J. Campylobacter jejuni: molecular biology and pathogenesis.Nat. Rev. Microbiol.20075966567910.1038/nrmicro1718 17703225
    [Google Scholar]
  212. GillespieI.A. O’BrienS.J. FrostJ.A. TamC. TompkinsD. NealK.R. SyedQ. FarthingM.J.G. Investigating vomiting and/or bloody diarrhoea in Campylobacter jejuni infection.J. Med. Microbiol.200655674174610.1099/jmm.0.46422‑0 16687593
    [Google Scholar]
  213. PetersS. PascoeB. WuZ. BaylissS.C. ZengX. EdwinsonA. Veerabadhran-GurunathanS. JawahirS. CallandJ.K. MourkasE. PatelR. WiensT. DecuirM. BoxrudD. SmithK. ParkerC.T. FarrugiaG. ZhangQ. SheppardS.K. GroverM. Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans.Commun. Biol.202141101510.1038/s42003‑021‑02554‑8 34462533
    [Google Scholar]
  214. RenL. YeJ. ZhaoB. SunJ. CaoP. YangY. The role of intestinal microbiota in colorectal cancer.Front. Pharmacol.20211267480710.3389/fphar.2021.674807 33959032
    [Google Scholar]
  215. LegariaM.C. NastroM. CamporroJ. HegerF. BarberisC. StecherD. RodriguezC.H. VayC.A. Peptostreptococcus anaerobius: Pathogenicity, identification, and antimicrobial susceptibility. Review of monobacterial infections and addition of a case of urinary tract infection directly identified from a urine sample by MALDI-TOF MS.Anaerobe20217210246110.1016/j.anaerobe.2021.102461 34626800
    [Google Scholar]
  216. GuJ. LvX. LiW. LiG. HeX. ZhangY. ShiL. ZhangX. Deciphering the mechanism of Peptostreptococcus anaerobius-induced chemoresistance in colorectal cancer: the important roles of MDSC recruitment and EMT activation.Front. Immunol.202314123068110.3389/fimmu.2023.1230681 37781363
    [Google Scholar]
  217. KarpińskiT.M. OżarowskiM. StasiewiczM. Carcinogenic microbiota and its role in colorectal cancer development.Seminars in cancer biology202286Pt 3420430Elsevier10.1016/j.semcancer.2022.01.00435090978
    [Google Scholar]
  218. LongX. WongC.C. TongL. ChuE.S.H. Ho SzetoC. GoM.Y.Y. CokerO.O. ChanA.W.H. ChanF.K.L. SungJ.J.Y. YuJ. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity.Nat. Microbiol.20194122319233010.1038/s41564‑019‑0541‑3 31501538
    [Google Scholar]
  219. TsoiH. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in Mice.Gastroenterology201715261419143310.1053/j.gastro.2017.01.009 28126350
    [Google Scholar]
  220. WangN. FangJ.Y. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer.Trends Microbiol.202331215917210.1016/j.tim.2022.08.010 36058786
    [Google Scholar]
  221. DeepakV. RamachandranS. BalahmarR.M. PandianS.R.K. SivasubramaniamS.D. NellaiahH. SundarK. In vitro evaluation of anticancer properties of exopolysaccharides from Lactobacillus acidophilus in colon cancer cell lines.In Vitro Cell. Dev. Biol. Anim.201652216317310.1007/s11626‑015‑9970‑3 26659393
    [Google Scholar]
  222. de SouzaJ.B. de Almeida CamposL.A. PalácioS.B. Brelaz-de-CastroM.C.A. CavalcantiI.M.F. Prevalence and implications of pKs-positive Escherichia coli in colorectal cancer.Life Sci.202434112246210.1016/j.lfs.2024.122462 38281542
    [Google Scholar]
  223. ParisaA. RoyaG. MahdiR. ShabnamR. MaryamE. MaliheT. Anti-cancer effects of Bifidobacterium species in colon cancer cells and a mouse model of carcinogenesis.PLoS One2020155e023293010.1371/journal.pone.0232930 32401801
    [Google Scholar]
  224. DikeochaI.J. Al-KabsiA.M. ChiuH.T. AlshawshM.A. Faecalibacterium prausnitzii ameliorates colorectal tumorigenesis and suppresses proliferation of HCT116 colorectal cancer cells.Biomedicines2022105112810.3390/biomedicines10051128 35625865
    [Google Scholar]
  225. FanL. XuC. GeQ. LinY. WongC.C. QiY. YeB. LianQ. ZhuoW. SiJ. ChenS. WangL. A. muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-mediated M1-like TAMs.Cancer Immunol. Res.20219101111112410.1158/2326‑6066.CIR‑20‑1019 34389559
    [Google Scholar]
  226. AlizadehS. EsmaeiliA. OmidiY. Anti-cancer properties of Escherichia coli Nissle 1917 against HT-29 colon cancer cells through regulation of Bax/Bcl-xL and AKT/PTEN signaling pathways.Iran. J. Basic Med. Sci.2020237886893 32774810
    [Google Scholar]
  227. SpigagliaP. BarbantiF. GerminarioE.A.P. CriscuoloE.M. BrunoG. Sanchez-MeteL. PorowskaB. StiglianoV. AccarpioF. OddiA. ZingaleI. RossiS. De AngelisR. FabbriA. Comparison of microbiological profile of enterotoxigenic Bacteroides fragilis (ETBF) isolates from subjects with colorectal cancer (CRC) or intestinal pre-cancerous lesions versus healthy individuals and evaluation of environmental factors involved in intestinal dysbiosis.Anaerobe20238210275710.1016/j.anaerobe.2023.102757 37380012
    [Google Scholar]
  228. LiQ. Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase.Gastroenterology202116041179119310.1053/j.gastro.2020.09.003 32920015
    [Google Scholar]
  229. DikeochaI.J. Al-KabsiA.M. AhmedaA.F. MathaiM. AlshawshM.A. Investigation into the Potential Role of Propionibacterium freudenreichii in Prevention of Colorectal Cancer and Its Effects on the Diversity of Gut Microbiota in Rats.Int. J. Mol. Sci.2023249808010.3390/ijms24098080 37175785
    [Google Scholar]
  230. KangX. LiuC. DingY. NiY. JiF. LauH.C.H. JiangL. SungJ.J.Y. WongS.H. YuJ. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8 + T cells.Gut202372112112212210.1136/gutjnl‑2023‑330291 37491158
    [Google Scholar]
  231. Tunsjøّ, H.S.; Gundersen, G.; Rangnes, F.; Noone, J.C.; Endres, A.; Bemanian, V. Detection of Fusobacterium nucleatum in stool and colonic tissues from Norwegian colorectal cancer patients.Eur. J. Clin. Microbiol. Infect. Dis.20193871367137610.1007/s10096‑019‑03562‑7 31025134
    [Google Scholar]
  232. IyadoraiT. MariappanV. VellasamyK.M. WanyiriJ.W. RoslaniA.C. LeeG.K. SearsC. VadiveluJ. Prevalence and association of pks+Escherichia coli with colorectal cancer in patients at the University Malaya Medical Centre, Malaysia.PLoS One2020151e022821710.1371/journal.pone.0228217 31990962
    [Google Scholar]
  233. OlieroM. HajjarR. CuisiniereT. FragosoG. CalvéA. DagbertF. LoungnarathR. SebajangH. SchwenterF. WassefR. RatelleR. De BrouxÉ. RichardC.S. SantosM.M. Prevalence of pks + bacteria and enterotoxigenic Bacteroides fragilis in patients with colorectal cancer.Gut Pathog.20221415110.1186/s13099‑022‑00523‑y 36578036
    [Google Scholar]
  234. SheikhA.F. Masjedi ZadehA.R. SakiM. KhaniP. HashemiS.J. Shahin ZadehS. DastoorpoorM. Detection of Streptococcus gallolyticus in colorectal cancer and inflammatory bowel disease patients compared to control group in southwest of Iran.Mol. Biol. Rep.202047118361836510.1007/s11033‑020‑05807‑7 33128683
    [Google Scholar]
  235. HeZ. GharaibehR.Z. NewsomeR.C. PopeJ.L. DoughertyM.W. TomkovichS. PonsB. MireyG. VignardJ. HendrixsonD.R. JobinC. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin.Gut201968228930010.1136/gutjnl‑2018‑317200 30377189
    [Google Scholar]
  236. HaghiF. GoliE. MirzaeiB. ZeighamiH. The association between fecal enterotoxigenic B. fragilis with colorectal cancer.BMC Cancer201919187910.1186/s12885‑019‑6115‑1 31488085
    [Google Scholar]
  237. GeravandM. FallahP. YaghoobiM.H. SoleimanifarF. FaridM. ZinatizadehN. YaslianifardS. Investigation of enterococcus faecalis population in patients with polyp and colorectal cancer in comparison of healthy individuals.Arq. Gastroenterol.201956214114510.1590/s0004‑2803.201900000‑28 31460576
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010338997241216053634
Loading
/content/journals/cpb/10.2174/0113892010338997241216053634
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test