Skip to content
2000
Volume 26, Issue 15
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Breast cancer remains a critical health concern, requiring continual innovation in treatment to improve patient outcomes. The continuous obstacles in therapy and the need for novel techniques underline the importance of making advances in this discipline. Precision medicine has emerged as a viable method, with genomic profiling and molecular subtyping allowing for targeted therapy based on distinct breast cancer subtypes. This strategy is supplemented by advances in early detection and screening, with technologies like liquid biopsy promising earlier and more accurate diagnosis. The introduction of immunotherapy has transformed breast cancer treatment by using the body's immune system to combat cancer. Recent discoveries, particularly combination medicines, attempt to circumvent resistance mechanisms and improve treatment success. Furthermore, including lifestyle therapies such as nutrition, exercise, and psychological support has been demonstrated to reduce breast cancer risk and strengthen survivability rates. Survivorship programs serve an important role in comprehensive care by addressing long-term needs and enhancing survivors' quality of life. Investigating innovative therapeutic approaches, such as developing cancer vaccines, epigenetic modulators, and RNA interference (RNAi) therapy, provides new treatment options. Fostering collaboration among healthcare personnel through shared decision-making and tumor committees is essential for the integration of multidisciplinary care, which ensures patient-centered care. Although advancements have been made, there are still numerous obstacles to overcome in the implementation of these future directions. To effectively confront these obstacles, it is imperative to capitalize on opportunities for innovation and collaboration. It is imperative to address ethical, social, and economic factors in the advancement of breast cancer care to ensure that innovations are equitable and accessible. In conclusion, the future of breast cancer management is bright since substantial improvements are on the verge of turning patient treatment into a completely different experience. For these breakthroughs to become a reality, it is necessary to maintain research efforts, advocate for them, and work together. The dedication to innovation and the joint effort to overcome current problems are the two important factors that will determine whether or not breast cancer treatment and surviving will have a better future.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010343901250204054241
2025-02-07
2025-12-27
Loading full text...

Full text loading...

References

  1. BhattM. HimaniM. SaxenaM.P. Abhishek ChandolaD. CoordinatorP.V. innovative approaches in breast cancer management: A critical review of recent advancements in early detection and treatment modalities.Int. J. Creat. Res. Thoughts20241223202882
    [Google Scholar]
  2. ChopraS. KhoslaM. VidyaR. Innovations and challenges in breast cancer care.A review. Medicina2023595957
    [Google Scholar]
  3. VeronesiU. GoldhirschA. VeronesiP. GentiliniO.D. LeonardiM.C. Breast Cancer: Innovations in Research and Management.Springer2017198
    [Google Scholar]
  4. ChenK. BeerakaN.M. ZhangX. SinelnikovM.Y. PlotnikovaM. ZhaoC. BasavarajV. ZhangJ. LuP. Recent advances in therapeutic modalities against breast cancer-related lymphedema: Future epigenetic landscape.Lymphat. Res. Biol.202321653654810.1089/lrb.2022.0016 37267206
    [Google Scholar]
  5. PesapaneF. NicosiaL. CassanoE. Updates on breast cancer.Cancers202315225392
    [Google Scholar]
  6. VidyaR. LeffD.R. GreenM. McIntoshS.A. St JohnE. KirwanC.C. RomicsL. CutressR.I. PotterS. CarmichaelA. SubramanianA. O’ConnellR. FairbrotherP. FenlonD. BensonJ. HolcombeC. Innovations for the future of breast surgery.Br. J. Surg.2021108890891610.1093/bjs/znab147 34059874
    [Google Scholar]
  7. CroessmannS. ParkB.H. Circulating tumor DNA in early-stage breast cancer: New directions and potential clinical applications.Clin. Adv. Hematol. Oncol.2021193155161 33739964
    [Google Scholar]
  8. RieckeK. WitzelI. Targeting the human epidermal growth factor receptor family in breast cancer beyond HER2.Breast Care202015657958510.1159/000510998 33447231
    [Google Scholar]
  9. TavaresD. Chaves RibeiroV. Moreira Cardoso-JúniorL. Rhangel Gomes TeixeiraT. Ramos VarroneG. Lopes BrittoR. Lopes BrittoR. Immunotherapy using PD 1/PDL-1 inhibitors in triple negative breast cancer: A systematic review.Oncol. Rev.202115249710.4081/oncol.2021.497 35003528
    [Google Scholar]
  10. Del BaldoG. Del BufaloF. PinacchioC. CaraiA. QuintarelliC. De AngelisB. MerliP. CacchioneA. LocatelliF. MastronuzziA. The peculiar challenge of bringing CAR-T cells into the brain: Perspectives in the clinical application to the treatment of pediatric central nervous system tumors.Front. Immunol.202314114259710.3389/fimmu.2023.1142597 37025994
    [Google Scholar]
  11. KufeD.W. MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches.Oncogene20133291073108110.1038/onc.2012.158 22580612
    [Google Scholar]
  12. KimM.J. ChoiJ.R. TaeN. WiT.M. KimK.M. KimD.H. LeeE.S. Novel Antibodies targeting MUC1-C showed anti-metastasis and growth-inhibitory effects on human breast cancer cells.Int. J. Mol. Sci.2020219325810.3390/ijms21093258 32380650
    [Google Scholar]
  13. ChenW. ZhangZ. ZhangS. ZhuP. KoJ.K.S. YungK.K.L. MUC1: Structure, Function, and clinic application in epithelial cancers.Int. J. Mol. Sci.20212212656710.3390/ijms22126567 34207342
    [Google Scholar]
  14. VatnerR.E. CooperB.T. Vanpouille-BoxC. DemariaS. FormentiS.C. Combinations of immunotherapy and radiation in cancer therapy.Front. Oncol.20144NOV32510.3389/fonc.2014.00325 25506582
    [Google Scholar]
  15. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.3635 22408567
    [Google Scholar]
  16. LoprinziC.L. LacchettiC. BleekerJ. CavalettiG. ChauhanC. HertzD.L. KelleyM.R. LavinoA. LustbergM.B. PaiceJ.A. SchneiderB.P. Lavoie SmithE.M. SmithM.L. SmithT.J. Wagner-JohnstonN. HershmanD.L. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO Guideline update.J. Clin. Oncol.202038283325334810.1200/JCO.20.01399 32663120
    [Google Scholar]
  17. MiklikovaS. TrnkovaL. PlavaJ. BohacM. KuniakovaM. CihovaM. The role of BRCA1/2-mutated tumor microenvironment in breast cancer.Cancers202113357510.3390/cancers13030575 33540843
    [Google Scholar]
  18. PaikH.J. JungY.J. KimD. Clinicopathological features of BRCA1/2 mutation-positive breast cancer.Oncology (Switzerland)2021998499506
    [Google Scholar]
  19. MenezesM. RaheemF. MinaL. ErnstB. BataliniF. PARP inhibitors for breast cancer: Germline BRCA1/2 and beyond.Cancers20221417433210.3390/cancers14174332 36077867
    [Google Scholar]
  20. CaulfieldS.E. DavisC.C. ByersK.F. Olaparib: A novel therapy for metastatic breast cancer in patients with a BRCA1/2 mutation.J. Adv. Pract. Oncol.2019102167174 31538027
    [Google Scholar]
  21. AmezianeN. van den OuwelandA.M.W. AdankM.A. VijzelaarR.N.C.P. ErramiA. DorsmanJ.C. JoenjeH. Meijers-HeijboerH. WaisfiszQ. Lack of large genomic deletions in BRIP1, PALB2, and FANCD2 genes in BRCA1/2 negative familial breast cancer.Breast Cancer Res. Treat.2009118365165310.1007/s10549‑009‑0428‑8 19504183
    [Google Scholar]
  22. WangR.C. WangZ. Precision medicine: Disease subtyping and tailored treatment.Cancers20231515383710.3390/cancers15153837 37568653
    [Google Scholar]
  23. MaloneE.R. OlivaM. SabatiniP.J.B. StockleyT.L. SiuL.L. Molecular profiling for precision cancer therapies.Genome Med.2020121810.1186/s13073‑019‑0703‑1 31937368
    [Google Scholar]
  24. BaldoP. De ReV. GaruttiM. How will the identification and therapeutic intervention of genetic targets in oncology evolve for future therapy?Expert Opin. Ther. Targets202327121189119410.1080/14728222.2023.2295493 38095918
    [Google Scholar]
  25. TestaU. CastelliG. PelosiE. Breast cancer: A molecularly heterogenous disease needing subtype-specific treatments.Med. Sci.2020811810.3390/medsci8010018 32210163
    [Google Scholar]
  26. GoutsouliakK. VeeraraghavanJ. SethunathV. De AngelisC. OsborneC.K. RimawiM.F. SchiffR. Towards personalized treatment for early stage HER2-positive breast cancer.Nat. Rev. Clin. Oncol.202017423325010.1038/s41571‑019‑0299‑9 31836877
    [Google Scholar]
  27. QureshiS. ChanN. GeorgeM. GanesanS. ToppmeyerD. OmeneC. Immune checkpoint inhibitors in triple negative breast cancer: The search for the optimal biomarker.Biomark. Insights2022171177271922107877410.1177/11772719221078774 35221668
    [Google Scholar]
  28. ParikhA.R. LeshchinerI. ElaginaL. GoyalL. LevovitzC. SiravegnaG. LivitzD. RhrissorrakraiK. MartinE.E. Van SeventerE.E. HannaM. SlowikK. UtroF. PintoC.J. WongA. DanyshB.P. de la CruzF.F. FetterI.J. NadresB. ShahzadeH.A. AllenJ.N. BlaszkowskyL.S. ClarkJ.W. GiantonioB. MurphyJ.E. NippR.D. RoelandE. RyanD.P. WeekesC.D. KwakE.L. FarisJ.E. WoJ.Y. AguetF. Dey-GuhaI. Hazar-RethinamM. Dias-SantagataD. TingD.T. ZhuA.X. HongT.S. GolubT.R. IafrateA.J. AdalsteinssonV.A. BardelliA. ParidaL. JuricD. GetzG. CorcoranR.B. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers.Nat. Med.20192591415142110.1038/s41591‑019‑0561‑9 31501609
    [Google Scholar]
  29. ZhuZ. JiangL. DingX. Advancing breast cancer heterogeneity analysis: Insights from genomics, transcriptomics and proteomics at bulk and single-cell levels.Cancers20231516416410.3390/cancers15164164 37627192
    [Google Scholar]
  30. GiladY. GellermanG. LonardD.M. O’MalleyB.W. Drug combination in cancer treatment—from cocktails to conjugated combinations.Cancers202113466910.3390/cancers13040669 33562300
    [Google Scholar]
  31. PastenaP. PereraH. MartininoA. KartsonisW. GiovinazzoF. Unraveling biomarker signatures in triple-negative breast cancer: A systematic review for targeted approaches.Int. J. Mol. Sci.2024255255910.3390/ijms25052559 38473804
    [Google Scholar]
  32. SzymiczekA. LoneA. AkbariM.R. Molecular intrinsic versus clinical subtyping in breast cancer: A comprehensive review.Clin. Genet.202199561363710.1111/cge.13900 33340095
    [Google Scholar]
  33. MohammedA.A. The clinical behavior of different molecular subtypes of breast cancer.Cancer Treat. Res. Commun20212910046910.1016/j.ctarc.2021.100469 34624832
    [Google Scholar]
  34. FumagalliC. RanghieroA. GandiniS. CorsoF. TaorminaS. De CamilliE. RappaA. VacircaD. VialeG. Guerini-RoccoE. BarberisM. Inter-tumor genomic heterogeneity of breast cancers: Comprehensive genomic profile of primary early breast cancers and relapses.Breast Cancer Res.202022110710.1186/s13058‑020‑01345‑z 33059724
    [Google Scholar]
  35. TsangJ.Y.S. TseG.M. Molecular classification of breast cancer.Adv. Anat. Pathol.2020271273510.1097/PAP.0000000000000232 31045583
    [Google Scholar]
  36. HonoréN. GalotR. van MarckeC. LimayeN. MachielsJ.P. Liquid biopsy to detect minimal residual disease: Methodology and impact.Cancers20211321536410.3390/cancers13215364 34771526
    [Google Scholar]
  37. SwaminathanH. SaravanamuraliK. YadavS.A. Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment.Med. Oncol.202340823810.1007/s12032‑023‑02111‑9 37442848
    [Google Scholar]
  38. HafeezM.N. CeliaC. PetrikaiteV. Challenges towards targeted drug delivery in cancer nanomedicines.Processes202199152710.3390/pr9091527
    [Google Scholar]
  39. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  40. BradleyR. BraybrookeJ. GrayR. HillsR. LiuZ. PetoR. DaviesL. DodwellD. McGaleP. PanH. TaylorC. AndersonS. GelberR. GianniL. JacotW. JoensuuH. Moreno-AspitiaA. PiccartM. PressM. RomondE. SlamonD. SumanV. BerryR. BoddingtonC. ClarkeM. DaviesC. DuaneF. EvansV. GayJ. GettinsL. GodwinJ. JamesS. LiuH. MacKinnonE. MannuG. McHughT. MorrisP. ReadS. StraitonE. WangY. CrownJ. de AzambujaE. DelalogeS. FungH. GeyerC. SpielmannM. ValagussaP. AlbainK. AndersonS. ArriagadaR. BartlettJ. Bergsten-NordströmE. BlissJ. BrainE. CareyL. ColemanR. CuzickJ. DavidsonN. Del MastroL. Di LeoA. DignamJ. DowsettM. EjlertsenB. FrancisP. GnantM. GoetzM. GoodwinP. Halpin-MurphyP. HayesD. HillC. JagsiR. JanniW. LoiblS. MamounasE.P. MartínM. MukaiH. NekljudovaV. NortonL. OhashiY. PierceL. PoortmansP. RainaV. ReaD. ReganM. RobertsonJ. RutgersE. SpanicT. SparanoJ. StegerG. TangG. ToiM. TuttA. VialeG. WangX. WhelanT. WilckenN. WolmarkN. CameronD. BerghJ. PritchardK.I. SwainS.M. Trastuzumab for early-stage, HER2-positive breast cancer: A meta-analysis of 13 864 women in seven randomised trials.Lancet Oncol.20212281139115010.1016/S1470‑2045(21)00288‑6 34339645
    [Google Scholar]
  41. RobertoM. AstoneA. BotticelliA. CarbogninL. CassanoA. D’AuriaG. FabbriA. FabiA. GamucciT. KrasniqiE. MinelliM. OrlandiA. PantanoF. ParisI. PizzutiL. PortarenaI. SalesiN. ScagnoliS. ScavinaP. ToniniG. ViciP. MarchettiP. CDK4/6 Inhibitor treatments in patients with hormone receptor positive, Her2 negative advanced breast cancer: Potential molecular mechanisms, clinical implications and future perspectives.Cancers202113233210.3390/cancers13020332 33477469
    [Google Scholar]
  42. TuttA.N.J. GarberJ.E. KaufmanB. VialeG. FumagalliD. RastogiP. GelberR.D. de AzambujaE. FieldingA. BalmañaJ. DomchekS.M. GelmonK.A. HollingsworthS.J. KordeL.A. LinderholmB. BandosH. SenkusE. SugaJ.M. ShaoZ. PippasA.W. NoweckiZ. HuzarskiT. GanzP.A. LucasP.C. BakerN. LoiblS. McConnellR. PiccartM. SchmutzlerR. StegerG.G. CostantinoJ.P. ArahmaniA. WolmarkN. McFaddenE. KarantzaV. LakhaniS.R. YothersG. CampbellC. GeyerC.E. Jr Adjuvant olaparib for patients with BRCA1 - or BRCA2 -mutated breast cancer.N. Engl. J. Med.2021384252394240510.1056/NEJMoa2105215 34081848
    [Google Scholar]
  43. SwainS.M. MilesD. KimS.B. Im, Y.H.; Im, S.A.; Semiglazov, V.; Ciruelos, E.; Schneeweiss, A.; Loi, S.; Monturus, E.; Clark, E.; Knott, A.; Restuccia, E.; Benyunes, M.C.; Cortés, J.; Agajanian, R.; Ahmad, R.; Aktas, B.; Alencar, V.H.; Amadori, D.; Andrade, J.; André Franke, F.; Angiolini, C.; Aogi, K.; Armor, J.; Arpornwirat, W.; Assersohn, L.; Audeh, W.; Aulitzky, W.; Azevedo, S.; Bartoli, M.A.; Batista Lopez, N.; Bianconi, M.; Biganzoli, L.; Birhiray, R.; Bitina, M.; Blachy, R.; Blackwell, K.; Blanchard, R.; Blanchet, P.; Boiangiu, I.; Bower, B.; Brezden-Masley, C.; Brufsky, A.; Budde, L.; Caguioa, P.; Calvo, L.; Campone, M.; Carroll, R.R.; Castro, H.; Chan, V.; Charu, V.; Cinieri, S.; Clemens, M.; Conejo, E.A.; Côrtes, E.; Coudert, B.; Cronemberger, E.; Cubero, D.; Dakhil, S.; Daniel, B.; Davidson, N.; De Fatima Gaui, M.; De La Cruz, S.; Del Pilar, M.; Delgado, G.; Ellerton, J.A.; Estuardo, C.; Fehrenbacher, L.; Ferrero, J-M.; Flynn, P.J.; Foszczynska-Kloda, M.; Franco, S.; Fujii, H.; Gallagher, C.; Gamucci, T.; Giacomi, N.; Gil I Gil, M.; Gonzalez Martin, A.; Gorbunova, V.; Gotovkin, E.; Green, N.; Grincuka, E.; Grischke, E-M.; Hansen, V.; Hargis, J.; Hauschild, M.; Hegg, R.; Hendricks, C.; Hermann, R.; Hoff, P.; Horiguchi, J.; Hornedo Muguiro, J.; Iacobelli, S.; Inoue, K.; Ismael, G.; Itoh, Y.; Iwata, D.H.; Jendiroba, D.; Jochim, R.; Jones, A.; Just, M.; Kallab, A.; Karwal, M.; Kashiwaba, M.; Kato, G.; Kaufman, P.A.; Kellokumpu-Lehtinen, P.; Kirsch, A.; Kiselev, I.; Klein, P.; Kohno, N.; Kopp, M.; Kostovska-Maneva, L.; Kotliar, M.; Kudaba, I.; Kümmel, S.; Kuroi, K.; Lacava, J.; Latini, L.; Lee, S.C.; Lichinitser, M.; Lobo, C.; Maintz, C.; Maneecahvakajorn, J.; Marmé, A.; Martinez, G.; Masuda, N.; Matwiejuk, M.; Merculov, V.; Michaelson, R.; Miguel, L.; Monroy, H.; Montemurro, F.; Morales, S.; Moura, R.; Mueller, V.; Mulatero, C.; Nakagami, K.; Nakayama, T.; Neidhart, J.; Nguyen, A.; Nishimura, R.; Ogata, H.; O’reilly, S.; O’rourke, T.; Otero Reye, D.; Ouyang, X.; Patel, R.; Patel, T.; Pedrini, J.L.; Pereira, R.; Perez, A.; Peterson, C.; Pienkowski, T.; Pinczowski, H.; Polikoff, J.; Polkowski, W.; Price, P.E.; Prill, S.; Priou, F.; Purkalne, G.; Pyrhoenen, S.; Quackenbush, R.; Rai, Y.; Ribelles, N.; Ro, J.; Robinson, A.; Robles, R.; Rodriguez, G.; Roman, L.; Saji, S.; Sanchez-Rovira, P.; Sato, N.; Schmidt, M.; Schumacher, C.; Senecal, F.; Sharma, P.; Shen, Z.; Shirinkin, V.; Simoncini, E.; Sirisinha, T.; Smith, R.; Sohn, J-H.; Soldic, Z.; Soria, T.; Spicer, D.; Srimuninnimit, V.; Sriuranpong, V.; Staroslawska, E.; Stefanovski, P.; Sunpaweravong, P.; Taguchi, J.; Takeda, K.; Tellez-Trevilla, G.; Thomas, R.; Thomssen, C.; Toache, Z.; Tokuda, Y.; Tomczak, P.; Tosello, C.; Tsugawa, K.; Tudtud, D.; Ueno, T.; Van Eyll, B.; Varela, M.; Vasev, N.; Vrbanec, D.; Wang, X.; Wang, L.; Watanabe, J.; Waterhouse, D.; Wesenberg, B.; Wheatley, D.; Wong, Z.W.; Yadav, S.; Yadav, S.; Yardley, D.; Yau, T-K.; Yeo, W.; Ying, C.; Youn Oh, D. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): End-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study.Lancet Oncol.202021451953010.1016/S1470‑2045(19)30863‑0 32171426
    [Google Scholar]
  44. WanderS.A. HanH.S. ZangardiM.L. NiemierkoA. MariottiV. KimL.S.L. XiJ. PandeyA. DunneS. NasrazadaniA. KambadakoneA. SteinC. LloydM.R. YuenM. SpringL.M. JuricD. KuterI. SanidasI. MoyB. MulveyT. VidulaN. DysonN.J. EllisenL.W. IsakoffS. WagleN. BrufskyA. KalinskyK. MaC.X. O’ShaughnessyJ. BardiaA. Clinical outcomes with Abemaciclib after prior CDK4/6 inhibitor progression in breast cancer: A multicenter experience.J. Natl. Compr. Canc. Netw.20211810.6004/jnccn.2020.7662 33761455
    [Google Scholar]
  45. SirhanZ. ThyagarajanA. SahuR.P. The efficacy of tucatinib-based therapeutic approaches for HER2-positive breast cancer.Mil. Med. Res.2022913910.1186/s40779‑022‑00401‑3 35820970
    [Google Scholar]
  46. CataldoM.L. De PlacidoP. EspositoD. FormisanoL. ArpinoG. GiulianoM. BiancoR. De AngelisC. VenezianiB.M. The effect of the alpha-specific PI3K inhibitor alpelisib combined with anti-HER2 therapy in HER2+/PIK3CA mutant breast cancer.Front. Oncol.202313110824210.3389/fonc.2023.1108242 37469415
    [Google Scholar]
  47. CardilloT.M. RossiD.L. ZalathM.B. LiuD. ArrojoR. SharkeyR.M. ChangC.H. GoldenbergD.M. Predictive biomarkers for sacituzumab govitecan efficacy in Trop-2-expressing triple-negative breast cancer.Oncotarget202011433849386210.18632/oncotarget.27766 33196706
    [Google Scholar]
  48. NguyenX. HooperM. BorlagdanJ.P. PalumboA. A review of fam-Trastuzumab Deruxtecan-nxki in HER2-positive breast cancer.Ann. Pharmacother.202155111410141810.1177/1060028021998320 33629601
    [Google Scholar]
  49. GuoL. ShaoW. ZhouC. YangH. YangL. CaiQ. WangJ. ShiY. HuangL. ZhangJ. Neratinib for HER2-positive breast cancer with an overlooked option.Mol. Med.202329113410.1186/s10020‑023‑00736‑0 37803271
    [Google Scholar]
  50. BardiaA. HurvitzS.A. DeMicheleA. ClarkA.S. ZelnakA. YardleyD.A. KaruturiM. SanftT. BlauS. HartL. MaC. RugoH.S. PurkayasthaD. MoulderS. Phase I/II trial of Exemestane, Ribociclib, and Everolimus in women with HR+/HER2− Advanced breast cancer after progression on CDK4/6 inhibitors (TRINITI-1).Clin. Cancer Res.202127154177418510.1158/1078‑0432.CCR‑20‑2114 33722897
    [Google Scholar]
  51. Guney EskilerG. OzturkM. Therapeutic potential of the PI3K inhibitor LY294002 and PARP inhibitor Talazoparib combination in BRCA-deficient triple negative breast cancer cells.Cell. Signal.20229111022910.1016/j.cellsig.2021.110229 34958867
    [Google Scholar]
  52. QiX. ShiQ. XuhongJ. ZhangY. JiangJ. Pyrotinib-based therapeutic approaches for HER2-positive breast cancer: The time is now.Breast Cancer Res.202325111310.1186/s13058‑023‑01694‑5 37789330
    [Google Scholar]
  53. MezynskiM.J. FarrellyA.M. CremonaM. CarrA. MorganC. WorkmanJ. ArmstrongP. McAuleyJ. MaddenS. FayJ. SheehanK.M. KayE.W. HolohanC. ElaminY. RafeeS. MorrisP.G. BreathnachO. GroganL. HennessyB.T. ToomeyS. Targeting the PI3K and MAPK pathways to improve response to HER2-targeted therapies in HER2-positive gastric cancer.J. Transl. Med.202119118410.1186/s12967‑021‑02842‑1 33933113
    [Google Scholar]
  54. SharmaP RodlerE BarlowW.E. GralowJ. Huggins-PuhallaS.L. AndersC.K. GoldsteinL.J. Brown-GlabermanU.A. HuynhT.T. SzyartoC.S. GodwinA.K. PathakH.B. SwisherE.M. RadkeM.R. TimmsK.M. LewD.L. MiaoJ. PusztaiL. HayesD.F. HortobagyiG.N. Results of a phase II randomized trial of cisplatin +/- veliparib in metastatic triple-negative breast cancer (TNBC) and/or germline BRCA-associated breast cancer (SWOG S1416).J Clin Oncol20203815_suppl)(Suppl.100110.1200/JCO.2020.38.15_suppl.1001
    [Google Scholar]
  55. MaadiH. SoheilifarM.H. ChoiW.S. MoshtaghianA. WangZ. Trastuzumab mechanism of action; 20 Years of research to unravel a dilemma.Cancers20211314354010.3390/cancers13143540 34298754
    [Google Scholar]
  56. SwainS.M. ShastryM. HamiltonE. Targeting HER2-positive breast cancer: Advances and future directions.Nat. Rev. Drug Discov.202322210112610.1038/s41573‑022‑00579‑0 36344672
    [Google Scholar]
  57. YuK. HuangZ.Y. XuX.L. LiJ. FuX.W. DengS.L. Estrogen receptor function: Impact on the human endometrium.Front. Endocrinol. (Lausanne)20221382772410.3389/fendo.2022.827724 35295981
    [Google Scholar]
  58. KharbR. HaiderK. NehaK. YarM.S. Aromatase inhibitors: Role in postmenopausal breast cancer.Arch. Pharm. (Weinheim)20203538200008110.1002/ardp.202000081 32449548
    [Google Scholar]
  59. MauriacL. Aromatase inhibitors: Effective endocrine therapy in the early adjuvant setting for postmenopausal women with hormone-responsive breast cancer.Best Pract. Res. Clin. Endocrinol. Metab.200620Suppl. 1S15S2910.1016/j.beem.2006.10.003
    [Google Scholar]
  60. ObidiroO. BattogtokhG. AkalaE.O. Triple negative breast cancer treatment options and limitations: Future outlook.Pharmaceutics2023157179610.3390/pharmaceutics15071796 37513983
    [Google Scholar]
  61. SinghD.D. YadavD.K. TNBC: Potential targeting of multiple receptors for a therapeutic breakthrough, nanomedicine, and immunotherapy.Biomedicines20219887610.3390/biomedicines9080876 34440080
    [Google Scholar]
  62. PusztaiL. DenkertC. O’ShaughnessyJ. CortesJ. DentR. McArthurH. KümmelS. BerghJ. ParkY.H. HuiR. HarbeckN. TakahashiM. UntchM. FaschingP.A. CardosoF. ZhuY. PanW. TryfonidisK. SchmidP. Event-free survival by residual cancer burden with pembrolizumab in early-stage TNBC: Exploratory analysis from KEYNOTE-522.Ann. Oncol.202435542943610.1016/j.annonc.2024.02.002 38369015
    [Google Scholar]
  63. PiezzoM. CoccoS. CaputoR. CiannielloD. GioiaG.D. LauroV.D. FuscoG. MartinelliC. NuzzoF. PensabeneM. LaurentiisM.D. Targeting cell cycle in breast cancer: CDK4/6 inhibitors.Int. J. Mol. Sci.20202118647910.3390/ijms21186479 32899866
    [Google Scholar]
  64. DilmacS. OzpolatB. Mechanisms of PARP-inhibitor-resistance in BRCA-mutated breast cancer and new therapeutic approaches.Cancers20231514364210.3390/cancers15143642 37509303
    [Google Scholar]
  65. GiaquintoA.N. SungH. MillerK.D. KramerJ.L. NewmanL.A. MinihanA. JemalA. SiegelR.L. Breast Cancer statistics, 2022.CA Cancer J. Clin.202272652454110.3322/caac.21754 36190501
    [Google Scholar]
  66. LiJ. GuanX. FanZ. ChingL.M. LiY. WangX. CaoW.M. LiuD.X. Non-invasive biomarkers for early detection of breast cancer.Cancers20201210276710.3390/cancers12102767 32992445
    [Google Scholar]
  67. PetrilloA. FuscoR. Di BernardoE. PetrosinoT. BarrettaM.L. PortoA. GranataV. Di BonitoM. FanizziA. MassafraR. PetruzzellisN. ArezzoF. BoldriniL. La ForgiaD. Prediction of breast cancer histological outcome by radiomics and artificial intelligence analysis in contrast-enhanced mammography.Cancers2022149213210.3390/cancers14092132 35565261
    [Google Scholar]
  68. AujeroM.P. GavenonisS.C. BenjaminR. ZhangZ. HoltJ.S. Clinical performance of synthesized two-dimensional mammography combined with tomosynthesis in a large screening population.Radiology20172831707610.1148/radiol.2017162674 28221096
    [Google Scholar]
  69. SmithA.P. HallP.A. MarcelloD.M. Emerging technologies in breast cancer detection.Radiol. Manage.20042641624 15377106
    [Google Scholar]
  70. ChikarmaneS.A. CochonL.R. KhorasaniR. SahuS. GiessC.S. Screening mammography performance metrics of 2D digital mammography versus digital breast tomosynthesis in women with a personal history of breast cancer.AJR Am. J. Roentgenol.2021217358759410.2214/AJR.20.23976 32966113
    [Google Scholar]
  71. HadjipanteliA. KontosM. ConstantinidouA. The role of digital breast tomosynthesis in breast cancer screening: A manufacturer- and metrics-specific analysis.Cancer Manag. Res.2019119277929610.2147/CMAR.S210979 31802947
    [Google Scholar]
  72. KulkarniS. FreitasV. MuradaliD. Digital breast tomosynthesis: Potential benefits in routine clinical practice.Can. Assoc. Radiol. J.202273110712010.1177/08465371211025229 34229477
    [Google Scholar]
  73. ChikarmaneS. Synthetic mammography: Review of benefits and drawbacks in clinical use.J. Breast Imaging20224212413410.1093/jbi/wbac008 38417004
    [Google Scholar]
  74. PacilèS. LopezJ. ChoneP. BertinottiT. GrouinJ.M. FillardP. Improving breast cancer detection accuracy of mammography with the concurrent use of an artificial intelligence tool.Radiol. Artif. Intell.202026e19020810.1148/ryai.2020190208 33937844
    [Google Scholar]
  75. Uzun OzsahinD. Ikechukwu EmeganoD. UzunB. OzsahinI. The systematic review of artificial intelligence applications in breast cancer diagnosis.Diagnostics20221314510.3390/diagnostics13010045 36611337
    [Google Scholar]
  76. GastouniotiA. DesaiS. AhluwaliaV.S. ConantE.F. KontosD. Artificial intelligence in mammographic phenotyping of breast cancer risk: A narrative review.Breast Cancer Res.20222411410.1186/s13058‑022‑01509‑z 35184757
    [Google Scholar]
  77. ShenY. ShamoutF.E. OliverJ.R. WitowskiJ. KannanK. ParkJ. WuN. HuddlestonC. WolfsonS. MilletA. EhrenpreisR. AwalD. TymaC. SamreenN. GaoY. ChhorC. GandhiS. LeeC. Kumari-SubaiyaS. LeonardC. MohammedR. MoczulskiC. AltabetJ. BabbJ. LewinA. ReigB. MoyL. HeacockL. GerasK.J. Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams.Nat. Commun.2021121564510.1038/s41467‑021‑26023‑2 34561440
    [Google Scholar]
  78. CèM. CaloroE. PellegrinoM.E. BasileM. SorceA. FazziniD. OlivaG. CellinaM. Artificial intelligence in breast cancer imaging: Risk stratification, lesion detection and classification, treatment planning and prognosis—a narrative review.Explor. Target. Antitumor Ther.20223679581610.37349/etat.2022.00113 36654817
    [Google Scholar]
  79. KrishnanG. SinghS. PathaniaM. GosaviS. AbhishekS. ParchaniA. DharM. Artificial intelligence in clinical medicine: Catalyzing a sustainable global healthcare paradigm.Front. Artif. Intell.202366122709110.3389/frai.2023.1227091
    [Google Scholar]
  80. AlimirzaieS. BagherzadehM. AkbariM.R. Liquid biopsy in breast cancer: A comprehensive review.Clin. Genet.2019956643660 30671931
    [Google Scholar]
  81. YeQ. LingS. ZhengS. XuX. Liquid biopsy in hepatocellular carcinoma: Circulating tumor cells and circulating tumor DNA.Mol. Cancer201918111410.1186/s12943‑019‑1043‑x 31269959
    [Google Scholar]
  82. SantM. Bernat-PegueraA. FelipE. MargelíM. Role of ctDNA in breast cancer.Cancers2022142310 35053474
    [Google Scholar]
  83. NeaguA.N. WhithamD. BrunoP. MorrissieyH. DarieC.A. DarieC.C. Omics-based investigations of breast cancer.Molecules20232812476810.3390/molecules28124768 37375323
    [Google Scholar]
  84. ZhaoZ. FanJ. HsuY.S. LyonC.J. NingB. HuT.Y. Extracellular vesicles as cancer liquid biopsies: From discovery, validation, to clinical application.Lab Chip201919711141140 30882822
    [Google Scholar]
  85. VasilevkoV. HeadE. LemereC.A. CribbsD.H. Immunological animal models for the immunotherapy against alzheimer’s disease (81.13).J. Immunol.20091821Suppl.
    [Google Scholar]
  86. YangL. NingQ. TangS.S. Recent advances and next breakthrough in immunotherapy for cancer treatment.J. Immunol. Res.202220228052212 35340585
    [Google Scholar]
  87. StandishL.J. SweetE.S. NovackJ. WennerC.A. BridgeC. NelsonA. MartzenM. TorkelsonC. Breast cancer and the immune system.J. Soc. Integr. Oncol.200864158168 19134448
    [Google Scholar]
  88. PapaioannouN.E. BeniataO.V. VitsosP. TsitsilonisO. SamaraP. Harnessing the immune system to improve cancer therapy.Ann. Transl. Med.201641426110.21037/atm.2016.04.01 27563648
    [Google Scholar]
  89. LizeeG. OverwijkW.W. RadvanyiL. GaoJ. SharmaP. HwuP. Harnessing the power of the immune system to target cancer.Annu. Rev. Med.201364719010.1146/annurev‑med‑112311‑083918
    [Google Scholar]
  90. EgebladM. NakasoneE.S. WerbZ. Tumors as organs: Complex tissues that interface with the entire organism.Dev. Cell2010186884901 20627072
    [Google Scholar]
  91. BhanA.K. DesMaraisC.L. Immunohistologic characterization of major histocompatibility antigens and inflammatory cellular infiltrate in human breast cancer.J. Natl. Cancer Inst.1983713507516 6193308
    [Google Scholar]
  92. NakasoneE.S. HurvitzS.A. McCannK.E. Harnessing the immune system in the battle against breast cancer.Drugs Context20187212520 29456568
    [Google Scholar]
  93. BastienJ-P. MinguyA. DaveV. RoyD.C. Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment.Semin. Immunol.201942101306 31604534
    [Google Scholar]
  94. KoebelC.M. VermiW. SwannJ.B. ZerafaN. RodigS.J. OldL.J. SmythM.J. SchreiberR.D. Adaptive immunity maintains occult cancer in an equilibrium state.Nature2007450717190390710.1038/nature06309 18026089
    [Google Scholar]
  95. JoshiA. CaoD. TGF-β signaling, tumor microenvironment and tumor progression: the butterfly effect.Front. Biosci.2010151180194 20036814
    [Google Scholar]
  96. SasserA.K. SullivanN.J. StudebakerA.W. HendeyL.F. AxelA.E. HallB.M. Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer.FASEB J.2007211337633770 17586727
    [Google Scholar]
  97. HamedE.A. ZakharyM.M. MaximousD.W. Apoptosis, angiogenesis, inflammation, and oxidative stress: basic interactions in patients with early and metastatic breast cancer.J. Cancer Res. Clin. Oncol.201213869991009 22362301
    [Google Scholar]
  98. NicoliniA. FerrariP. CarpiA. Immune checkpoint inhibitors and other immune therapies in breast cancer: a new paradigm for prolonged adjuvant immunotherapy.Biomedicines202210102511 36289773
    [Google Scholar]
  99. LiL. GoedegebuureS.P. GillandersW. Cancer vaccines: Shared tumor antigens return to the spotlight.Signal Transduct. Target. Ther.20205125110.1038/s41392‑020‑00364‑8 33127890
    [Google Scholar]
  100. Jackson DoreenO. FrancoisT.A. TravisC.G. Vreeland TimothyJ. Peace KaitlinM. DianeH. Effects of HLA status and HER2 status on outcomes in breast cancer patients at risk for recurrence: Implications for vaccine trial design.Clin. Immunol.2018195
    [Google Scholar]
  101. MostafaA.A. MeyersD.E. ThirukkumaranC.M. LiuP.J. GrattonK. SpurrellJ. ShiQ. ThakurS. MorrisD.G. Oncolytic reovirus and immune checkpoint inhibition as a novel immunotherapeutic strategy for breast cancer.Cancers201810620510.3390/cancers10060205 29914097
    [Google Scholar]
  102. BahreyniA. MohamudY. LuoH. Oncolytic virus-based combination therapy in breast cancer.Cancer Lett.202458521663410.1016/j.canlet.2024.216634 38309616
    [Google Scholar]
  103. Luque-BolivarA. Pérez-MoraE. VillegasV.E. Rondón-LagosM. Resistance and overcoming resistance in breast cancer.Breast Cancer (Dove Med. Press)20201221122910.2147/BCTT.S270799
    [Google Scholar]
  104. PerezE.A. Impact, mechanisms, and novel chemotherapy strategies for overcoming resistance to anthracyclines and taxanes in metastatic breast cancer.Breast Cancer Res. Treat.2009114219520110.1007/s10549‑008‑0005‑6 18443902
    [Google Scholar]
  105. PritchardJ.R. BrunoP.M. GilbertL.A. CapronK.L. LauffenburgerD.A. HemannM.T. Defining principles of combination drug mechanisms of action.Proc. Natl. Acad. Sci. USA20131102E170E17910.1073/pnas.1210419110 23251029
    [Google Scholar]
  106. KurebayashiJ. Endocrine-resistant breast cancer: Underlying mechanisms and strategies for overcoming resistance.Breast Cancer200310211211910.1007/BF02967635 12736563
    [Google Scholar]
  107. DerakhshaniA. RezaeiZ. SafarpourH. SabriM. MirA. SanatiM.A. VahidianF. Gholamiyan MoghadamA. AghadoukhtA. HajiasgharzadehK. BaradaranB. Overcoming trastuzumab resistance in HER2‐positive breast cancer using combination therapy.J. Cell. Physiol.202023543142315610.1002/jcp.29216 31566722
    [Google Scholar]
  108. ErgasI.J. Cespedes FelicianoE.M. BradshawP.T. RohJ.M. KwanM.L. CadenheadJ. Santiago-TorresM. TroeschelA.N. LaraiaB. MadsenK. KushiL.H. Diet quality and breast cancer recurrence and survival: The pathways study.JNCI Cancer Spectr.202152pkab01910.1093/jncics/pkab019 33928215
    [Google Scholar]
  109. KamalM. AlahmadiH. AlamriA. OzbukA. BeekA. AlharbiW. The role of diet and lifestyle in women with breast cancer: A review of the literature.Int. J. Innov. Res.202271272673010.23958/ijirms/vol07‑i12/1576
    [Google Scholar]
  110. JiaT. LiuY. FanY. WangL. JiangE. Association of healthy diet and physical activity with breast cancer: Lifestyle interventions and oncology education.Front. Public Health20221079779410.3389/fpubh.2022.797794 35400043
    [Google Scholar]
  111. PistelliM. NatalucciV. ScortichiniL. AgostinelliV. LenciE. CrocettiS. MerloniF. BastianelliL. TausM. FumelliD. GiuliettiG. ColaC. CapecciM. SerraniR. CeravoloM.G. RicciM. NicolaiA. BarbieriE. NicolaiG. BallatoreZ. SaviniA. BerardiR. The impact of lifestyle interventions in high-risk early breast cancer patients: A modeling approach from a single institution experience.Cancers20211321553910.3390/cancers13215539 34771702
    [Google Scholar]
  112. DasD. Breast cancer classification: A review.Int. J. Health Sci. Res.2022121014014910.52403/ijhsr.20221018
    [Google Scholar]
  113. ZunigaK.E. ParmaD.L. MuñozE. SpaniolM. WargovichM. RamirezA.G. Dietary intervention among breast cancer survivors increased adherence to a Mediterranean-style, anti-inflammatory dietary pattern: The Rx for better breast health randomized controlled trial.Breast Cancer Res. Treat.2019173114515410.1007/s10549‑018‑4982‑9 30259284
    [Google Scholar]
  114. Di MasoM. MasoL.D. AugustinL.S.A. PuppoA. FalciniF. StoccoC. MattioliV. SerrainoD. PoleselJ. Adherence to the mediterranean diet and mortality after breast cancer.Nutrients20201212364910.3390/nu12123649 33260906
    [Google Scholar]
  115. Cathcart-RakeE.J. RuddyK.J. Evidence-Based guidance for breast cancer survivorship.Hematol. Oncol. Clin. North Am.202337122524310.1016/j.hoc.2022.08.019 36435612
    [Google Scholar]
  116. GoelS. ChandarlapatyS. Emerging therapies for breast cancer.Cold Spring Harb. Perspect. Med.2023138a04133310.1101/cshperspect.a041333 36617643
    [Google Scholar]
  117. ChenG. LearyS. NiuJ. PerryR. PapadakiA. The role of the mediterranean diet in breast cancer survivorship: A systematic review and meta-analysis of observational studies and randomised controlled trials.Nutrients2023159209910.3390/nu15092099 37432242
    [Google Scholar]
  118. MufamadiS. NgoepeM. BattisonA. ZoselaI. Novel pharmaceutical nanomaterials to advance the current breast cancer treatment –Current trends and future perspective.Drug and Therapy Development for Triple Negative Breast Cancer.Wiley202311712910.1002/9783527841165.ch7
    [Google Scholar]
  119. MirM.A. MirA.Y. Current treatment approaches to breast cancer.Therapeutic potential of Cell Cycle Kinases in Breast Cancer.Springer20232351
    [Google Scholar]
  120. NematullahM Hasmatullah AgnihotriA. KumarS. HusainA. RahmanM.A Evaluation of therapeutics’ drug monitoring during cancer chemotherapy: A review.Intell Pharm20231315716110.1016/j.ipha.2023.06.005
    [Google Scholar]
  121. TripathiG. FaiyazM. HasanZ. KhanamA. HusainA. Gene editing and gene therapies in cancer treatment.In: Handbook of Research on Advancements in Cancer Therapeutics.IGI Global202110.4018/978‑1‑7998‑6530‑8.ch005
    [Google Scholar]
  122. LeeJ. BangJ.H. RyuY.C. HwangB.H. Multiple suppressing small interfering RNA for cancer treatment: Application to triple‐negative breast cancer.Biotechnol. J.20231811230006010.1002/biot.202300060 37478121
    [Google Scholar]
  123. BalgobindA. DanielsA. AriattiM. SinghM. HER2/neu oncogene silencing in a breast cancer cell model using cationic lipid-based delivery systems.Pharmaceutics2023154119010.3390/pharmaceutics15041190
    [Google Scholar]
  124. SzczepanekJ. SkorupaM. Jarkiewicz-TretynJ. CybulskiC. TretynA. Harnessing epigenetics for breast cancer therapy: The role of DNA methylation, histone modifications, and microRNA.Int. J. Mol. Sci.2023248723510.3390/ijms240872350
    [Google Scholar]
  125. HosseiniM. SeyedpourS. KhodaeiB. LoghmanA.H. SeyedpourN. YazdiM.H. RezaeiN. Cancer vaccines for triple-negative breast cancer: A systematic review.Vaccines202311114610.3390/vaccines11010146 36679991
    [Google Scholar]
  126. CortiC. GiachettiP.P.M.B. EggermontA.M.M. DelalogeS. CuriglianoG. Therapeutic vaccines for breast cancer: Has the time finally come?Eur. J. Cancer202216015017410.1016/j.ejca.2021.10.027 34823982
    [Google Scholar]
  127. TaoR. Challenge and solution for cancer vaccine therapy for breast cancer.Theor. Nat. Sci.20233133433910.54254/2753‑8818/3/20220264
    [Google Scholar]
  128. ZelbaH. McQueeneyA. RabsteynA. BartschO. KyzirakosC. KayserS. HarterJ. LatzerP. HadaschikD. BattkeF. HartkopfA.D. BiskupS. Adjuvant treatment for breast cancer patients using individualized neoantigen peptide vaccination: A retrospective observation.Vaccines20221011188210.3390/vaccines10111882 36366390
    [Google Scholar]
  129. MurphyB.L. HuntK.K. DeSnyderS.M. The Multidisciplinary Approach to Breast Cancer Management.Breast and Gynecological Diseases: Role of Imaging in the Management.Springer2021137156
    [Google Scholar]
  130. HulvatM.C. HansenN.M. JerussJ.S Multidisciplinary care for patients with breast cancer.Surg Clin North Am200989113317610.1016/j.suc.2008.10.00219186235
    [Google Scholar]
  131. KurniasihD.A.A. SetiawatiE.P. PradiptaI.S. SubarnasA. Interprofessional collaboration in the breast cancer unit: How do healthcare workers see it?BMC Womens Health202222122710.1186/s12905‑022‑01818‑7 35698115
    [Google Scholar]
  132. TaylorC. ShewbridgeA. HarrisJ. GreenJ.S. Benefits of multidisciplinary teamwork in the management of breast cancer.Breast Cancer2013798910.2147/BCTT.S35581
    [Google Scholar]
  133. ScottB. Multidisciplinary team approach in cancer care: A review of the latest advancements.Oncology202199213
    [Google Scholar]
  134. SpecchiaM.L. FrisicaleE.M. CariniE. Di PillaA. CappaD. BarbaraA. RicciardiW. DamianiG. The impact of tumor board on cancer care: Evidence from an umbrella review.BMC Health Serv. Res.20202017310.1186/s12913‑020‑4930‑3 32005232
    [Google Scholar]
  135. HawleyS.T. JagsiR. Shared decision making in cancer care.JAMA Oncol.201511585910.1001/jamaoncol.2014.186 26182304
    [Google Scholar]
  136. SoukupT. SevdalisN. GreenJ.S.A. LambB.W. ChapmanC. SkolarusT.A. Making tumor boards more patient-centered: Let’s start with the name.JCO Oncol. Pract.2021171059159310.1200/OP.20.00588 33734827
    [Google Scholar]
  137. KwameA. PetruckaP.M. A literature-based study of patient-centered care and communication in nurse-patient interactions: barriers, facilitators, and the way forward.BMC Nurs.202120115810.1186/s12912‑021‑00684‑2 34479560
    [Google Scholar]
  138. ChienL.J. SladeD. DahmM.R. BradyB. RobertsE. GoncharovL. TaylorJ. EgginsS. ThorntonA. Improving patient‐centred care through a tailored intervention addressing nursing clinical handover communication in its organizational and cultural context.J. Adv. Nurs.20227851413143010.1111/jan.15110 35038346
    [Google Scholar]
  139. KerrE.A. HaywardR.A. Patient-centered performance management: Enhancing value for patients and health care systems.JAMA2013310213713810.1001/jama.2013.6828 23839743
    [Google Scholar]
  140. FrechS. BravoL.E. RodriguezI. PomataA. AungK.T. SoeA.N. HornburgB. GuarnerJ. BrockJ. CamachoR. MilnerD. Strengthening pathology capacity to deliver quality cancer care in cities in LMICs.JCO Glob. Oncol.20217791792410.1200/GO.20.00604 34129368
    [Google Scholar]
  141. van BaalP. MortonA. SeverensJ.L. Health care input constraints and cost effectiveness analysis decision rules.Soc. Sci. Med.2018200596410.1016/j.socscimed.2018.01.026 29421472
    [Google Scholar]
  142. WouterseB. van BaalP. VersteeghM. BrouwerW. The Value of health in a cost-effectiveness analysis: Theory versus practice.PharmacoEconomics202341660761710.1007/s40273‑023‑01265‑8 37072598
    [Google Scholar]
  143. Lau-MinK.S. AsherS.B. ChenJ. DomchekS.M. FeldmanM. JoffeS. LandgrafJ. SpeareV. VarugheseL.A. TutejaS. VanZandbergenC. RitchieM.D. NathansonK.L. Real-world integration of genomic data into the electronic health record: the PennChart genomics initiative.Genet. Med.202123460360510.1038/s41436‑020‑01056‑y 33299147
    [Google Scholar]
  144. Lau-MinK.S. McKennaD. AsherS.B. BardakjianT. WollackC. BleznuckJ. BirosD. AnantharajahA. ClarkD.F. ConditC. EbrahimzadehJ.E. LongJ.M. PowersJ. RaperA. SchoenbaumA. FeldmanM. SteinfeldL. TutejaS. VanZandbergenC. DomchekS.M. RitchieM.D. LandgrafJ. ChenJ. NathansonK.L. Impact of integrating genomic data into the electronic health record on genetics care delivery.Genet. Med.202224112338235010.1016/j.gim.2022.08.009 36107166
    [Google Scholar]
  145. OhS.R. SeoY.D. LeeE. KimY.G. A comprehensive survey on security and privacy for electronic health data.Int. J. Environ. Res. Public Health20211818966810.3390/ijerph18189668 34574593
    [Google Scholar]
  146. TufailM. CuiJ. WuC. Breast cancer: Molecular mechanisms of underlying resistance and therapeutic approaches.Am. J. Cancer Res.202212729202949 35968356
    [Google Scholar]
  147. FontanaF. AnselmiM. LimontaP. Molecular mechanisms of cancer drug resistance: Emerging biomarkers and promising targets to overcome tumor progression.Cancers2022147161410.3390/cancers14071614 35406386
    [Google Scholar]
  148. KristA.H. TongS.T. AycockR.A. LongoD.R. Engaging patients in decision-making and behavior change to promote prevention.Inf. Serv. Use201737210512210.3233/ISU‑170826 28972524
    [Google Scholar]
  149. WallnerL.P. AbrahamseP. FrieseC.R. KatzS.J. HawleyS.T Primary care provider engagement about breast cancer care during treatment: Results from the i can care study.J. Clin. Oncol.2016343_supplSuppl.10110.1200/jco.2016.34.3_suppl.101
    [Google Scholar]
  150. AhnJ.S. ShinS. YangS.A. ParkE.K. KimK.H. ChoS.I. OckC.Y. KimS. Artificial intelligence in breast cancer diagnosis and personalized medicine.J. Breast Cancer202326540543510.4048/jbc.2023.26.e45 37926067
    [Google Scholar]
  151. LingL. AldoghachiA.F. ChongZ.X. HoW.Y. YeapS.K. ChinR.J. SooE.Z.X. KhorJ.F. YongY.L. LingJ.L. YanN.S. OngA.H.K. Addressing the clinical feasibility of adopting circulating miRNA for breast cancer detection, monitoring and management with artificial intelligence and machine learning platforms.Int. J. Mol. Sci.202223231538210.3390/ijms232315382 36499713
    [Google Scholar]
  152. McNeillL.H. WuI.H.C. ChoD. LuQ. EscotoK. HarrisC. Community outreach and engagement strategies to address breast cancer disparities.Curr. Breast Cancer Rep.202012420921510.1007/s12609‑020‑00374‑z
    [Google Scholar]
  153. BrownR.F. ButowP.N. JuraskovaI. RibiK. GerberD. BernhardJ. TattersallM.H.N. Sharing decisions in breast cancer care: Development of the decision analysis system for oncology (DAS-O) to identify shared decision making during treatment consultations.Health Expect.2011141293710.1111/j.1369‑7625.2010.00613.x 20629766
    [Google Scholar]
  154. NiburskiK. GuadagnoE. Abbasgholizadeh-RahimiS. PoenaruD. Shared decision making in surgery: A meta-analysis of existing literature.Patient202013666768110.1007/s40271‑020‑00443‑6 32880820
    [Google Scholar]
  155. EnsenauerR.E. MichelsV.V. ReinkeS.S. Genetic testing: Practical, ethical, and counseling considerations.Mayo Clin. Proc.2005801637310.1016/S0025‑6196(11)62960‑1 15667031
    [Google Scholar]
  156. BinP. ContiA. CapassoE. FedeliP. PolicinoF CasellaC. DelbonP. GrazianoV Genetic testing: Ethical aspects.Open Medicine (Poland)201813110.1515/med‑2018‑0038
    [Google Scholar]
  157. ManahanE.R. KuererH.M. SebastianM. HughesK.S. BougheyJ.C. EuhusD.M. BoolbolS.K. TaylorW.A. Consensus guidelines on genetic’ testing for hereditary breast cancer from the American Society of Breast Surgeons.Ann. Surg. Oncol.201926103025303110.1245/s10434‑019‑07549‑8 31342359
    [Google Scholar]
  158. LindorR.A. KunnemanM. HanzelM. SchuurJ.D. MontoriV.M. SadostyA.T. Liability and informed consent in the context of shared decision making.Acad. Emerg. Med.201623121428143310.1111/acem.13078 27607573
    [Google Scholar]
  159. LamW.W.T. KwokM. ChanM. HungW.K. YingM. OrA. KwongA. SuenD. YoonS. FieldingR. Does the use of shared decision-making consultation behaviors increase treatment decision-making satisfaction among Chinese women facing decision for breast cancer surgery?Patient Educ. Couns.201494224324910.1016/j.pec.2013.11.006 24316055
    [Google Scholar]
  160. KidaK. OlverI. YennuS. TripathyD. UenoN.T. Optimal supportive care for patients with metastatic breast cancer according to their disease progression phase.JCO Oncol. Pract.202117417718310.1200/OP.20.00622 33492987
    [Google Scholar]
  161. AbramsH.R. DurbinS. HuangC.X. JohnsonS.F. NayakR.K. ZahnerG.J. PeppercornJ. Financial toxicity in cancer care: Origins, impact, and solutions.Transl. Behav. Med.202111112043205410.1093/tbm/ibab091 34850932
    [Google Scholar]
  162. WadasadawalaT. MohantyS.K. SenS. KanalaT.S. MaitiS. PuchaliN. GuptaS. SarinR. ParmarV Out-of-pocket payment and financial risk protection for breast cancer treatment: A prospective study from India.Lancet Reg Health Southeast Asia20241610034610.1016/j.lansea.2023.100346
    [Google Scholar]
  163. ZamanianH. Amini-TehraniM. JalaliZ. DaryaafzoonM. RamezaniF. MalekN. AdabimohazabM. HozouriR. Rafiei TaghanakyF. Stigma and quality of life in women with breast cancer: Mediation and moderation model of social support, sense of coherence, and coping strategies.Front. Psychol.20221365799210.3389/fpsyg.2022.657992 35237203
    [Google Scholar]
  164. OlverI. DoddsS. KennerJ. KerridgeI. McGovernK. MilliganE. MortimerR. Ethical considerations relating to healthcare resource allocation decisions.Intern. Med. J.201949111364136710.1111/imj.14461 31713342
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010343901250204054241
Loading
/content/journals/cpb/10.2174/0113892010343901250204054241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test