Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Metabolic Syndrome (MetS) refers to the co-occurrence of a constellation of metabolic diseases in the same individual, such as abdominal/visceral obesity, insulin resistance or diabetes, alterations in the lipid profile (dyslipidemias), and/or hypertension, which promotes the development of other cardiometabolic and hepatic diseases. Dyslipidemia and metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), are common MetS pathologies closely related to lipid metabolism. Alterations in the metabolism of proteins, carbohydrates, and lipids, caused by an excessive intake of nutrients and abnormal accumulation of body fat, which promotes chronic low-grade inflammation, are pivotal aspects of MetS development. To avoid damage caused by lipid overaccumulation, the transcription factors responsible for regulating lipid homeostasis and inflammation (named in this work master regulators) must modify their regular activity; however, the high adiposity established for long periods causes the appearance of insulin resistance (the MetS triggering factor most widely accepted in the literature). Fortunately, scientific evidence suggests that the abnormal activity of these regulators can be conveniently modulated by distinct species of bioactive lipids, among which unsaturated fatty acids stand out, offering new alternatives for treating MetS. Therefore, this work aims to provide a general overview of scientific evidence that supports the mechanisms of action and the effective modulation by bioactive lipids of some master lipid-metabolism-and-inflammation regulators in diverse aspects of MetS.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010340506241014112341
2024-10-25
2025-09-02
Loading full text...

Full text loading...

References

  1. Rodríguez-CruzM. SernaD.S. Nutrigenomics of ω-3 fatty acids: Regulators of the master transcription factors.Nutrition201741909610.1016/j.nut.2017.04.012 28760435
    [Google Scholar]
  2. EberléD. HegartyB. BossardP. FerréP. FoufelleF. SREBP transcription factors: Master regulators of lipid homeostasis.Biochimie2004861183984810.1016/j.biochi.2004.09.018 15589694
    [Google Scholar]
  3. ShimanoH. SatoR. SREBP-regulated lipid metabolism: Convergent physiology — divergent pathophysiology.Nat. Rev. Endocrinol.2017131271073010.1038/nrendo.2017.91 28849786
    [Google Scholar]
  4. ZhaoC. Dahlman-WrightK. Liver X receptor in cholesterol metabolism.J. Endocrinol.2010204323324010.1677/JOE‑09‑0271 19837721
    [Google Scholar]
  5. BonetM.L. RibotJ. PalouA. Lipid metabolism in mammalian tissues and its control by retinoic acid.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20121821117718910.1016/j.bbalip.2011.06.001 21669299
    [Google Scholar]
  6. PetersenM.C. ShulmanG.I. Mechanisms of insulin action and insulin resistance.Physiol. Rev.20189842133222310.1152/physrev.00063.2017 30067154
    [Google Scholar]
  7. UngerR.H. ClarkG.O. SchererP.E. OrciL. Lipid homeostasis, lipotoxicity and the metabolic syndrome.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20101801320921410.1016/j.bbalip.2009.10.006 19948243
    [Google Scholar]
  8. HanL. ShenW.J. BittnerS. KraemerF.B. AzharS. PPARs: Regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ.Future Cardiol.201713327929610.2217/fca‑2017‑0019 28581362
    [Google Scholar]
  9. WangB. TontonozP. Liver X receptors in lipid signalling and membrane homeostasis.Nat. Rev. Endocrinol.201814845246310.1038/s41574‑018‑0037‑x 29904174
    [Google Scholar]
  10. MussoG. CassaderM. PaschettaE. GambinoR. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis.Gastroenterology20181552282302.e810.1053/j.gastro.2018.06.031 29906416
    [Google Scholar]
  11. DuszkaK. OresicM. Le MayC. KönigJ. WahliW. PPARγ modulates long chain fatty acid processing in the intestinal epithelium.Int. J. Mol. Sci.20171812255910.3390/ijms18122559 29182565
    [Google Scholar]
  12. BettersJ.L. YuL. NPC1L1 and cholesterol transport.FEBS Lett.2010584132740274710.1016/j.febslet.2010.03.030 20307540
    [Google Scholar]
  13. GeL. WangJ. QiW. MiaoH.H. CaoJ. QuY.X. LiB.L. SongB.L. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1.Cell Metab.20087650851910.1016/j.cmet.2008.04.001 18522832
    [Google Scholar]
  14. LuoJ. YangH. SongB.L. Mechanisms and regulation of cholesterol homeostasis.Nat. Rev. Mol. Cell Biol.202021422524510.1038/s41580‑019‑0190‑7 31848472
    [Google Scholar]
  15. JiaL. BettersJ.L. YuL. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport.Annu. Rev. Physiol.201173123925910.1146/annurev‑physiol‑012110‑142233 20809793
    [Google Scholar]
  16. LiX. XinY. MoY. MarozikP. HeT. GuoH. The bioavailability and biological activities of phytosterols as modulators of cholesterol metabolism.Molecules202227252310.3390/molecules27020523 35056839
    [Google Scholar]
  17. LlaveriasG. AlegretM. Inhibidores de la acil coenzima A:Colesterol aciltransferasa (ACAT): Mecanismos y perspectivas terapéuticas.Clin. Investig. Arterioscler.200416625026110.1016/S0214‑9168(04)79002‑6
    [Google Scholar]
  18. YuX.H. ZhengX.L. TangC.K. Peroxisome proliferator-activated receptor α in lipid metabolism and atherosclerosis.Adv. Clin. Chem.201571201517120310.1016/bs.acc.2015.06.005
    [Google Scholar]
  19. SmetE.D. MensinkR.P. PlatJ. Effects of plant sterols and stanols on intestinal cholesterol metabolism: Suggested mechanisms from past to present.Mol. Nutr. Food Res.20125671058107210.1002/mnfr.201100722 22623436
    [Google Scholar]
  20. QiaoY.N. ZouY.L. GuoS.D. Low-density lipoprotein particles in atherosclerosis.Front. Physiol.20221393193110.3389/fphys.2022.931931 36111155
    [Google Scholar]
  21. OuimetM. BarrettT.J. FisherE.A. HDL and reverse cholesterol transport: Basic mechanisms and their roles in vascular health and disease.Circ. Res.2019124101505151810.1161/CIRCRESAHA.119.312617 31071007
    [Google Scholar]
  22. BerberichA.J. HegeleR.A. A modern approach to dyslipidemia.Endocr. Rev.202243461165310.1210/endrev/bnab037 34676866
    [Google Scholar]
  23. LiuY. ColbyJ.K. ZuoX. JaoudeJ. WeiD. ShureiqiI. The role of ppar-δ in metabolism, inflammation, and cancer: Many characters of a critical transcription factor.Int. J. Mol. Sci.20181911333910.3390/ijms19113339 30373124
    [Google Scholar]
  24. KimH.S. HwangY.C. KooS.H. ParkK.S. LeeM.S. KimK.W. LeeM.K. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells.PLoS One201381e5012810.1371/journal.pone.0050128 23372643
    [Google Scholar]
  25. DeBose-BoydR.A. YeJ. SREBPs in lipid metabolism, insulin signaling, and beyond.Trends Biochem. Sci.201843535836810.1016/j.tibs.2018.01.005 29500098
    [Google Scholar]
  26. RaghowR. YellaturuC. DengX. ParkE.A. ElamM.B. SREBPs: the crossroads of physiological and pathological lipid homeostasis.Trends Endocrinol. Metab.2008192657310.1016/j.tem.2007.10.009 18291668
    [Google Scholar]
  27. DasM. v, G.; Zarei, M.; Harohally, N.V.; Kumar G, S. Modulation of obesity associated metabolic dysfunction by novel lipophilic fraction obtained from agaricus bisporus.Life Sci.202230512077910.1016/j.lfs.2022.120779 35798070
    [Google Scholar]
  28. GalleM. KladniewB.R. CastroM.A. VillegasS.M. LacunzaE. PoloM. de BravoM.G. CrespoR. Modulation by geraniol of gene expression involved in lipid metabolism leading to a reduction of serum-cholesterol and triglyceride levels.Phytomedicine2015227-869670410.1016/j.phymed.2015.04.005 26141755
    [Google Scholar]
  29. KojtaI. ChacińskaM. Błachnio-ZabielskaA. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance.Nutrients2020125130510.3390/nu12051305 32375231
    [Google Scholar]
  30. OdaE. Metabolic syndrome: Its history, mechanisms, and limitations.Acta Diabetol.2012492899510.1007/s00592‑011‑0309‑6 21720880
    [Google Scholar]
  31. BakerR.G. HaydenM.S. GhoshS. NF-κB, inflammation, and metabolic disease.Cell Metab.2011131112210.1016/j.cmet.2010.12.008 21195345
    [Google Scholar]
  32. Adeva-AndanyM.M. Pérez-FelpeteN. Fernández-FernándezC. Donapetry-GarcíaC. Pazos-GarcíaC. Liver glucose metabolism in humans.Biosci. Rep.2016366e0041610.1042/BSR20160385 27707936
    [Google Scholar]
  33. PetersenM.C. VatnerD.F. ShulmanG.I. Regulation of hepatic glucose metabolism in health and disease.Nat. Rev. Endocrinol.2017131057258710.1038/nrendo.2017.80 28731034
    [Google Scholar]
  34. de CastroG.S. CalderP.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids.Clin. Nutr.2018371375510.1016/j.clnu.2017.01.006 28139281
    [Google Scholar]
  35. JiX. ShiS. LiuB. ShanM. TangD. ZhangW. ZhangY. ZhangL. ZhangH. LuC. WangY. Bioactive compounds from herbal medicines to manage dyslipidemia.Biomed. Pharmacother.201911810933810.1016/j.biopha.2019.109338 31545238
    [Google Scholar]
  36. TanN.S. Vázquez-CarreraM. MontagnerA. SngM.K. GuillouH. WahliW. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ.Prog. Lipid Res.2016649812210.1016/j.plipres.2016.09.001 27665713
    [Google Scholar]
  37. MalihaS. GuoG.L. Farnesoid X receptor and fibroblast growth factor 15/19 as pharmacological targets.Liver Res.20215314215010.1016/j.livres.2021.02.002
    [Google Scholar]
  38. ArmstrongL.E. GuoG.L. Role of FXR in liver inflammation during nonalcoholic steatohepatitis.Curr. Pharmacol. Rep.2017329210010.1007/s40495‑017‑0085‑2 28983452
    [Google Scholar]
  39. KhalidQ BaileyI PatelVB The Effect of Bile Acids and Farnesoid X Receptor Agonists on Pathophysiology and Treatment.Liver Res Open J.201513240
    [Google Scholar]
  40. NagaoK. YanagitaT. Medium-chain fatty acids: Functional lipids for the prevention and treatment of the metabolic syndrome.Pharmacol. Res.201061320821210.1016/j.phrs.2009.11.007 19931617
    [Google Scholar]
  41. ImS.S. OsborneT.F. Liver x receptors in atherosclerosis and inflammation.Circ. Res.20111088996100110.1161/CIRCRESAHA.110.226878 21493922
    [Google Scholar]
  42. Kanigur SultuybekG. SoydasT. YenmisG. NF ‐κB as the mediator of metformin’s effect on ageing and ageing‐related diseases.Clin. Exp. Pharmacol. Physiol.201946541342210.1111/1440‑1681.13073 30754072
    [Google Scholar]
  43. LambertS.A. JolmaA. CampitelliL.F. DasP.K. YinY. AlbuM. ChenX. TaipaleJ. HughesT.R. WeirauchM.T. The human transcription factors.Cell2018172465066510.1016/j.cell.2018.01.029 29425488
    [Google Scholar]
  44. WangY. NakajimaT. GonzalezF.J. TanakaN. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice.Int. J. Mol. Sci.2020216206110.3390/ijms21062061 32192216
    [Google Scholar]
  45. HanL. ShenW.J. BittnerS. KraemerF.B. AzharS. PPARs: Regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α.Future Cardiol.201713325927810.2217/fca‑2016‑0059 28581332
    [Google Scholar]
  46. CapeceD. VerzellaD. FlatiI. ArborettoP. CorniceJ. FranzosoG. NF-κB: Blending metabolism, immunity, and inflammation.Trends Immunol.202243975777510.1016/j.it.2022.07.004 35965153
    [Google Scholar]
  47. LiuT. ZhangL. JooD. SunS.C. NF-κB signaling in inflammation.Signal Transduct. Target. Ther.20172119
    [Google Scholar]
  48. MitchellJ.P. Carmody, RJ NF-κB and the transcriptional control of inflammation.Int. Rev. Cell Mol. Biol.20183354184
    [Google Scholar]
  49. CalderP.C. Functional roles of fatty acids and their effects on human health.JPEN J. Parenter. Enteral Nutr.2015391SSuppl.18S32S10.1177/0148607115595980 26177664
    [Google Scholar]
  50. WatanabeM. UesugiM. Small-molecule inhibitors of SREBP activation - potential for new treatment of metabolic disorders.MedChemComm20134111422143310.1039/c3md00177f
    [Google Scholar]
  51. Bengoechea-AlonsoM.T. EricssonJ. SREBP in signal transduction: Cholesterol metabolism and beyond.Curr. Opin. Cell Biol.200719221522210.1016/j.ceb.2007.02.004 17303406
    [Google Scholar]
  52. ChuK. MiyazakiM. ManW.C. NtambiJ.M. Stearoyl-CoenzymeA. Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation.Mol. Cell. Biol.200626186786679810.1128/MCB.00077‑06 16943421
    [Google Scholar]
  53. SatoR. Sterol metabolism and SREBP activation.Arch. Biochem. Biophys.2010501217718110.1016/j.abb.2010.06.004 20541520
    [Google Scholar]
  54. RustanA.C. DrevonC.A. Fatty acids: Structures and properties.WileyJohn Wiley & Sons, Ltd200529198
    [Google Scholar]
  55. PrioreP. SiculellaL. GnoniG.V. Extra virgin olive oil phenols down-regulate lipid synthesis in primary-cultured rat-hepatocytes.J. Nutr. Biochem.201425768369110.1016/j.jnutbio.2014.01.009 24742469
    [Google Scholar]
  56. CaoK. XuJ. ZouX. LiY. ChenC. ZhengA. LiH. LiH. SzetoI.M.Y. ShiY. LongJ. LiuJ. FengZ. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice.Free Radic. Biol. Med.20146739640710.1016/j.freeradbiomed.2013.11.029 24316371
    [Google Scholar]
  57. PerdomoL. BeneitN. OteroY.F. EscribanoÓ. Díaz-CastroverdeS. Gómez-HernándezA. BenitoM. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process.Cardiovasc. Diabetol.20151417510.1186/s12933‑015‑0237‑9 26055507
    [Google Scholar]
  58. WicińskiM. ErdmannJ. NowackaA. KuźmińskiO. MichalakK. JanowskiK. OhlaJ. BiernaciakA. SzambelanM. ZabrzyńskiJ. Natural phytochemicals as SIRT activators—focus on potential biochemical mechanisms.Nutrients20231516357810.3390/nu15163578 37630770
    [Google Scholar]
  59. JumpD.B. Dietary polyunsaturated fatty acids and regulation of gene transcription.Annu. Rev. Nutr.2002148398
    [Google Scholar]
  60. BackesJ. AnzaloneD. HillemanD. CatiniJ. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia.Lipids Health Dis.201615111810.1186/s12944‑016‑0286‑4 27444154
    [Google Scholar]
  61. Rodríguez-CruzM. TovarA.R. del PradoM. TorresN. Molecular mechanisms of action and health benefits of polyunsaturated fatty acids.Rev. Invest. Clin.2005573457472 16187707
    [Google Scholar]
  62. PengA. LiuS. FangL. ZhuZ. ZhouY. YueS. MaZ. LiuX. XueS. QiuY. QiR. Inonotus obliquus and its bioactive compounds alleviate non-alcoholic fatty liver disease via regulating FXR/SHP/SREBP-1c axis.Eur. J. Pharmacol.202292117484110.1016/j.ejphar.2022.174841 35278405
    [Google Scholar]
  63. TangJ.J. LiJ.G. QiW. QiuW.W. LiP.S. LiB.L. SongB.L. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques.Cell Metab.2011131445610.1016/j.cmet.2010.12.004 21195348
    [Google Scholar]
  64. HuX.Q. WangY.M. WangJ.F. XueY. LiZ.J. NagaoK. YanagitaT. XueC.H. Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARα and SREBP-1c signaling.Lipids Health Dis.2010912510.1186/1476‑511X‑9‑25 20211032
    [Google Scholar]
  65. TakP.P. FiresteinG.S. NF-κB: a key role in inflammatory diseases.J. Clin. Invest.2001107171110.1172/JCI11830 11134171
    [Google Scholar]
  66. PomerantzJ.L. BaltimoreD. Two Pathways to NF-κB.Mol. Cell200210469369510.1016/S1097‑2765(02)00697‑4 12419209
    [Google Scholar]
  67. YuX.H. ZhengX.L. TangC.K. Nuclear factor-κb activation as a pathological mechanism of lipid metabolism and atherosclerosis.Adv. Clin. Chem.20157013010.1016/bs.acc.2015.03.004
    [Google Scholar]
  68. HaydenM.S. GhoshS. NF-κB in immunobiology.Cell Res.201121222324410.1038/cr.2011.13 21243012
    [Google Scholar]
  69. AlbensiB.C. What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion?Front. Cell Dev. Biol.2019715410.3389/fcell.2019.00154 31448275
    [Google Scholar]
  70. LingappanK. NF-κB in oxidative stress.Curr. Opin. Toxicol.20187818610.1016/j.cotox.2017.11.002 29862377
    [Google Scholar]
  71. ChristianF. SmithE. CarmodyR. The regulation of NF-кB Subunits by Phosphorylation.Cells2016511210.3390/cells5010012 26999213
    [Google Scholar]
  72. YuH. LinL. ZhangZ. ZhangH. HuH. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study.Signal Transduct. Target. Ther.20205120910.1038/s41392‑020‑00312‑6
    [Google Scholar]
  73. ZhangH. SunS.C. NF-KB in inflammation and renal diseases.Cell Biosci.20155
    [Google Scholar]
  74. IskenderH. YeniceG. Terim KapakinK.A. DokumaciogluE. SevimC. HayirliA. AltunS. Effects of high fructose diet on lipid metabolism and the hepatic NF-κB/SIRT-1 pathway.Biotech. Histochem.2022971303810.1080/10520295.2021.1890214 33629622
    [Google Scholar]
  75. KapoorB. KapoorD. GautamS. SinghR. BhardwajS. Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits.Curr. Nutr. Rep.202110323224210.1007/s13668‑021‑00363‑3 34255301
    [Google Scholar]
  76. Pinazo-DuranM.D. Boscá-GomarL. [Anti-inflammatory properties of polyunsaturated fatty acid omega 3. Indications in ophthalmology].Arch. Soc. Esp. Oftalmol.201287720320510.1016/j.oftal.2012.04.003 22732118
    [Google Scholar]
  77. DraperE. ReynoldsC.M. CanavanM. MillsK.H. LoscherC.E. RocheH.M. Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ.J. Nutr. Biochem.201122878479010.1016/j.jnutbio.2010.06.009 21111596
    [Google Scholar]
  78. SainiR.K. KeumY.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance — A review.Life Sci.201820325526710.1016/j.lfs.2018.04.049 29715470
    [Google Scholar]
  79. ZhangX. XueC. XuQ. ZhangY. LiH. LiF. LiuY. GuoC. Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice.Nutr. Metab. (Lond.)20191614010.1186/s12986‑019‑0359‑2
    [Google Scholar]
  80. NiY. NagashimadaM. ZhugeF. ZhanL. NagataN. TsutsuiA. NakanumaY. KanekoS. OtaT. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E.Sci. Rep.2015511719210.1038/srep17192 26603489
    [Google Scholar]
  81. JayaramanS. DevarajanN. RajagopalP. BabuS. GanesanS.K. VeeraraghavanV.P. PalanisamyC.P. CuiB. PeriyasamyV. ChandrasekarK. β-sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats.Molecules2021267210110.3390/molecules26072101 33917607
    [Google Scholar]
  82. RühlR. LandrierJ.F. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors.Mol. Nutr. Food Res.201660117518410.1002/mnfr.201500619 26610729
    [Google Scholar]
  83. WangY. ParkN.Y. JangY. MaA. JiangQ. Vitamin E γ-Tocotrienol inhibits cytokine-stimulated nf-κb activation by induction of anti-inflammatory a20 via stress adaptive response due to modulation of sphingolipids.J. Immunol.2015195112613310.4049/jimmunol.1403149 26002975
    [Google Scholar]
  84. ShirakuraY. TakayanagiK. MukaiK. TanabeH. InoueM. β-cryptoxanthin suppresses the adipogenesis of 3T3-L1 cells via RAR activation.J. Nutr. Sci. Vitaminol. (Tokyo)201157642643110.3177/jnsv.57.426 22472285
    [Google Scholar]
  85. MatsumotoA. MizukamiH. MizunoS. UmegakiK. NishikawaJ. ShudoK. KagechikaH. InoueM. β-Cryptoxanthin, a novel natural RAR ligand, induces ATP-binding cassette transporters in macrophages.Biochem. Pharmacol.200774225626410.1016/j.bcp.2007.04.014 17521617
    [Google Scholar]
  86. Zapata-GonzalezF. RuedaF. PetrizJ. DomingoP. VillarroyaF. Diaz-DelfinJ. de MadariagaM.A. DomingoJ.C. Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPARγ:RXR heterodimers: comparison with other polyunsaturated fatty acids.J. Leukoc. Biol.20088441172118210.1189/jlb.1007688 18632990
    [Google Scholar]
  87. ManninoG. IovinoP. LauriaA. GenovaT. AsteggianoA. NotarbartoloM. PorcuA. SerioG. ChinigòG. OcchipintiA. CapuzzoA. MedanaC. MunaronL. GentileC. Bioactive triterpenes of protium heptaphyllum gum resin extract display cholesterol-lowering potential.Int. J. Mol. Sci.2021225266410.3390/ijms22052664 33800828
    [Google Scholar]
  88. MachadoM. CostaE.M. SilvaS. Rodriguez-AlcaláL.M. GomesA.M. PintadoM. Pomegranate oil’s potential as an anti-obesity ingredient.Molecules20222715495810.3390/molecules27154958 35956908
    [Google Scholar]
  89. YuJ. YuB. JiangH. ChenD. Conjugated linoleic acid induces hepatic expression of fibroblast growth factor 21 through PPAR-α.Br. J. Nutr.2012107446146510.1017/S0007114511003205 21767451
    [Google Scholar]
  90. SongS. AttiaR.R. ConnaughtonS. NiesenM.I. NessG.C. ElamM.B. HoriR.T. CookG.A. ParkE.A. Peroxisome proliferator activated receptor α (PPARα) and PPAR gamma coactivator (PGC-1α) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements.Mol. Cell. Endocrinol.20103251-2546310.1016/j.mce.2010.05.019 20638986
    [Google Scholar]
  91. KimY. ParkY. Conjugated linoleic acid (CLA) stimulates mitochondrial biogenesis signaling by the upregulation of PPARγ coactivator 1α (PGC-1α) in C2C12 cells.Lipids201550432933810.1007/s11745‑015‑4000‑5 25720738
    [Google Scholar]
  92. den BestenG. BleekerA. GerdingA. van EunenK. HavingaR. van DijkT.H. OosterveerM.H. JonkerJ.W. GroenA.K. ReijngoudD.J. BakkerB.M. Short-chain fatty acids protect against high-fat diet-induced obesity via a pparg-dependent switch from lipogenesis to fat oxidation.Diabetes20156472398240810.2337/db14‑1213 25695945
    [Google Scholar]
  93. YenugantiV.R. RavinderR. SinghD. Conjugated linoleic acids attenuate LPS-induced pro-inflammatory gene expression by inhibiting the NF-κB translocation through PPARγ in buffalo granulosa cells.Am. J. Reprod. Immunol.201472329630410.1111/aji.12261 24798202
    [Google Scholar]
  94. RamiahS.K. MengG.Y. Sheau WeiT. Swee KeongY. EbrahimiM. Dietary conjugated linoleic acid supplementation leads to downregulation of ppar transcription in broiler chickens and reduction of adipocyte cellularity.PPAR Res.2014201413765210.1155/2014/137652
    [Google Scholar]
  95. ZouJ. FengD. Lycopene reduces cholesterol absorption through the downregulation of Niemann‐Pick C1‐like 1 in Caco‐2 cells.Mol. Nutr. Food Res.201559112225223010.1002/mnfr.201500221 26264562
    [Google Scholar]
  96. XuJ. WangY.M. FengT.Y. ZhangB. SugawaraT. XueC.H. Isolation and anti-fatty liver activity of a novel cerebroside from the sea cucumber acaudina molpadioides.Biosci. Biotechnol. Biochem.20117581466147110.1271/bbb.110126 21821952
    [Google Scholar]
  97. ZhengJ. LiZ. ManabeY. KimM. GotoT. KawadaT. SugawaraT. Siphonaxanthin, a carotenoid from green algae, inhibits lipogenesis in hepatocytes via the suppression of liver X receptor α activity.Lipids2018531415210.1002/lipd.12002 29446839
    [Google Scholar]
  98. ZhaoA. YuJ. LewJ.L. HuangL. WrightS.D. CuiJ. Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets.DNA Cell Biol.200423851952610.1089/1044549041562267 15307955
    [Google Scholar]
  99. Elvira-ToralesL.I. Navarro-GonzálezI. González-BarrioR. Martín-PozueloG. DoménechG. SevaJ. García-AlonsoJ. Periago-CastónM.J. Tomato juice supplementation influences the gene expression related to steatosis in rats.Nutrients2018109121510.3390/nu10091215 30200543
    [Google Scholar]
  100. DengR. YangD. RadkeA. YangJ. YanB. The hypolipidemic agent guggulsterone regulates the expression of human bile salt export pump: dominance of transactivation over farsenoid X receptor-mediated antagonism.J. Pharmacol. Exp. Ther.200732031153116210.1124/jpet.106.113837 17135343
    [Google Scholar]
  101. OwsleyE. ChiangJ.Y.L. Guggulsterone antagonizes farnesoid X receptor induction of bile salt export pump but activates pregnane X receptor to inhibit cholesterol 7α-hydroxylase gene.Biochem. Biophys. Res. Commun.2003304119119510.1016/S0006‑291X(03)00551‑5 12705905
    [Google Scholar]
  102. LiuW. WongC. Oleanolic acid is a selective farnesoid X receptor modulator.Phytother. Res.201024336937310.1002/ptr.2948 19653193
    [Google Scholar]
  103. OosterveerM.H. GrefhorstA. GroenA.K. KuipersF. The liver X receptor: Control of cellular lipid homeostasis and beyond.Prog. Lipid Res.201049434335210.1016/j.plipres.2010.03.002 20363253
    [Google Scholar]
  104. HollmanD.A.A. MilonaA. van ErpecumK.J. van MilS.W.C. Anti-inflammatory and metabolic actions of FXR: Insights into molecular mechanisms.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20121821111443145210.1016/j.bbalip.2012.07.004 22820415
    [Google Scholar]
  105. LiB. CaiS.Y. BoyerJ.L. The role of the retinoid receptor, RAR/RXR heterodimer, in liver physiology.Biochim. Biophys. Acta Mol. Basis Dis.202118675166085
    [Google Scholar]
  106. KrężelW. RühlR. de LeraA.R. Alternative retinoid X receptor (RXR) ligands.Mol. Cell. Endocrinol.201949111043610.1016/j.mce.2019.04.016 31026478
    [Google Scholar]
  107. NguyenP. LerayV. DiezM. SerisierS. Bloc’hJ.L. SiliartB. DumonH. Liver lipid metabolism.J. Anim. Physiol. Anim. Nutr. (Berl.)200892327228310.1111/j.1439‑0396.2007.00752.x 18477307
    [Google Scholar]
  108. ChenG. The interactions of insulin and vitamin a signaling systems for the regulation of hepatic glucose and lipid metabolism.Cells2021108216010.3390/cells10082160 34440929
    [Google Scholar]
  109. KlörH.U. WeizelA. AugustinM. DiepgenT.L. ElsnerP. HomeyB. KappA. RuzickaT. LugerT. The impact of oral vitamin A derivatives on lipid metabolism - What recommendations can be derived for dealing with this issue in the daily dermatological practice?J. Dtsch. Dermatol. Ges.20119860060610.1111/j.1610‑0387.2011.07637.x 21392258
    [Google Scholar]
  110. JumpD.B. LytleK.A. DepnerC.M. TripathyS. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease.Pharmacol. Ther.201818110812510.1016/j.pharmthera.2017.07.007 28723414
    [Google Scholar]
  111. RemmerieA. ScottC.L. Macrophages and lipid metabolism.Cell. Immunol.2018330274210.1016/j.cellimm.2018.01.020 29429624
    [Google Scholar]
  112. MoiseA.R. AlvarezS. DomínguezM. AlvarezR. GolczakM. LoboG.P. von LintigJ. de LeraA.R. PalczewskiK. Activation of retinoic acid receptors by dihydroretinoids.Mol. Pharmacol.20097661228123710.1124/mol.109.060038 19770350
    [Google Scholar]
  113. BougarneN. WeyersB. DesmetS.J. DeckersJ. RayD.W. StaelsB. De BosscherK. Molecular actions of PPARα in lipid metabolism and inflammation.Endocr. Rev.201839576080210.1210/er.2018‑00064 30020428
    [Google Scholar]
  114. DuboisV. EeckhouteJ. LefebvreP. StaelsB. Distinct but complementary contributions of PPAR isotypes to energy homeostasis.J. Clin. Invest.201712741202121410.1172/JCI88894 28368286
    [Google Scholar]
  115. MontaigneD. ButruilleL. StaelsB. PPAR control of metabolism and cardiovascular functions.Nat. Rev. Cardiol.2021181280982310.1038/s41569‑021‑00569‑6 34127848
    [Google Scholar]
  116. ChristofidesA. KonstantinidouE. JaniC. BoussiotisV.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses.Metabolism202111415433810.1016/j.metabol.2020.154338 32791172
    [Google Scholar]
  117. AgarwalS. YadavA. ChaturvediR.K. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders.Biochem. Biophys. Res. Commun.201748341166117710.1016/j.bbrc.2016.08.043 27514452
    [Google Scholar]
  118. PawlakM. LefebvreP. StaelsB. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease.J. Hepatol.201562372073310.1016/j.jhep.2014.10.039 25450203
    [Google Scholar]
  119. ZhouS. YouH. QiuS. YuD. BaiY. HeJ. CaoH. CheQ. GuoJ. SuZ. A new perspective on NAFLD: Focusing on the crosstalk between peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR).Biomed. Pharmacother.202215411357710.1016/j.biopha.2022.113577
    [Google Scholar]
  120. HeY. YangW. GanL. LiuS. NiQ. BiY. HanT. LiuQ. ChenH. HuY. LongY. YangL. Silencing HIF-1α aggravates non-alcoholic fatty liver disease in vitro through inhibiting PPAR-α/ANGPTL4 singling pathway.Gastroenterol. Hepatol.202144535536510.1016/j.gastrohep.2020.09.014 33272734
    [Google Scholar]
  121. MontagnerA. PolizziA. FouchéE. DucheixS. LippiY. LasserreF. BarquissauV. RégnierM. LukowiczC. BenhamedF. IrozA. Bertrand-MichelJ. Al SaatiT. CanoP. Mselli-LakhalL. MithieuxG. RajasF. LagarrigueS. PineauT. LoiseauN. PosticC. LanginD. WahliW. GuillouH. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD.Gut20166571202121410.1136/gutjnl‑2015‑310798 26838599
    [Google Scholar]
  122. GnoniG.V. PrioreP. GeelenM.J.H. SiculellaL. The mitochondrial citrate carrier: Metabolic role and regulation of its activity and expression.IUBMB Life2009611098799410.1002/iub.249 19787704
    [Google Scholar]
  123. KadayatT.M. ShresthaA. JeonY.H. AnH. KimJ. ChoS.J. ChinJ. Targeting peroxisome proliferator-activated receptor delta (PPARδ): A medicinal chemistry perspective.J. Med. Chem.20206318101091013410.1021/acs.jmedchem.9b01882 32539376
    [Google Scholar]
  124. BaysH.E. SchwartzS. LittlejohnT.III KerznerB. KraussR.M. KarpfD.B. ChoiY.J. WangX. NaimS. RobertsB.K. MBX-8025, a novel peroxisome proliferator receptor-δ agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin.J. Clin. Endocrinol. Metab.20119692889289710.1210/jc.2011‑1061 21752880
    [Google Scholar]
  125. Chinetti-GbaguidiG. StaelsB. PPARβ in macrophages and atherosclerosis.Biochimie2017136596410.1016/j.biochi.2016.12.008 28011212
    [Google Scholar]
  126. LeeH.J. YeonJ.E. KoE.J. YoonE.L. SuhS.J. KangK. KimH.R. KangS.H. YooY.J. JeJ. LeeB.J. KimJ.H. SeoY.S. YimH.J. ByunK.S. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease.World J. Gastroenterol.20152145127871279910.3748/wjg.v21.i45.12787 26668503
    [Google Scholar]
  127. ZareiM. Aguilar-RecarteD. PalomerX. Vázquez-CarreraM. Revealing the role of peroxisome proliferator-activated receptor β/δ in nonalcoholic fatty liver disease.Metabolism202111415434210.1016/j.metabol.2020.154342 32810487
    [Google Scholar]
  128. JananiC. Ranjitha KumariB.D. PPAR gamma gene - A review.Diabetes Metab. Syndr.201591465010.1016/j.dsx.2014.09.015 25450819
    [Google Scholar]
  129. YuanG. ChenX. LiD. Modulation of peroxisome proliferator-activated receptor gamma (PPAR γ) by conjugated fatty acid in obesity and inflammatory bowel disease.J. Agric. Food Chem.20156371883189510.1021/jf505050c 25634802
    [Google Scholar]
  130. YuJ. QiuY. YangJ. BianS. ChenG. DengM. KangH. HuangL. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice.Sci. Rep.2016613005310.1038/srep30053 27530451
    [Google Scholar]
  131. A, R.; Agrawal, N.; Kumar, H.; Nath, V.; Kumar, V. Norbixin, an apocarotenoid derivative activates PPARγ in cardiometabolic syndrome: Validation by in silico and in vivo experimental assessment.Life Sci.2018209697710.1016/j.lfs.2018.08.001 30076922
    [Google Scholar]
  132. BuñayJ. FouacheA. TroussonA. de JoussineauC. BoucharebE. ZhuZ. KocerA. MorelL. BaronS. LobaccaroJ.M.A. Screening for liver X receptor modulators: Where are we and for what use?Br. J. Pharmacol.2021178163277329310.1111/bph.15286 33080050
    [Google Scholar]
  133. GabbiC. WarnerM. GustafssonJ.Å. Action mechanisms of Liver X Receptors.Biochem. Biophys. Res. Commun.2014446364765010.1016/j.bbrc.2013.11.077 24300092
    [Google Scholar]
  134. WangL. SchusterG.U. HultenbyK. ZhangQ. AnderssonS. GustafssonJ.Å. Liver X receptors in the central nervous system: From lipid homeostasis to neuronal degeneration.Proc. Natl. Acad. Sci. USA20029921138781388310.1073/pnas.172510899 12368482
    [Google Scholar]
  135. KomatiR. SpadoniD. ZhengS. SridharJ. RileyK. WangG. Ligands of therapeutic utility for the liver X Receptors.Molecules20172218810.3390/molecules22010088 28067791
    [Google Scholar]
  136. MoschettaA. Nuclear receptors and cholesterol metabolism in the intestine.Atheroscler. Suppl.20151791110.1016/S1567‑5688(15)50003‑2 25659870
    [Google Scholar]
  137. LinC.Y. GustafssonJ.Å. Targeting liver X receptors in cancer therapeutics.Nat. Rev. Cancer201515421622410.1038/nrc3912 25786697
    [Google Scholar]
  138. LeeS.D. TontonozP. Liver X receptors at the intersection of lipid metabolism and atherogenesis.Atherosclerosis20152421293610.1016/j.atherosclerosis.2015.06.042 26164157
    [Google Scholar]
  139. SchulmanI.G. Liver X receptors link lipid metabolism and inflammation.FEBS Lett.2017591192978299110.1002/1873‑3468.12702 28555747
    [Google Scholar]
  140. HongC. TontonozP. Liver X receptors in lipid metabolism: Opportunities for drug discovery.Nat. Rev. Drug Discov.201413643344410.1038/nrd4280 24833295
    [Google Scholar]
  141. UeharaY. MiuraS. von EckardsteinA. AbeS. FujiiA. MatsuoY. RustS. LorkowskiS. AssmannG. YamadaT. SakuK. Unsaturated fatty acids suppress the expression of the ATP-binding cassette transporter G1 (ABCG1) and ABCA1 genes via an LXR/RXR responsive element.Atherosclerosis20071911112110.1016/j.atherosclerosis.2006.04.018 16730733
    [Google Scholar]
  142. KhotimchenkoY. Pharmacological potential of sea cucumbers.Int. J. Mol. Sci.2018195134210.3390/ijms19051342 29724051
    [Google Scholar]
  143. YaoD.W. LuoJ. HeQ.Y. XuH.F. LiJ. ShiH.B. WangH. ChenZ. LoorJ.J. Liver X receptor α promotes the synthesis of monounsaturated fatty acids in goat mammary epithelial cells via the control of stearoyl-coenzyme A desaturase 1 in an SREBP-1-dependent manner.J. Dairy Sci.20169986391640210.3168/jds.2016‑10990 27209141
    [Google Scholar]
  144. Calpe-BerdielL. Escolà-GilJ.C. Blanco-VacaF. New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism.Atherosclerosis20092031183110.1016/j.atherosclerosis.2008.06.026 18692849
    [Google Scholar]
  145. HieblV. LadurnerA. LatkolikS. DirschV.M. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR.Biotechnol. Adv.20183661657169810.1016/j.biotechadv.2018.03.003 29548878
    [Google Scholar]
  146. TanakaN. AoyamaT. KimuraS. GonzalezF.J. Targeting nuclear receptors for the treatment of fatty liver disease.Pharmacol. Ther.201717914215710.1016/j.pharmthera.2017.05.011 28546081
    [Google Scholar]
  147. CaveM.C. ClairH.B. HardestyJ.E. FalknerK.C. FengW. ClarkB.J. SideyJ. ShiH. AqelB.A. McClainC.J. ProughR.A. Nuclear receptors and nonalcoholic fatty liver disease.Biochim. Biophys. Acta. Gene Regul. Mech.2016185991083109910.1016/j.bbagrm.2016.03.002 26962021
    [Google Scholar]
  148. WildenbergM.E. van den BrinkG.R. FXR activation inhibits inflammation and preserves the intestinal barrier in IBD.Gut201160443243310.1136/gut.2010.233304 21270116
    [Google Scholar]
  149. ZhaoY. MaD.X. WangH.G. LiM.Z. TalukderM. WangH.R. LiJ.L. Lycopene prevents dehp-induced liver lipid metabolism disorder by inhibiting the HIF-1α-induced PPARα/PPARγ/FXR/LXR system.J. Agric. Food Chem.20206841114681147910.1021/acs.jafc.0c05077 32962341
    [Google Scholar]
  150. XieZ. JiangH. LiuW. ZhangX. ChenD. SunS. ZhouC. LiuJ. BaoS. WangX. ZhangY. LiJ. HuL. LiJ. The triterpenoid sapogenin (2α-OH-Protopanoxadiol) ameliorates metabolic syndrome via the intestinal FXR/GLP-1 axis through gut microbiota remodelling.Cell Death Dis.202011977010.1038/s41419‑020‑02974‑0
    [Google Scholar]
  151. VasuS. MoffettR.C. McClenaghanN.H. FlattP.R. Differential molecular and cellular responses of GLP-1 secreting L-cells and pancreatic alpha cells to glucotoxicity and lipotoxicity.Exp. Cell Res.2015336110010810.1016/j.yexcr.2015.05.022 26027945
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010340506241014112341
Loading
/content/journals/cpb/10.2174/0113892010340506241014112341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test