Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

This study investigates whether edible insects may be used as a sustainable protein source. This study covers insect proteins, their defatting process and extraction, health advantages, economic and environmental impacts, safety considerations, and regulatory aspects. This review also investigates the ecological benefits of insect farming and consumer acceptance of this dietary trend. A systematic search of the pertinent literature was conductedto collect data for this review. Current research examines the effects of using edible insects as functional, sustainable reservoirs of proteins, including protein screening, extraction methods, health benefits, and social recognition. The varied isolation techniques considerably affect protein amount and quality. This review clarifies the broad spectrum of proteins in edible insects, particularly their nutritional importance and effective extraction methods. The viability of insects as a sustainable source of protein is highlighted by the safety considerations and the interaction of economic and ecological considerations with complex consumer characteristics.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010304177240513063721
2024-05-27
2025-09-02
Loading full text...

Full text loading...

References

  1. ProspectsU.N. Highlights (ST/ESA/SER. A/423): United Nations, Department of Economic and Social Affairs, Population Division.World Population2019
    [Google Scholar]
  2. MittalR.K. PurohitP. SankaranarayananM. Muzaffar-Ur-RehmanM. TaramelliD. SignoriniL. DolciM. BasilicoN. In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-Cov-2 isolate.Mol. Divers.202320231510.1007/s11030‑023‑10703‑w 37480422
    [Google Scholar]
  3. PurohitP. MittalR.K. KhatanaK. Quinoline-3-carboxylic acids “DNA minor groove-binding agent.Anticancer. Agents Med. Chem.2022222344348
    [Google Scholar]
  4. MittalR.K. PurohitP. Quinoline-3-carboxylate derivatives: A new hope as an antiproliferative agent. Anti-Canc.Agents Med. Chem.202020161981199110.2174/1871520620666200619175906
    [Google Scholar]
  5. MittalR.K. PurohitP. Quinoline-3-carboxylic acids: A step toward highly selective antiproliferative agent.Anticancer. Agents Med. Chem.202121131708171610.2174/1871520620999201124214112
    [Google Scholar]
  6. GuinéR.P.F. FlorençaS.G. AnjosO. BoustaniN.M. HernándezC.C. SarićM.M. FerreiraM. CostaC.A. BartkieneE. CardosoA.P. TarceaM. CorreiaP.M.R. CamposS. PapageorgiouM. CaminoD.A. KorzeniowskaM. Černelič-BizjakM. KrumaZ. DamarliE. FerreiraV. DjekicI. Are consumers aware of sustainability aspects related to edible insects? results from a study involving 14 countries.Sustainability202214211412510.3390/su142114125
    [Google Scholar]
  7. MaZ. MondorM. ValenciaG.F. ÁlvarezH.A.J. Current state of insect proteins: Extraction technologies, bioactive peptides and allergenicity of edible insect proteins.Food Funct.202314188129815610.1039/D3FO02865H 37656123
    [Google Scholar]
  8. Van HuisA. Van ItterbeeckJ. KlunderH. MertensE. HalloranA. MuirG. VantommeP. Food and agriculture organization of the United Nations. Edible insects: future prospects for food and feed security.2013Available from: https://www.fao.org/3/i3253e/i3253e.pdf
    [Google Scholar]
  9. van HuisA. OonincxD.G.A.B. The environmental sustainability of insects as food and feed. A review.Agron. Sustain. Dev.20173754310.1007/s13593‑017‑0452‑8
    [Google Scholar]
  10. OjhaS. BußlerS. SchlüterO.K. Food waste valorisation and circular economy concepts in insect production and processing.Waste Manag.202011860060910.1016/j.wasman.2020.09.010 33010691
    [Google Scholar]
  11. QueirozL.S. Nogueira SilvaN.F. JessenF. MohammadifarM.A. StephaniR. de CarvalhoF.A. PerroneÍ.T. CasanovaF. Edible insect as an alternative protein source: A review on the chemistry and functionalities of proteins under different processing methods.Heliyon202394e1483110.1016/j.heliyon.2023.e14831 37025786
    [Google Scholar]
  12. LiceagaA.M. Processing insects for use in the food and feed industry.Curr. Opin. Insect Sci.202148323610.1016/j.cois.2021.08.002 34455091
    [Google Scholar]
  13. SinghM.P. SoniK. BhamraR. MittalR.K. Superfood: Value and need.Curr. Nutr. Food Sci.2022181656810.2174/1573401317666210420123013
    [Google Scholar]
  14. MittalR.K. MishraR. SharmaV. PurohitP. Bioactive exploration in functional foods: Unlocking nature’s treasures.Curr. Pharm. Biotechnol.20242024 38031768
    [Google Scholar]
  15. da LucasJ.S.A. de OliveiraM.L. da RochaM. PrenticeC. Edible insects: An alternative of nutritional, functional and bioactive compounds.Food Chem.202031112602210.1016/j.foodchem.2019.126022 31869637
    [Google Scholar]
  16. RumpoldB.A. SchlüterO.K. Nutritional composition and safety aspects of edible insects.Mol. Nutr. Food Res.201357580282310.1002/mnfr.201200735 23471778
    [Google Scholar]
  17. KimT.K. YongH.I. ChunH.H. LeeM.A. KimY.B. ChoiY.S. Changes of amino acid composition and protein technical functionality of edible insects by extracting steps.J. Asia Pac. Entomol.202023229830510.1016/j.aspen.2019.12.017
    [Google Scholar]
  18. RumpoldB.A. SchlüterO.K. Potential and challenges of insects as an innovative source for food and feed production.Innov. Food Sci. Emerg. Technol.20131711110.1016/j.ifset.2012.11.005
    [Google Scholar]
  19. EbeneezarS. TejpalC.S. JeenaN.S. SummayaR. ChandrasekarS. SayoojP. VijayagopalP. Nutritional evaluation, bioconversion performance and phylogenetic assessment of black soldier fly (Hermetia illucens, Linn. 1758) larvae valorized from food waste.Environ. Technol. Innov.20212310178310.1016/j.eti.2021.101783
    [Google Scholar]
  20. SmetanaS. PalanisamyM. MathysA. HeinzV. Sustainability of insect use for feed and food: Life Cycle Assessment perspective.J. Clean. Prod.201613774175110.1016/j.jclepro.2016.07.148
    [Google Scholar]
  21. SosaD.A. FoglianoV. Potential of insect-derived ingredients for food applications.J. Insect Physiol Ecolog.2017201721523110.5772/67318
    [Google Scholar]
  22. AkhtarY. IsmanM.B. Insects as an alternative protein source.Proteins in food processing.Woodhead Publishing201826328810.1016/B978‑0‑08‑100722‑8.00011‑5
    [Google Scholar]
  23. Churchward-VenneT.A. PinckaersP.J.M. van LoonJ.J.A. van LoonL.J.C. Consideration of insects as a source of dietary protein for human consumption.Nutr. Rev.201775121035104510.1093/nutrit/nux057 29202184
    [Google Scholar]
  24. Jonas-LeviA. MartinezJ.J.I. The high level of protein content reported in insects for food and feed is overestimated.J. Food Compos. Anal.20176218418810.1016/j.jfca.2017.06.004
    [Google Scholar]
  25. FinkeM.D. DeFoliartG.R. BenevengaN.J. Use of a four-parameter logistic model to evaluate the quality of the protein from three insect species when fed to rats.J. Nutr.1989119686487110.1093/jn/119.6.864 2746371
    [Google Scholar]
  26. YiL. Van BoekelM.A.J.S. BoerenS. LakemondC.M.M. Protein identification and in vitro digestion of fractions from Tenebrio molitor.Eur. Food Res. Technol.201624281285129710.1007/s00217‑015‑2632‑6
    [Google Scholar]
  27. de OliveiraL.M. da Silva LucasA.J. CadavalC.L. MelladoM.S. Bread enriched with flour from cinereous cockroach (Nauphoeta cinerea).Innov. Food Sci. Emerg. Technol.201744303510.1016/j.ifset.2017.08.015
    [Google Scholar]
  28. MishynaM. MartinezJ.J.I. ChenJ. BenjaminO. Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera).Food Res. Int.201911669770610.1016/j.foodres.2018.08.098 30716997
    [Google Scholar]
  29. KimT.K. YongH.I. KimY.B. KimH.W. ChoiY.S. Edible insects as a protein source: A review of public perception, processing technology, and research trends.Food Sci. Anim. Resour.201939452154010.5851/kosfa.2019.e53 31508584
    [Google Scholar]
  30. TangC. YangD. LiaoH. SunH. LiuC. WeiL. LiF. Edible insects as a food source: A review. Food Production.Process. Nutr.20191113
    [Google Scholar]
  31. IsmailB.P. LenagalaS.L. StubeA. BrackenridgeA. Protein demand: Review of plant and animal proteins used in alternative protein product development and production.Anim. Front.2020104536310.1093/af/vfaa040 33391860
    [Google Scholar]
  32. MagaraH.J.O. NiassyS. AyiekoM.A. MukundamagoM. EgonyuJ.P. TangaC.M. KimathiE.K. OngereJ.O. FiaboeK.K.M. HugelS. OrindaM.A. RoosN. EkesiS. Edible crickets (Orthoptera) around the world: distribution, nutritional value, and other benefits—a review.Front. Nutr.2021753791510.3389/fnut.2020.537915 33511150
    [Google Scholar]
  33. JanssonA. HunterD. BerggrenÅ. Insects as food–an option for sustainable food production? SLU future food reports 5.Uppsala, SwedenSwedish University of Agricultural Sciences2019
    [Google Scholar]
  34. YiL. A study on the potential of insect protein and lipid as a food source.Wageningen University and Research2015
    [Google Scholar]
  35. VerhoeckxK.C.M. van BroekhovenS. den JagerH.C.F. GaspariM. de JongG.A.H. WichersH.J. van HoffenE. HoubenG.F. KnulstA.C. House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins.Food Chem. Toxicol.20146536437310.1016/j.fct.2013.12.049 24412559
    [Google Scholar]
  36. ZhangP. AsoY. JikuyaH. KusakabeT. LeeJ.M. KawaguchiY. YamamotoK. BannoY. FujiiH. Proteomic profiling of the silkworm skeletal muscle proteins during larval-pupal metamorphosis.J. Proteome Res.2007662295230310.1021/pr070071y 17497908
    [Google Scholar]
  37. LückeC. QiaoY. van MoerkerkH.T.B. VeerkampJ.H. HamiltonJ.A. Fatty-acid-binding protein from the flight muscle of Locusta migratoria: Evolutionary variations in fatty acid binding.Biochemistry200645206296630510.1021/bi060224f 16700541
    [Google Scholar]
  38. PanP.L. YeY.X. LouY.H. LuJ.B. ChengC. ShenY. MoussianB. ZhangC.X. A comprehensive omics analysis and functional survey of cuticular proteins in the brown planthopper.Proc. Natl. Acad. Sci.2018115205175518010.1073/pnas.1716951115 29712872
    [Google Scholar]
  39. WillisJ.H. PapandreouN.C. IconomidouV.A. Hamodrakas, SJ Cuticular proteins.Insect molecular biology and biochemistry.Academic Press201213416610.1016/B978‑0‑12‑384747‑8.10005‑4
    [Google Scholar]
  40. MullinsD.E. Chemistry and physiology of the hemolymph.Comprehens. Insect Physiol. Biochem. Pharmacol.2013223355400
    [Google Scholar]
  41. de CastroR.J.S. OharaA. AguilarJ.G.S. DominguesM.A.F. Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges.Trends Food Sci. Technol.201876828910.1016/j.tifs.2018.04.006
    [Google Scholar]
  42. AntalT. Comparative study of three drying methods: Freeze, hot air-assisted freeze and infrared-assisted freeze modes.Agron. Res.2015134863878
    [Google Scholar]
  43. HninK.K. ZhangM. MujumdarA.S. ZhuY. Emerging food drying technologies with energy-saving characteristics: A review.Dry. Technol.2018371214651480
    [Google Scholar]
  44. KhampakoolA. SoisungwanS. YouS. ParkS.H. Infrared assisted freeze-drying (IRAFD) to produce shelf-stable insect food from Protaetia brevitarsis (white-spotted flower chafer) larva.Food Sci. Anim. Resour.202040581383010.5851/kosfa.2020.e60 32968732
    [Google Scholar]
  45. LenaertsS. Van Der BorghtM. CallensA. Van CampenhoutL. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour.Food Chem.201825412913610.1016/j.foodchem.2018.02.006 29548432
    [Google Scholar]
  46. MujumdarA.S. JangamS.V. Some innovative drying technologies for dehydration of foods.Proceedings of ICEFAthens, Greece20115556
    [Google Scholar]
  47. NyangenaD.N. MutungiC. ImathiuS. KinyuruJ. AffognonH. EkesiS. NakimbugweD. FiaboeK.K.M. Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa.Foods20209557410.3390/foods9050574 32375385
    [Google Scholar]
  48. AzagohC. DuceptF. GarciaR. RakotozafyL. CuvelierM.E. KellerS. LewandowskiR. MezdourS. Extraction and physicochemical characterization of Tenebrio molitor proteins.Food Res. Int.201688Pt A243110.1016/j.foodres.2016.06.010 28847399
    [Google Scholar]
  49. SmetanaS. MhemdiH. MezdourS. HeinzV. Pulsed electric field–treated insects and algae as future food ingredients.Pulsed electric fields to obtain healthier and sustainable food for tomorrow.Academic Press202024726610.1016/B978‑0‑12‑816402‑0.00011‑2
    [Google Scholar]
  50. BußlerS. RumpoldB.A. JanderE. RawelH.M. SchlüterO.K. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae.Heliyon2016212e0021810.1016/j.heliyon.2016.e00218 28054035
    [Google Scholar]
  51. KozluA. NgasakulN. KlojdováI. Baigts-AllendeD.K. Edible insect-processing techniques: A strategy to develop nutritional food products and novelty food analogs.Eur. Food Res. Technol.202425051253126710.1007/s00217‑024‑04474‑3
    [Google Scholar]
  52. AmarenderR.V. BhargavaK. DosseyA.T. GamagedaraS. Lipid and protein extraction from edible insects – crickets (Gryllidae).Lebensm. Wiss. Technol.202012510922210.1016/j.lwt.2020.109222
    [Google Scholar]
  53. KavleR.R. PritchardE.T.M. CarneA. BekhitA.E.D.A. MortonJ.D. AgyeiD. Nutritional composition and techno-functional properties of sago palm weevil (Rhynchophorus ferrugineus) larvae protein extract.J. Asia Pac. Entomol.202326210208610.1016/j.aspen.2023.102086
    [Google Scholar]
  54. RussinT.A. BoyeJ.I. ArcandY. RajamohamedS.H. Alternative techniques for defatting soy: A practical review.Food Bioprocess Technol.20114220022310.1007/s11947‑010‑0367‑8
    [Google Scholar]
  55. KimT.K. YongH.I. KimY.B. JungS. KimH.W. ChoiY.S. Effects of organic solvent on functional properties of defatted proteins extracted from Protaetia brevitarsis larvae.Food Chem.202133612767910.1016/j.foodchem.2020.127679 32768903
    [Google Scholar]
  56. LarocheM. PerreaultV. MarciniakA. GravelA. ChamberlandJ. DoyenA. Comparison of conventional and sustainable lipid extraction methods for the production of oil and protein isolate from edible insect meal.Foods201981157210.3390/foods8110572 31766306
    [Google Scholar]
  57. MandalS.C. MandalV. DasA.K. Essentials of botanical extraction: Principles and applications.Academic press2015
    [Google Scholar]
  58. LeniG. CaligianiA. SforzaS. Killing method affects the browning and the quality of the protein fraction of Black Soldier Fly (Hermetia illucens) prepupae: A metabolomics and proteomic insight.Food Res. Int.201911511612510.1016/j.foodres.2018.08.021 30599922
    [Google Scholar]
  59. Tzompa-SosaD.A. YiL. van ValenbergH.J.F. van BoekelM.A.J.S. LakemondC.M.M. Insect lipid profile: Aqueous versus organic solvent-based extraction methods.Food Res. Int.2014621087109410.1016/j.foodres.2014.05.052
    [Google Scholar]
  60. RahmanM.M. ByanjuB. LamsalB.P. Protein, lipid, and chitin fractions from insects: Method of extraction, functional properties, and potential applications.Crit. Rev. Food Sci. Nutr.2023202311710.1080/10408398.2023.2168620 36691837
    [Google Scholar]
  61. SahenaF. ZaidulI.S.M. JinapS. KarimA.A. AbbasK.A. NorulainiN.A.N. OmarA.K.M. Application of supercritical CO2 in lipid extraction – A review.J. Food Eng.200995224025310.1016/j.jfoodeng.2009.06.026
    [Google Scholar]
  62. ZayasJ.F. Functionality Of Proteins.Food.Springer science & business media199710.1007/978‑3‑642‑59116‑7
    [Google Scholar]
  63. YiL. LakemondC.M.M. SagisL.M.C. SchadlerE.V. van HuisA. van BoekelM.A.J.S. Extraction and characterisation of protein fractions from five insect species.Food Chem.201314143341334810.1016/j.foodchem.2013.05.115 23993491
    [Google Scholar]
  64. KumarM. TomarM. PotkuleJ. VermaR. PuniaS. MahapatraA. BelwalT. DahujaA. JoshiS. BerwalM.K. SatankarV. BhoiteA.G. AmarowiczR. KaurC. KennedyJ.F. Advances in the plant protein extraction: Mechanism and recommendations.Food Hydrocoll.202111510659510.1016/j.foodhyd.2021.106595
    [Google Scholar]
  65. BroganE.N. ParkY.L. MatakK.E. JaczynskiJ. Characterization of protein in cricket (Acheta domesticus), locust (Locusta migratoria), and silk worm pupae (Bombyx mori) insect powders.Lebensm. Wiss. Technol.202115211231410.1016/j.lwt.2021.112314
    [Google Scholar]
  66. DeleuL.J. LambrechtM.A. Van de VondelJ. DelcourJ.A. The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals.Curr. Opin. Food Sci.2019259810310.1016/j.cofs.2019.02.017
    [Google Scholar]
  67. ZielińskaE. KaraśM. BaraniakB. Comparison of functional properties of edible insects and protein preparations thereof.Lebensm. Wiss. Technol.20189116817410.1016/j.lwt.2018.01.058
    [Google Scholar]
  68. LeeH. KimJ. JiD. LeeC. Effects of heating time and temperature on functional properties of proteins of yellow mealworm larvae (Tenebrio molitor L.).Food Sci. Anim. Resour.201939229630810.5851/kosfa.2019.e24 31149671
    [Google Scholar]
  69. AllendeB.D. DoostA.S. RodriguesR.M. DewettinckK. Van der MeerenP. de MeulenaerB. SosaT.D. Insect protein concentrates from mexican edible insects: Structural and functional characterization.Lebensm. Wiss. Technol.202115211226710.1016/j.lwt.2021.112267
    [Google Scholar]
  70. PsarianosM. DimopoulosG. OjhaS. CaviniA.C.M. BußlerS. TaoukisP. SchlüterO.K. Effect of pulsed electric fields on cricket (Acheta domesticus) flour: Extraction yield (protein, fat and chitin) and techno-functional properties.Innov. Food Sci. Emerg. Technol.20227610290810.1016/j.ifset.2021.102908
    [Google Scholar]
  71. YusoffI.M. TaherM.Z. RahmatZ. ChuaL.S. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins.Food Res. Int.202215711126810.1016/j.foodres.2022.111268 35761580
    [Google Scholar]
  72. SegattoM.L. StahlA.M. ZanottiK. ZuinV.G. Green and sustainable extraction of proteins from agro-industrial waste: An overview and a closer look to Latin America.Curr. Opin. Green Sustain. Chem.20223710066110.1016/j.cogsc.2022.100661
    [Google Scholar]
  73. AlmagroM.N. SorianoM.E. VillamielM. HoyosC.L. Hybrid high-intensity ultrasound and microwave treatment: A review on its effect on quality and bioactivity of foods.Ultrason. Sonochem.20218010583510.1016/j.ultsonch.2021.105835 34826725
    [Google Scholar]
  74. AllesM.C. SmetanaS. ParniakovO. ShorstkiiI. ToepflS. AganovicK. HeinzV. Bio-refinery of insects with Pulsed electric field pre-treatment.Innov. Food Sci. Emerg. Technol.20206410240310.1016/j.ifset.2020.102403
    [Google Scholar]
  75. NdirituA.K. KinyuruJ.N. KenjiG.M. GichuhiP.N. Extraction technique influences the physico-chemical characteristics and functional properties of edible crickets (Acheta domesticus) protein concentrate.J. Food Meas. Charact.20171120132021
    [Google Scholar]
  76. ZhaoX. Vázquez-GutiérrezJ.L. JohanssonD.P. LandbergR. LangtonM. Yellow mealworm protein for food purposes-extraction and functional properties.PLoS One2016112e014779110.1371/journal.pone.0147791 26840533
    [Google Scholar]
  77. KrugerN.J. The bradford method for protein quantitation.The Protein Protocols Handbook. Springer Protocols Handbooks; Walker, J.M.Totowa, NJHumana Press200910.1007/978‑1‑59745‑198‑7_4
    [Google Scholar]
  78. PurschkeB. BrüggenH. ScheibelbergerR. JägerH. Effect of pre-treatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae (Tenebrio molitor L.).Eur. Food Res. Technol.2018244226928010.1007/s00217‑017‑2953‑8
    [Google Scholar]
  79. ChoiB.D. WongN.A.K. AuhJ.H. Defatting and sonication enhances protein extraction from edible insects.Han-gug Chugsan Sigpum Hag-hoeji2017376955961 29725219
    [Google Scholar]
  80. KurdiP. ChaowiwatP. WestonJ. HansawasdiC. Studies on microbial quality, protein yield, and antioxidant properties of some frozen edible insects.Int. J. Food Sci.202120215580976 33834060
    [Google Scholar]
  81. MintahB.K. HeR. AgyekumA.A. DabbourM. GollyM.K. MaH. Edible insect protein for food applications: Extraction, composition, and functional properties.J. Food Process Eng.2020434e1336210.1111/jfpe.13362
    [Google Scholar]
  82. QueirozL.S. RegnardM. JessenF. MohammadifarM.A. SlothJ.J. PetersenH.O. AjalloueianF. BrouzesC.M.C. FraihiW. FallquistH. de CarvalhoA.F. CasanovaF. Physico-chemical and colloidal properties of protein extracted from black soldier fly (Hermetia illucens) larvae.Int. J. Biol. Macromol.202118671472310.1016/j.ijbiomac.2021.07.081 34274399
    [Google Scholar]
  83. ZielińskaE. KaraśM. BaraniakB. JakubczykA. Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects.Eur. Food Res. Technol.202024671361136910.1007/s00217‑020‑03495‑y
    [Google Scholar]
  84. NowakowskiA.C. MillerA.C. MillerM.E. XiaoH. WuX. Potential Health Benefits of Edible Insects.Crit. Rev. Food Sci. Nutr.202262133499350810.1080/10408398.2020.1867053 33397123
    [Google Scholar]
  85. LeeJ.H. KimT.K. JeongC.H. YongH.I. ChaJ.Y. KimB.K. ChoiY.S. Biological activity and processing technologies of edible insects: A review.Food Sci. Biotechnol.20213081003102310.1007/s10068‑021‑00942‑8 34471556
    [Google Scholar]
  86. MuddN. GonzalezM.F.S. FerruzziM. LiceagaA.M. In vivo antioxidant effect of edible cricket (Gryllodes sigillatus) peptides using a Caenorhabditis elegans model.Food Hydrocoll. Health2022210008310.1016/j.fhfh.2022.100083
    [Google Scholar]
  87. Di MattiaC. BattistaN. SacchettiG. SerafiniM. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates.Front. Nutr.20196106 31380385
    [Google Scholar]
  88. WuQ.Y. JiaJ.Q. TanG.X. XuJ.L. GuiZ.Z. Physicochemical properties of silkworm larvae protein isolate and gastrointestinal hydrolysate bioactivities.Afr. J. Biotechnol.2011103261456153
    [Google Scholar]
  89. NguyenP. KimK.Y. KimA.Y. KimN.S. KweonH. JiS.D. KohY.H. Increased healthspan and resistance to Parkinson’s disease in Drosophila by boiled and freeze-dried mature silk worm larval powder.J. Asia Pac. Entomol.201619255156110.1016/j.aspen.2016.05.003
    [Google Scholar]
  90. BergmansR.S. NikodemovaM. StullV.J. RappA. MaleckiK.M.C. Comparison of cricket diet with peanut-based and milk-based diets in the recovery from protein malnutrition in mice and the impact on growth, metabolism and immune function.PLoS One2020156e023455910.1371/journal.pone.0234559 32525953
    [Google Scholar]
  91. del HierroN.J. DocioG.A. OteroP. RegleroG. MartinD. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor.Food Chem.202030912574210.1016/j.foodchem.2019.125742 31704068
    [Google Scholar]
  92. NinoM.C. ReddivariL. FerruzziM.G. LiceagaA.M. Targeted phenolic characterization and antioxidant bioactivity of extracts from edible Acheta domesticus.Foods20211010229510.3390/foods10102295 34681345
    [Google Scholar]
  93. Mohd ZainiN.S. LimE.J. AhmadN.H. GengatharanA. Wan-MohtarW.A.A.Q.I. Abd RahimM.H. The review of cooking, drying, and green extraction methods on general nutritional properties of mealworms and locusts.Food Bioprocess Technol.20231691904191810.1007/s11947‑023‑03020‑5 36844636
    [Google Scholar]
  94. IwasakiT. IshibashiJ. TanakaH. SatoM. AsaokaA. TaylorD. YamakawaM. Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface.Peptides200930466066810.1016/j.peptides.2008.12.019 19154767
    [Google Scholar]
  95. KangB.R. KimH. NamS.H. YunE.Y. KimS.R. AhnM.Y. ChangJ.S. HwangJ.S. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway.BMB Rep.2012452859010.5483/BMBRep.2012.45.2.85 22360885
    [Google Scholar]
  96. Saido-SakanakaH. IshibashiJ. MomotaniE. AmanoF. YamakawaM. In vitro and in vivo activity of antimicrobial peptides synthesized based on the insect defensin.Peptides2004251192710.1016/j.peptides.2003.12.009 15003352
    [Google Scholar]
  97. KimI.W. LeeJ.H. KwonY.N. YunE.Y. NamS.H. AhnM.Y. KangD.C. HwangJ.S. Anticancer activity of a synthetic peptide derived from harmoniasin, an antibacterial peptide from the ladybug Harmonia axyridis.Int. J. Oncol.201343262262810.3892/ijo.2013.1973 23732481
    [Google Scholar]
  98. Chudzinski-TavassiA.M. De-Sá-JúniorP.L. SimonsS.M. MariaD.A. de VenturaS.J. de BatistaF.C.I. FariaF. DurãesE. ReisE.M. DemasiM. A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system.Toxicon20105671145115410.1016/j.toxicon.2010.04.019 20570593
    [Google Scholar]
  99. WuR.A. DingQ. LuH. TanH. SunN. WangK. HeR. LuoL. MaH. LiZ. Caspase 3-mediated cytotoxicity of mealworm larvae (Tenebrio molitor) oil extract against human hepatocellular carcinoma and colorectal adenocarcinoma.J. Ethnopharmacol.202025011243810.1016/j.jep.2019.112438 31816367
    [Google Scholar]
  100. SpranghersT. MichielsJ. VrancxJ. OvynA. EeckhoutM. De ClercqP. De SmetS. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets.Anim. Feed Sci. Technol.2018235334210.1016/j.anifeedsci.2017.08.012
    [Google Scholar]
  101. StullV.J. FinerE. BergmansR.S. FebvreH.P. LonghurstC. ManterD.K. PatzJ.A. WeirT.L. Impact of edible cricket consumption on gut microbiota in healthy adults, a double-blind, randomized crossover trial.Sci. Rep.2018811076210.1038/s41598‑018‑29032‑2 30018370
    [Google Scholar]
  102. SeoM. GooT.W. ChungM. BaekM. HwangJ.S. KimM.A. YunE.Y. Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice.Int. J. Mol. Sci.201718351810.3390/ijms18030518 28264489
    [Google Scholar]
  103. ChungM.Y. YoonY.I. HwangJ.S. GooT.W. YunE.Y. Anti‐obesity effect ofA llomyrina dichotoma (A rthropoda: I nsecta) larvae ethanol extract on 3T3‐L1 adipocyte differentiation.Entomol. Res.201444191610.1111/1748‑5967.12044
    [Google Scholar]
  104. LeeH.S. LeeH.J. SuhH.J. Silk protein hydrolysate increases glucose uptake through up-regulation of GLUT 4 and reduces the expression of leptin in 3T3-L1 fibroblast.Nutr. Res.2011311293794310.1016/j.nutres.2011.09.009 22153520
    [Google Scholar]
  105. JiY.J. LiuH.N. KongX.F. BlachierF. GengM.M. LiuY.Y. YinY.L. Use of insect powder as a source of dietary protein in early-weaned piglets1.J. Anim. Sci.201694S311111610.2527/jas.2015‑9555
    [Google Scholar]
  106. KoopmanR. SarisW.H.M. WagenmakersA.J.M. van LoonL.J.C. Nutritional interventions to promote post-exercise muscle protein synthesis.Sports Med.2007371089590610.2165/00007256‑200737100‑00005 17887813
    [Google Scholar]
  107. WangW. WangN. ZhouY. ZhangY. XuL. XuJ. FengF. HeG. Isolation of a novel peptide from silkworm pupae protein components and interaction characteristics to angiotensin I-converting enzyme.Eur. Food Res. Technol.20112321293810.1007/s00217‑010‑1358‑8
    [Google Scholar]
  108. IslamM.K. TsujiN. MiyoshiT. AlimM.A. HuangX. HattaT. FujisakiK. The Kunitz-like modulatory protein haemangin is vital for hard tick blood-feeding success.PLoS Pathog.200957e100049710.1371/journal.ppat.1000497 19593376
    [Google Scholar]
  109. KhammuangS. SarnthimaR. SanachaiK. Purification and identification of novel antioxidant peptides from silkworm pupae (Bombyx mori) protein hydrolysate and molecular docking study.Biocatal. Agric. Biotechnol.20224210236710.1016/j.bcab.2022.102367
    [Google Scholar]
  110. AnuduangA. LimS.J. JomduangS. BoonyapranaiK. PhongthaiS. Wan MustaphaW.A. ACE‐INHIBITORY properties and antioxidative activities of hydrolysate powder obtained from Thai’s mature silkworm (Bombyx mori).Int. J. Food Sci. Technol.20245953176318610.1111/ijfs.17064
    [Google Scholar]
  111. SalazarM.A. LópezS.L. LlanezT.M.J. MendozaH.A. CordobaV.B. LiceagaA.M. CórdovaG.A.F. In vitro antioxidant and antihypertensive activity of edible insects flours (mealworm and grasshopper) fermented with Lactococcus lactis strains.Fermentation20217315310.3390/fermentation7030153
    [Google Scholar]
  112. PattarayingsakulW. NilavongseA. ReamtongO. ChittavanichP. MungsantisukI. MathongY. PrasitwuttisakW. PanbangredW. Angiotensin‐converting enzyme inhibitory and antioxidant peptides from digestion of larvae and pupae of Asian weaver ant, Oecophylla smaragdina, fabricius.J. Sci. Food Agric.201797103133314010.1002/jsfa.8155 27882566
    [Google Scholar]
  113. FanM. ChoiY.J. TangY. KimJ.H. KimB. LeeB. BaeS.M. KimE.K. AGL9: A novel hepatoprotective peptide from the larvae of edible insects alleviates obesity-induced hepatic inflammation by regulating AMPK/Nrf2 signaling.Foods2021109197310.3390/foods10091973 34574082
    [Google Scholar]
  114. HallF. ReddivariL. LiceagaA.M. Identification and characterization of edible cricket peptides on hypertensive and glycemic in vitro inhibition and their anti-inflammatory activity on RAW 264.7 macrophage cells.Nutrients20201211358810.3390/nu12113588 33238450
    [Google Scholar]
  115. AguilarM.L.J. CastilloT.J.A. ServinR.R. FloresL.A.B. ArzolaA.V.E. ZamoraM.G. GarcíaS.S.R. Nutraceutical effects of bioactive peptides obtained from Pterophylla beltrani (Bolivar & Bolivar) protein isolates.J. Asia Pac. Entomol.202023375676110.1016/j.aspen.2020.06.006
    [Google Scholar]
  116. LiuT.T. LiuX.T. ChenQ.X. ShiY. Lipase inhibitors for obesity: A review.Biomed. Pharmacother.202012811031410.1016/j.biopha.2020.110314 32485574
    [Google Scholar]
  117. ZielińskaE. BaraniakB. KaraśM. Identification of antioxidant and anti‐inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria).Int. J. Food Sci. Technol.201853112542255110.1111/ijfs.13848
    [Google Scholar]
  118. XiongY. ChenZ.H. ZhangF.L. YuZ.Y. LiuB. ZhangC. ZhaoL.N. A specific selenium-chelating peptide isolated from the protein hydrolysate of Grifola frondosa.RSC Advances20211117102721028410.1039/D0RA10886C 35423524
    [Google Scholar]
  119. TanJ. YangJ. ZhouX. HamdyA.M. ZhangX. SuoH. ZhangY. LiN. SongJ. Tenebrio molitor proteins-derived DPP-4 inhibitory peptides: Preparation, identification, and molecular binding mechanism.Foods20221122362610.3390/foods11223626 36429217
    [Google Scholar]
  120. BaeS.M. FanM. ChoiY.J. TangY. JeongG. MyungK. KimB. KimE.K. Exploring the role of a novel peptide from Allomyrina dichotoma larvae in ameliorating lipid metabolism in obesity.Int. J. Mol. Sci.20202122853710.3390/ijms21228537 33198343
    [Google Scholar]
  121. CermeñoM. BascónC. Amigo-BenaventM. FelixM. FitzGeraldR.J. Identification of peptides from edible silkworm pupae (Bombyx mori) protein hydrolysates with antioxidant activity.J. Funct. Foods20229210505210.1016/j.jff.2022.105052
    [Google Scholar]
  122. TaoM. WangC. LiaoD. LiuH. ZhaoZ. ZhaoZ. Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate.Process Biochem.20175417217910.1016/j.procbio.2016.12.022
    [Google Scholar]
  123. WuQ. JiaJ. YanH. DuJ. GuiZ. A novel angiotensin-I converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study.Peptides201568172410.1016/j.peptides.2014.07.026 25111373
    [Google Scholar]
  124. ZhangY. WangJ. ZhuZ. LiX. SunS. WangW. SadiqF.A. Identification and characterization of two novel antioxidant peptides from silkworm pupae protein hydrolysates.Eur. Food Res. Technol.2021247234335210.1007/s00217‑020‑03626‑5
    [Google Scholar]
  125. KlunderH.C. Wolkers-RooijackersJ. KorpelaJ.M. NoutM.J.R. Microbiological aspects of processing and storage of edible insects.Food Control201226262863110.1016/j.foodcont.2012.02.013
    [Google Scholar]
  126. GarofaloC. OsimaniA. MilanovićV. TaccariM. CardinaliF. AquilantiL. RioloP. RuschioniS. IsidoroN. ClementiF. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing.Food Microbiol.201762152210.1016/j.fm.2016.09.012 27889142
    [Google Scholar]
  127. De PaepeE. WautersJ. Van Der BorghtM. ClaesJ. HuysmanS. CroubelsS. VanhaeckeL. Ultra-high-performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for multi-residue screening of pesticides, (veterinary) drugs and mycotoxins in edible insects.Food Chem.201929318719610.1016/j.foodchem.2019.04.082 31151600
    [Google Scholar]
  128. PomaG. CuykxM. AmatoE. CalapriceC. FocantJ.F. CovaciA. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption.Food Chem. Toxicol.2017100707910.1016/j.fct.2016.12.006 28007452
    [Google Scholar]
  129. ZhangZ.S. LuX.G. WangQ.C. ZhengD.M. Mercury, cadmium and lead biogeochemistry in the soil-plant-insect system in Huludao City.Bull. Environ. Contam. Toxicol.200983225525910.1007/s00128‑009‑9688‑6 19280090
    [Google Scholar]
  130. HyunS.H. KwonK.H. ParkK.H. JeongH.C. KwonO. TindwaH. HanY.S. Evaluation of nutritional status of an edible grasshopper,O xya C hinensis F ormosana.Entomol. Res.201242528429010.1111/j.1748‑5967.2012.00469.x
    [Google Scholar]
  131. Premrov BajukB. ZrimšekP. KotnikT. LeonardiA. KrižajI. StrajnJ.B. Insect protein-based diet as potential risk of allergy in dogs.Animals2021117194210.3390/ani11071942 34209808
    [Google Scholar]
  132. van der KlerxF.H.J. CamenzuliL. BellucoS. MeijerN. RicciA. Food safety issues related to uses of insects for feeds and foods.Compr. Rev. Food Sci. Food Saf.201817511721183 33350154
    [Google Scholar]
  133. DobermannD. SwiftJ.A. FieldL.M. Opportunities and hurdles of edible insects for food and feed.Nutr. Bull.201742429330810.1111/nbu.12291
    [Google Scholar]
  134. 2015/2283 of the european parliament and the council of 25 november 2015 on novel foods, amending regulation (EU) No 1169/2011 of the European parliament and of the council and repealing regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001.Off. J. Eur. Union L20153271
    [Google Scholar]
  135. ManciniS. MoruzzoR. RiccioliF. PaciG. European consumers’ readiness to adopt insects as food. A review.Food Res. Int.201912266167810.1016/j.foodres.2019.01.041 31229126
    [Google Scholar]
  136. ShelomiM. Why we still don’t eat insects: Assessing entomophagy promotion through a diffusion of innovations framework.Trends Food Sci. Technol.201545231131810.1016/j.tifs.2015.06.008
    [Google Scholar]
  137. GuinéR.P.F. CorreiaP. CoelhoC. CostaC.A. The role of edible insects to mitigate challenges for sustainability.Open Agric.202161243610.1515/opag‑2020‑0206
    [Google Scholar]
  138. TamesseJ.L. KekeunouS. TchouamouC.L.D. MeupiaM.J. Villagers’ knowledge of some edible insects in southern Cameroon: Crickets, termites, honeybees and cockchafers.J. Insects Food Feed20184420320910.3920/JIFF2017.0077
    [Google Scholar]
  139. OdongoW. OkiaC.A. NalikaN. NzabamwitaP.H. NdimubandiJ. NyekoP. Marketing of edible insects in lake victoria basin: the case of Uganda and Burundi.J. Insects Food Feed20184428529310.3920/JIFF2017.0071
    [Google Scholar]
  140. RamosM.J.A. RojasM.G. Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae).J. Econ. Entomol.201510852259226710.1093/jee/tov208 26453714
    [Google Scholar]
  141. HalloranA. RoosN. EilenbergJ. CeruttiA. BruunS. Life cycle assessment of edible insects for food protein: A review.Agron. Sustain. Dev.20163645710.1007/s13593‑016‑0392‑8 32010238
    [Google Scholar]
  142. GhoshS. JungC. RochowM.V.B. What governs selection and acceptance of edible insect species?Edible insects in sustainable food systems.Springer2018331351
    [Google Scholar]
  143. van HuisA. Edible insects: Marketing the impossible?J. Insects Food Feed201732676810.3920/JIFF2017.x003
    [Google Scholar]
  144. de CarvalhoN.M. MadureiraA.R. PintadoM.E. The potential of insects as food sources – A review.Crit. Rev. Food Sci. Nutr.202060213642365210.1080/10408398.2019.1703170 31868531
    [Google Scholar]
  145. OrsiL. VoegeL.L. StranieriS. Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany.Food Res. Int.201912510857310.1016/j.foodres.2019.108573 31554134
    [Google Scholar]
  146. DupontJ. FiebelkornF. Attitudes and acceptance of young people toward the consumption of insects and cultured meat in Germany.Food Qual. Prefer.20208510398310.1016/j.foodqual.2020.103983
    [Google Scholar]
  147. JensenN.H. LieberothA. We will eat disgusting foods together – Evidence of the normative basis of Western entomophagy-disgust from an insect tasting.Food Qual. Prefer.20197210911510.1016/j.foodqual.2018.08.012
    [Google Scholar]
  148. SchlupY. BrunnerT. Prospects for insects as food in Switzerland: A tobit regression.Food Qual. Prefer.201864374610.1016/j.foodqual.2017.10.010
    [Google Scholar]
  149. AwobusuyiT.D. PillayK. SiwelaM. Consumer acceptance of biscuits supplemented with a sorghum–insect meal.Nutrients202012489510.3390/nu12040895 32218250
    [Google Scholar]
  150. TanH.S.G. FischerA.R.H. van TrijpH.C.M. StiegerM. Tasty but nasty? Exploring the role of sensory-liking and food appropriateness in the willingness to eat unusual novel foods like insects.Food Qual. Prefer.20164829330210.1016/j.foodqual.2015.11.001
    [Google Scholar]
  151. TanH.S.G. TibboelC.J. StiegerM. Why do unusual novel foods like insects lack sensory appeal? Investigating the underlying sensory perceptions.Food Qual. Prefer.201760485810.1016/j.foodqual.2017.03.012
    [Google Scholar]
  152. SogariG. BoguevaD. MarinovaD. Australian consumers’ response to insects as food.Agriculture20199510810.3390/agriculture9050108
    [Google Scholar]
  153. RavenP.H. WagnerD.L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity.Proc. Natl. Acad. Sci.20211182e200254811710.1073/pnas.2002548117 33431564
    [Google Scholar]
  154. van HuisA. Potential of insects as food and feed in assuring food security.Annu. Rev. Entomol.201358156358310.1146/annurev‑ento‑120811‑153704 23020616
    [Google Scholar]
  155. VinciG. PrencipeS.A. MasielloL. ZakiM.G. The application of life cycle assessment to evaluate the environmental impacts of edible insects as a protein source.Earth20223392593910.3390/earth3030054
    [Google Scholar]
  156. WesthoekH. LesschenJ.P. RoodT. WagnerS. De MarcoA. BokernM.D. LeipA. van GrinsvenH. SuttonM.A. OenemaO. Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake.Glob. Environ. Change20142619620510.1016/j.gloenvcha.2014.02.004
    [Google Scholar]
  157. VauterinA. SteinerB. SillmanJ. KahiluotoH. The potential of insect protein to reduce food-based carbon footprints in Europe: The case of broiler meat production.J. Clean. Prod.202132012879910.1016/j.jclepro.2021.128799
    [Google Scholar]
  158. SalomoneR. SaijaG. MondelloG. GiannettoA. FasuloS. SavastanoD. Environmental impact of food waste bioconversion by insects: Application of life cycle assessment to process using Hermetia illucens.J. Clean. Prod.201714089090510.1016/j.jclepro.2016.06.154
    [Google Scholar]
  159. AlexanderP. BrownC. ArnethA. DiasC. FinniganJ. MoranD. RounsevellM.D.A. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use?Glob. Food Secur.201715223210.1016/j.gfs.2017.04.001
    [Google Scholar]
  160. NikkhahA. Van HauteS. JovanovicV. JungH. DewulfJ. VelickovicC.T. GhnimiS. Life cycle assessment of edible insects (protaetia brevitarsis seulensis larvae) as a future protein and fat source.Sci. Rep.20211111403010.1038/s41598‑021‑93284‑8 34234157
    [Google Scholar]
  161. BaianoA. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications.Trends Food Sci. Technol.2020100355010.1016/j.tifs.2020.03.040
    [Google Scholar]
  162. SehrawatR. NemaP.K. KaurB.P. Effect of superheated steam drying on properties of foodstuffs and kinetic modeling.Innov. Food Sci. Emerg. Technol.20163428530110.1016/j.ifset.2016.02.003
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010304177240513063721
Loading
/content/journals/cpb/10.2174/0113892010304177240513063721
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test