Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s disease, represent a significant global health challenge with limited therapeutic options. Protein misfolding and aggregation, a common pathological hallmark in these disorders, have emerged as promising targets for therapeutic intervention. Molecular docking techniques have played a pivotal role in the identification and design of small molecules that can modulate protein misfolding, offering new hope for effective treatments. This review provides an overview of recent advancements in molecular docking techniques for targeting protein misfolding in neurodegenerative diseases. We discuss the principles and methodologies behind molecular docking, including various scoring functions and algorithms employed for accurate ligand-protein interactions. Additionally, we explore the use of molecular dynamics simulations and machine learning approaches to enhance the precision of docking studies. Furthermore, we highlight case studies and success stories where molecular docking has contributed to the discovery of potential drug candidates for neurodegenerative diseases. These include compounds that inhibit amyloid-β aggregation in Alzheimer’s disease, α-synuclein oligomerisation in Parkinson’s disease, and mutant huntingtin aggregation in Huntington’s disease. We also discuss the problems and restrictions of molecular docking related to neurodegenerative diseases, such as how to accurately show the flexibility of proteins and why docking results need to be confirmed by experiments. We also discuss the structural biology methods, such as cryo-electron microscopy and X-ray crystallography, and how these techniques might help in improving molecular docking studies.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010298545241108062449
2025-02-18
2025-10-08
Loading full text...

Full text loading...

References

  1. CiureaA.V. MohanA.G. BusuiocR.A. CostinH.P. GlavanL.A. CorlatescuA.D. SaceleanuV.M. Unraveling molecular and genetic insights into neurodegenerative diseases: Advances in Understanding Alzheimer’s, Parkinson’s, and Huntington’s Diseases and Amyotrophic Lateral Sclerosis.Int. J. Mol. Sci.202324131080910.3390/ijms241310809 37445986
    [Google Scholar]
  2. LampteyR.N.L. ChaulagainB. TrivediR. GothwalA. LayekB. SinghJ. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics.Int. J. Mol. Sci.2022233185110.3390/ijms23031851 35163773
    [Google Scholar]
  3. GuoT. ZhangD. ZengY. HuangT.Y. XuH. ZhaoY. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease.Mol. Neurodegener.20201514010.1186/s13024‑020‑00391‑7 32677986
    [Google Scholar]
  4. LindquistS.L. KellyJ.W. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis.Cold Spring Harb. Perspect. Biol.2011312a00450710.1101/cshperspect.a004507 21900404
    [Google Scholar]
  5. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: a powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  6. LiuT. LuD. ZhangH. ZhengM. YangH. XuY. LuoC. ZhuW. YuK. JiangH. Applying high-performance computing in drug discovery and molecular simulation.Natl. Sci. Rev.201631496310.1093/nsr/nww003 32288960
    [Google Scholar]
  7. SweeneyP. ParkH. BaumannM. DunlopJ. FrydmanJ. KopitoR. McCampbellA. LeblancG. VenkateswaranA. NurmiA. HodgsonR. Protein misfolding in neurodegenerative diseases: implications and strategies.Transl. Neurodegener.201761610.1186/s40035‑017‑0077‑5 28293421
    [Google Scholar]
  8. BaigM.H. AhmadK. RabbaniG. DanishuddinM. ChoiI. Computer Aided Drug Design and its Application to the Development of Potential Drugs for Neurodegenerative Disorders.Curr. Neuropharmacol.201816674074810.2174/1570159X15666171016163510 29046156
    [Google Scholar]
  9. GnanarajC. SekarM. FuloriaS. SwainS.S. GanS.H. ChidambaramK. RaniN.N.I.M. BalanT. StephenieS. LumP.T. JeyabalanS. BegumM.Y. ChandramohanV. ThangaveluL. SubramaniyanV. FuloriaN.K. In Silico Molecular Docking Analysis of Karanjin against Alzheimer’s and Parkinson’s Diseases as a Potential Natural Lead Molecule for New Drug Design, Development and Therapy.Molecules2022279283410.3390/molecules27092834 35566187
    [Google Scholar]
  10. PintérP. AlpárA. The Role of Extracellular Matrix in Human Neurodegenerative Diseases.Int. J. Mol. Sci.202223191108510.3390/ijms231911085 36232390
    [Google Scholar]
  11. LiontaE. SpyrouG. VassilatisD. CourniaZ. Structure-based virtual screening for drug discovery: principles, applications and recent advances.Curr. Top. Med. Chem.201414161923193810.2174/1568026614666140929124445 25262799
    [Google Scholar]
  12. Vidal-LimonA. Aguilar-ToaláJ.E. LiceagaA.M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides.J. Agric. Food Chem.202270493494310.1021/acs.jafc.1c06110 34990125
    [Google Scholar]
  13. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.2004311393594910.1038/nrd1549
    [Google Scholar]
  14. KorbO. StützleT. ExnerT.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS.J. Chem. Inf. Model.2009491849610.1021/ci800298z 19125657
    [Google Scholar]
  15. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  16. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  17. TóthG. GardaiS.J. ZagoW. BertonciniC.W. CremadesN. RoyS.L. TambeM.A. RochetJ.C. GalvagnionC. SkibinskiG. FinkbeinerS. BovaM. RegnstromK. ChiouS.S. JohnstonJ. CallawayK. AndersonJ.P. JoblingM.F. BuellA.K. YednockT.A. KnowlesT.P.J. VendruscoloM. ChristodoulouJ. DobsonC.M. SchenkD. McConlogueL. Targeting the intrinsically disordered structural ensemble of α-synuclein by small molecules as a potential therapeutic strategy for Parkinson’s disease.PLoS One201492e8713310.1371/journal.pone.0087133 24551051
    [Google Scholar]
  18. NiaziS.K. MariamZ. Computer-aided drug design and drug discovery: a prospective analysis.Pharmaceuticals (Basel)20231712210.3390/ph17010022 38256856
    [Google Scholar]
  19. IqbalD. AlsaweedM. JamalQ.M.S. AsadM.R. RizviS.M.D. RizviM.R. AlbadraniH.M. HamedM. JahanS. AlyenbaawiH. Pharmacophore-Based Screening, Molecular Docking, and Dynamic Simulation of Fungal Metabolites as Inhibitors of Multi-Targets in Neurodegenerative Disorders.Biomolecules20231311161310.3390/biom13111613 38002295
    [Google Scholar]
  20. IqbalD. RizviS.M.D. RehmanM.T. KhanM.S. Bin DukhyilA. AlAjmiM.F. AlshehriB.M. BanawasS. ZiaQ. AlsaweedM. MadkhaliY. AlsagabyS.A. AlturaikiW. Soyasapogenol-B as a Potential Multitarget Therapeutic Agent for Neurodegenerative Disorders: Molecular Docking and Dynamics Study.Entropy (Basel)202224559310.3390/e24050593 35626478
    [Google Scholar]
  21. GittoR. De LucaL. FerroS. BuemiM.R. RussoE. De SarroG. ChisariM. CirannaL. ChimirriA. Synthesis and biological characterization of 3-substituted 1H-indoles as ligands of GluN2B-containing N-methyl-D-aspartate receptors. Part 2.J. Med. Chem.20125523105321053910.1021/jm301508d 23140383
    [Google Scholar]
  22. ParsonsC.G. DanyszW. DekundyA. PulteI. Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer’s disease.Neurotox. Res.201324335836910.1007/s12640‑013‑9398‑z 23657927
    [Google Scholar]
  23. SehgalS.A. HammadM.A. TahirR.A. AkramH.N. AhmadF. Current Therapeutic Molecules and Targets in Neurodegenerative Diseases Based on in silico Drug Design.Curr. Neuropharmacol.201816664966310.2174/1570159X16666180315142137 29542412
    [Google Scholar]
  24. SiafakaP.I. OkurM.E. ErimP.D. ÇağlarE.Ş. ÖzgençE. GündoğduE. KöprülüR.E.P. KarantasI.D. Üstündağ OkurN. Protein and Gene Delivery Systems for Neurodegenerative Disorders: Where Do We Stand Today?Pharmaceutics20221411242510.3390/pharmaceutics14112425 36365243
    [Google Scholar]
  25. QureshiR. IrfanM. GondalT.M. KhanS. WuJ. HadiM.U. HeymachJ. LeX. YanH. AlamT. AI in drug discovery and its clinical relevance.Heliyon202397e1757510.1016/j.heliyon.2023.e17575 37396052
    [Google Scholar]
  26. LinX. LiX. LinX. A Review on Applications of Computational Methods in Drug Screening and Design.Molecules20202561375https://www.mdpi.com/1420-3049/25/6/1375/htm10.3390/molecules25061375 32197324
    [Google Scholar]
  27. GaoH.M. HongJ.S. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression.Trends Immunol.200829835736510.1016/j.it.2008.05.002 18599350
    [Google Scholar]
  28. PengC. TrojanowskiJ.Q. LeeV.M.Y. Protein transmission in neurodegenerative disease.Nat. Rev. Neurol.202016419921210.1038/s41582‑020‑0333‑7 32203399
    [Google Scholar]
  29. MurphyM.P. LeVineH.III Alzheimer’s disease and the amyloid-β peptide.J. Alzheimers Dis.201019131132310.3233/JAD‑2010‑1221 20061647
    [Google Scholar]
  30. GulisanoW. MaugeriD. BaltronsM.A. FàM. AmatoA. PalmeriA. D’AdamioL. GrassiC. DevanandD.P. HonigL.S. PuzzoD. ArancioO. Role of Amyloid-β and Tau Proteins in Alzheimer’s Disease: Confuting the Amyloid Cascade.J. Alzheimers Dis.201864s1Suppl. S1S611S63110.3233/JAD‑179935 29865055
    [Google Scholar]
  31. RajmohanR. ReddyP.H. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons.J. Alzheimers Dis.201757497599910.3233/JAD‑160612 27567878
    [Google Scholar]
  32. BryanK.J. LeeH.G. PerryG. SmithM.A. CasadesusG. Transgenic mouse models of Alzheimer’s Disease: Behavioral testing and considerations.Methods of Behavior Analysis in Neuroscience.Boca Raton, FL, USACRC Press/Taylor & Francis20091
    [Google Scholar]
  33. ZhangH. WeiW. ZhaoM. MaL. JiangX. PeiH. CaoY. LiH. Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease.Int. J. Biol. Sci.20211792181219210.7150/ijbs.57078 34239348
    [Google Scholar]
  34. Gómez-BenitoM. GranadoN. García-SanzP. MichelA. DumoulinM. MoratallaR. Modeling Parkinson’s Disease With the Alpha-Synuclein Protein.Front. Pharmacol.20201135610.3389/fphar.2020.00356 32390826
    [Google Scholar]
  35. StefanisL. α-Synuclein in Parkinson’s disease.Cold Spring Harb. Perspect. Med.201222a00939910.1101/cshperspect.a009399 22355802
    [Google Scholar]
  36. VendaL.L. CraggS.J. BuchmanV.L. Wade-MartinsR. α-Synuclein and dopamine at the crossroads of Parkinson’s disease.Trends Neurosci.2010331255956810.1016/j.tins.2010.09.004 20961626
    [Google Scholar]
  37. BrundinP. DaveK.D. KordowerJ.H. Therapeutic approaches to target alpha-synuclein pathology.Exp. Neurol.2017298Pt B22523510.1016/j.expneurol.2017.10.003
    [Google Scholar]
  38. KharelS. OjhaR. Future of Monoclonal Antibody Therapy in Parkinson’s Disease.Ann. Neurosci.202330181010.1177/09727531221136349 37313331
    [Google Scholar]
  39. DehayB. BourdenxM. GorryP. PrzedborskiS. VilaM. HunotS. SingletonA. OlanowC.W. MerchantK.M. BezardE. PetskoG.A. MeissnerW.G. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations.Lancet Neurol.201514885586610.1016/S1474‑4422(15)00006‑X 26050140
    [Google Scholar]
  40. SchulteJ. LittletonJ.T. The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology.Curr. Trends Neurol.201156578 22180703
    [Google Scholar]
  41. SinghK. JainD. SethiP. GuptaJ.K. TripathiA.K. KumarS. SarkerS.D. NaharL. GuruA. Emerging pharmacological approaches for Huntington’s disease.Eur. J. Pharmacol.202498017687310.1016/j.ejphar.2024.176873 39117264
    [Google Scholar]
  42. KumarA. RatanR.R. Oxidative Stress and Huntington’s Disease: The Good, The Bad, and The Ugly.J. Huntingtons Dis.20165321723710.3233/JHD‑160205 27662334
    [Google Scholar]
  43. FergusonM.W. KennedyC.J. PalpagamaT.H. WaldvogelH.J. FaullR.L.M. KwakowskyA. Current and Possible Future Therapeutic Options for Huntington’s Disease.J. Cent. Nerv. Syst. Dis.2022141179573522109251710.1177/11795735221092517 35615642
    [Google Scholar]
  44. ButlerD.C. McLearJ.A. MesserA. Engineered antibody therapies to counteract mutant huntingtin and related toxic intracellular proteins.Prog. Neurobiol.201297219020410.1016/j.pneurobio.2011.11.004 22120646
    [Google Scholar]
  45. KomatsuH. Innovative Therapeutic Approaches for Huntington’s Disease: From Nucleic Acids to GPCR-Targeting Small Molecules.Front. Cell. Neurosci.20211578570310.3389/fncel.2021.785703 34899193
    [Google Scholar]
  46. GradL.I. RouleauG.A. RavitsJ. CashmanN.R. Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS).Cold Spring Harb. Perspect. Med.201778a02411710.1101/cshperspect.a024117 28003278
    [Google Scholar]
  47. MasroriP. Van DammeP. Amyotrophic lateral sclerosis: a clinical review.Eur. J. Neurol.202027101918192910.1111/ene.14393 32526057
    [Google Scholar]
  48. MackenzieI.R.A. RademakersR. The role of TDP-43 in amyotrophic lateral sclerosis and frontotemporal dementia.Curr. Opin. Neurol.20082169310.1097/WCO.0b013e3283168d1d 18989115
    [Google Scholar]
  49. MenesesA. KogaS. O’LearyJ. DicksonD.W. BuG. ZhaoN. TDP-43 pathology in Alzheimer’s disease.Mol. Neurodegener.20211618410.1186/s13024‑021‑00503‑x 34930382
    [Google Scholar]
  50. SotoC. PritzkowS. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases.Nat. Neurosci.201821101332134010.1038/s41593‑018‑0235‑9 30250260
    [Google Scholar]
  51. MulliganV.K. ChakrabarttyA. Protein misfolding in the late‐onset neurodegenerative diseases: Common themes and the unique case of amyotrophic lateral sclerosis.Proteins20138181285130310.1002/prot.24285 23508986
    [Google Scholar]
  52. YuanH. LowC.M. MoodyO.A. JenkinsA. TraynelisS.F. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases.Mol. Pharmacol.201588120321710.1124/mol.115.097998 25904555
    [Google Scholar]
  53. ZillesK. QüM.S. KöhlingR. SpeckmannE.J. Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography.Neuroscience19999441051106110.1016/S0306‑4522(99)00392‑9 10625047
    [Google Scholar]
  54. Padilla-GodínezF.J. Ramos-AcevedoR. Martínez-BecerrilH.A. Bernal-CondeL.D. Garrido-FigueroaJ.F. HiriartM. Hernández-LópezA. Argüero-SánchezR. CalleaF. Guerra-CrespoM. Protein Misfolding and Aggregation: The Relatedness between Parkinson’s Disease and Hepatic Endoplasmic Reticulum Storage Disorders.Int. J. Mol. Sci.202122221246710.3390/ijms222212467 34830348
    [Google Scholar]
  55. AshrafG. GreigN. KhanT. HassanI. TabrezS. ShakilS. SheikhI. ZaidiS. AkramM. JabirN. FirozC. NaeemA. AlhazzaI. DamanhouriG. KamalM. Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus.CNS Neurol. Disord. Drug Targets20141371280129310.2174/1871527313666140917095514 25230234
    [Google Scholar]
  56. ZhangY. ChenH. LiR. SterlingK. SongW. Amyloid β-based therapy for Alzheimer’s disease: challenges, successes and future.Signal Transduct. Target. Ther.20238124810.1038/s41392‑023‑01484‑7 37386015
    [Google Scholar]
  57. FrostB. DiamondM.I. Prion-like mechanisms in neurodegenerative diseases.Nat. Rev. Neurosci.201011315515910.1038/nrn2786 20029438
    [Google Scholar]
  58. CalabreseG. MolzahnC. MayorT. Protein interaction networks in neurodegenerative diseases: From physiological function to aggregation.J. Biol. Chem.2022298710206210.1016/j.jbc.2022.102062 35623389
    [Google Scholar]
  59. AbramovA.Y. PotapovaE.V. DreminV.V. DunaevA.V. Interaction of Oxidative Stress and Misfolded Proteins in the Mechanism of Neurodegeneration.Life (Basel)202010710110.3390/life10070101 32629809
    [Google Scholar]
  60. MooreR.A. TaubnerL.M. PriolaS.A. Prion protein misfolding and disease.Curr. Opin. Struct. Biol.2009191142210.1016/j.sbi.2008.12.007 19157856
    [Google Scholar]
  61. GandhiJ. AntonelliA.C. AfridiA. VatsiaS. JoshiG. RomanovV. MurrayI.V.J. KhanS.A. Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics.Rev. Neurosci.201930433935810.1515/revneuro‑2016‑0035 30742586
    [Google Scholar]
  62. GalganoM. ToshkeziG. QiuX. RussellT. ChinL. ZhaoL.R. Traumatic Brain Injury.Cell Transplant.20172671118113010.1177/0963689717714102 28933211
    [Google Scholar]
  63. RossC.A. PoirierM.A. Protein aggregation and neurodegenerative disease.Nat. Med.200410S7)(Suppl.S10S17https://pubmed.ncbi.nlm.nih.gov/15272267/10.1038/nm1066 15272267
    [Google Scholar]
  64. NeefD.W. JaegerA.M. ThieleD.J. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases.Nat. Rev. Drug Discov.2011101293094410.1038/nrd3453 22129991
    [Google Scholar]
  65. WangY. JiangX. FengF. LiuW. SunH. Degradation of proteins by PROTACs and other strategies.Acta Pharm. Sin. B202010220723810.1016/j.apsb.2019.08.001 32082969
    [Google Scholar]
  66. PinziL. RastelliG. Molecular Docking: Shifting Paradigms in Drug Discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  67. OliveiraT. SilvaM. MaiaE. SilvaA. TarantoA. TarantoA.G. Virtual Screening Algorithms in Drug Discovery: A Review Focused on Machine and Deep Learning Methods.Drugs and Drug Candidates20232231133410.3390/ddc2020017
    [Google Scholar]
  68. VijayanR.S.K. KihlbergJ. CrossJ.B. PoongavanamV. Enhancing preclinical drug discovery with artificial intelligence.Drug Discov. Today202227496798410.1016/j.drudis.2021.11.023 34838731
    [Google Scholar]
  69. GhislatG. RahmanT. BallesterP.J. Recent progress on the prospective application of machine learning to structure-based virtual screening.Curr. Opin. Chem. Biol.202165283410.1016/j.cbpa.2021.04.009 34052776
    [Google Scholar]
  70. KinningsS.L. LiuN. TongeP.J. JacksonR.M. XieL. BourneP.E. A machine learning-based method to improve docking scoring functions and its application to drug repurposing.J. Chem. Inf. Model.201151240841910.1021/ci100369f 21291174
    [Google Scholar]
  71. KreiserR.P. WrightA.K. BlockN.R. HollowsJ.E. NguyenL.T. LeForteK. ManniniB. VendruscoloM. LimbockerR. Therapeutic Strategies to Reduce the Toxicity of Misfolded Protein Oligomers.Int. J. Mol. Sci.20202122865110.3390/ijms21228651 33212787
    [Google Scholar]
  72. CiechanoverA. KwonY.T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.Exp. Mol. Med.2015473e14710.1038/emm.2014.117 25766616
    [Google Scholar]
  73. SilvaG.M. BarcelosM.P. PoianiJ.G.C. Hage-MelimL.I.S. da SilvaC.H.T.P. Allosteric modulators of potential targets related to Alzheimer’s Disease: A Review.ChemMedChem201914161467148310.1002/cmdc.201900299 31310701
    [Google Scholar]
  74. ZhangB. LiH. YuK. JinZ. Molecular docking-based computational platform for high-throughput virtual screening.CCF Transactions on High Performance Computing202241637410.1007/s42514‑021‑00086‑5 35039800
    [Google Scholar]
  75. HuaY. DaiX. XuY. XingG. LiuH. LuT. ChenY. ZhangY. Drug repositioning: Progress and challenges in drug discovery for various diseases.Eur. J. Med. Chem.202223411423910.1016/j.ejmech.2022.114239 35290843
    [Google Scholar]
  76. JoshiP. ChiaS. HabchiJ. KnowlesT.P.J. DobsonC.M. VendruscoloM. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.ACS Comb. Sci.201618314415310.1021/acscombsci.5b00129 26923286
    [Google Scholar]
  77. Vasanth KanthT.L.B. RahaA. Vijay MuraliR.M. YuvathaN. KumaranK. KirubakaranR. ArulJothi, K.N. Repurposing of clinically proven bioactive compounds for targeted treatment of Alzheimer’s disease using molecular docking approach.In Silico Pharmacol.20231113310.1007/s40203‑023‑00173‑1 37920821
    [Google Scholar]
  78. RemondelliP. RennaM. The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance.Front. Mol. Neurosci.20171018710.3389/fnmol.2017.00187 28670265
    [Google Scholar]
  79. SinghR.K. Recent Trends in the Management of Alzheimer’s Disease: Current Therapeutic Options and Drug Repurposing Approaches.Curr. Neuropharmacol.202018986888210.2174/1570159X18666200128121920 31989900
    [Google Scholar]
  80. KelloggG.E. CenY. DukatM. EllisK.C. GuoY. LiJ. MayA.E. SafoM.K. ZhangS. ZhangY. DesaiU.R. Merging cultures and disciplines to create a drug discovery ecosystem at Virginia commonwealth university: Medicinal chemistry, structural biology, molecular and behavioral pharmacology and computational chemistry.SLAS Discov.202328625526910.1016/j.slasd.2023.02.006 36863508
    [Google Scholar]
  81. MagerD.E. Quantitative structure–pharmacokinetic/pharmacodynamic relationships.Adv. Drug Deliv. Rev.20065812-131326135610.1016/j.addr.2006.08.002 17092600
    [Google Scholar]
  82. NowacekA. KosloskiL.M. GendelmanH.E. Neurodegenerative disorders and nanoformulated drug development.Nanomedicine (Lond.)20094554155510.2217/nnm.09.37 19572820
    [Google Scholar]
  83. SinghS.K. KumarA. SinghR.B. GhoshP. BajadN.G. Recent Applications of Bioinformatics in Target Identification and Drug Discovery for Alzheimer’s Disease.Curr. Top. Med. Chem.202222262153217510.2174/1568026623666221026091010 36305125
    [Google Scholar]
  84. SancesarioG.M. BernardiniS. Alzheimer’s disease in the omics era.Clin. Biochem.20185991610.1016/j.clinbiochem.2018.06.011 29920246
    [Google Scholar]
  85. WangD.D. WuW. WangR. Structure-based, deep-learning models for protein-ligand binding affinity prediction.J. Cheminform.2024161210.1186/s13321‑023‑00795‑9 38173000
    [Google Scholar]
  86. BagyinszkyE. GiauV.V. AnS.A. Transcriptomics in Alzheimer’s Disease: Aspects and Challenges.Int. J. Mol. Sci.20202110351710.3390/ijms21103517 32429229
    [Google Scholar]
  87. JohnsonE.C.B. DammerE.B. DuongD.M. PingL. ZhouM. YinL. HigginbothamL.A. GuajardoA. WhiteB. TroncosoJ.C. ThambisettyM. MontineT.J. LeeE.B. TrojanowskiJ.Q. BeachT.G. ReimanE.M. HaroutunianV. WangM. SchadtE. ZhangB. DicksonD.W. Ertekin-TanerN. GoldeT.E. PetyukV.A. De JagerP.L. BennettD.A. WingoT.S. RangarajuS. HajjarI. ShulmanJ.M. LahJ.J. LeveyA.I. SeyfriedN.T. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation.Nat. Med.202026576978010.1038/s41591‑020‑0815‑6 32284590
    [Google Scholar]
  88. LiB. ZhaoG. ZhouQ. XieY. WangZ. FangZ. LuB. QinL. ZhaoY. ZhangR. JiangL. PanH. HeY. WangX. LuoT. ZhangY. WangY. ChenQ. LiuZ. GuoJ. TangB. LiJ. Gene4PD: A Comprehensive Genetic Database of Parkinson’s Disease.Front. Neurosci.20211567956810.3389/fnins.2021.679568 33981200
    [Google Scholar]
  89. JankovicJ. Parkinson’s disease: clinical features and diagnosis.J. Neurol. Neurosurg. Psychiatry200879436837610.1136/jnnp.2007.131045 18344392
    [Google Scholar]
  90. KarolchikD. HinrichsA.S. KentW.J. The UCSC Genome Browser.Curr. Protoc. Hum. Genet.20111818.6.1-18.6.3310.1002/0471142905.hg1806s71
    [Google Scholar]
  91. MeyerL.R. ZweigA.S. HinrichsA.S. KarolchikD. KuhnR.M. WongM. SloanC.A. RosenbloomK.R. RoeG. RheadB. RaneyB.J. PohlA. MalladiV.S. LiC.H. LeeB.T. LearnedK. KirkupV. HsuF. HeitnerS. HarteR.A. HaeusslerM. GuruvadooL. GoldmanM. GiardineB.M. FujitaP.A. DreszerT.R. DiekhansM. ClineM.S. ClawsonH. BarberG.P. HausslerD. KentW.J. The UCSC Genome Browser database: extensions and updates 2013.Nucleic Acids Res.201341Database issueD64D69 23155063
    [Google Scholar]
  92. HerreroJ. MuffatoM. BealK. FitzgeraldS. GordonL. PignatelliM. VilellaA.J. SearleS.M. AmodeR. BrentS. Ensembl comparative genomics resources.Database J. Biol. Databases Curation.20162016bav096
    [Google Scholar]
  93. ManzoniC. KiaD.A. VandrovcovaJ. HardyJ. WoodN.W. LewisP.A. FerrariR. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences.Brief. Bioinform.201819228630210.1093/bib/bbw114 27881428
    [Google Scholar]
  94. DigreA. LindskogC. The Human Protein Atlas—Spatial localization of the human proteome in health and disease.Protein Sci.202130121823310.1002/pro.3987 33146890
    [Google Scholar]
  95. HaugK. SalekR.M. ConesaP. HastingsJ. de MatosP. RijnbeekM. MahendrakerT. WilliamsM. NeumannS. Rocca-SerraP. MaguireE. González-BeltránA. SansoneS.A. GriffinJ.L. SteinbeckC. MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data.Nucleic Acids Res.201341D1D781D78610.1093/nar/gks1004 23109552
    [Google Scholar]
  96. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.20002827
    [Google Scholar]
  97. TomkinsJ.E. ManzoniC. Advances in protein-protein interaction network analysis for Parkinson’s disease.Neurobiol. Dis.202115510539510.1016/j.nbd.2021.105395 34022367
    [Google Scholar]
  98. KanehisaM. FurumichiM. TanabeM. SatoY. MorishimaK. KEGG: new perspectives on genomes, pathways, diseases and drugs.Nucleic Acids Res.201745D1D353D36110.1093/nar/gkw1092 27899662
    [Google Scholar]
  99. VastrikI. D’EustachioP. SchmidtE. Joshi-TopeG. GopinathG. CroftD. de BonoB. GillespieM. JassalB. LewisS. MatthewsL. WuG. BirneyE. SteinL. Reactome: a knowledge base of biologic pathways and processes.Genome Biol.200783R3910.1186/gb‑2007‑8‑3‑r39 17367534
    [Google Scholar]
  100. La CognataV. MorelloG. CavallaroS. Omics Data and Their Integrative Analysis to Support Stratified Medicine in Neurodegenerative Diseases.Int. J. Mol. Sci.2021229482010.3390/ijms22094820 34062930
    [Google Scholar]
  101. QuaziS. GavasS. MalikJ.A. SumanK.S. HaiderZ. In-silico pharmacophore and Molecular Docking based drug discovery against Marburg Virus’s Viral Protein 35; A potent of MAVD.bioRxiv2021.07.01.450693202110.1101/2021.07.01.450693
    [Google Scholar]
  102. PradeepkiranJ.A. ReddyA.P. YinX. ManczakM. ReddyP.H. Protective effects of BACE1 inhibitory ligand molecules against amyloid beta-induced synaptic and mitochondrial toxicities in Alzheimer’s disease.Hum. Mol. Genet.2020291496910.1093/hmg/ddz227 31595293
    [Google Scholar]
  103. NadhA.G. RevikumarA. SudhakaranP.R. NairA.S. Identification of potential lead compounds against BACE1 through in-silico screening of phytochemicals of Medhya rasayana plants for Alzheimer’s disease management.Comput. Biol. Med.202214510542210.1016/j.compbiomed.2022.105422 35354103
    [Google Scholar]
  104. RayS. LiuM. Current understanding of LRRK2 in Parkinson’s disease: biochemical and structural features and inhibitor design.Future Med. Chem.20124131701171310.4155/fmc.12.110 22924508
    [Google Scholar]
  105. ScarpinoA. FerenczyG.G. KeserűG.M. Binding Mode Prediction and Virtual Screening Applications by Covalent Docking.Methods Mol. Biol.20212266738810.1007/978‑1‑0716‑1209‑5_4 33759121
    [Google Scholar]
  106. JurcauA. Molecular Pathophysiological Mechanisms in Huntington’s Disease.Biomedicines2022106143210.3390/biomedicines10061432 35740453
    [Google Scholar]
  107. QuaziS. MalikJ. CapuzzoA.M. SumanK.S. HaiderZ. In-silico structural and molecular docking-based drug discovery against viral protein (VP35) of Marburg virus: A potent agent of MAVD.bioRxiv2021.02.09.430405202110.1101/2021.02.09.430405
    [Google Scholar]
  108. RojasP. RamírezA.I. Fernández-AlbarralJ.A. López-CuencaI. Salobrar-GarcíaE. CadenaM. Elvira-HurtadoL. SalazarJ.J. de HozR. RamírezJ.M. Amyotrophic Lateral Sclerosis: A Neurodegenerative Motor Neuron Disease With Ocular Involvement.Front. Neurosci.20201456685810.3389/fnins.2020.566858 33071739
    [Google Scholar]
  109. YangC. ChenE.A. ZhangY. Protein–Ligand Docking in the Machine-Learning Era.Molecules20222714456810.3390/molecules27144568 35889440
    [Google Scholar]
  110. Lakey-BeitiaJ. KumarD.J. HegdeM. RaoK.S. Carotenoids as novel therapeutic molecules against neurodegenerative disorders: Chemistry and molecular docking analysis.Int. J. Mol. Sci.20192022555310.3390/ijms20225553 31703296
    [Google Scholar]
  111. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem Substance and Compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv951 26400175
    [Google Scholar]
  112. HuangH.J. ChangT.T. ChenH.Y. ChenC.Y.C. Finding inhibitors of mutant superoxide dismutase-1 for amyotrophic lateral sclerosis therapy from traditional chinese medicine.Evid. Based Complement. Alternat. Med.20142014115627610.1155/2014/156276 24963318
    [Google Scholar]
  113. KhanS. AhmadK. AlshammariE.M.A. AdnanM. BaigM.H. LohaniM. SomvanshiP. HaqueS. Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds.BioMed Res. Int.201520151910.1155/2015/379817 26064904
    [Google Scholar]
  114. CozzaG. GianoncelliA. MontopoliM. CaparrottaL. VenerandoA. MeggioF. PinnaL.A. ZagottoG. MoroS. Identification of novel protein kinase CK1 delta (CK1delta) inhibitors through structure-based virtual screening.Bioorg. Med. Chem. Lett.20081856725675
    [Google Scholar]
  115. PareekH. ThakurP. RayD. Modeling and Docking Studies Of 4-Aminobutyrate Aminotransferase for Huntington’s Disease.Int. J. Pharma Bio Sci.20112539549
    [Google Scholar]
  116. RahmanA. SaikiaB. GogoiC.R. BaruahA. Advances in the understanding of protein misfolding and aggregation through molecular dynamics simulation.Prog. Biophys. Mol. Biol.2022175314810.1016/j.pbiomolbio.2022.08.007 36044970
    [Google Scholar]
  117. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. Highly accurate protein structure prediction with AlphaFold.Nature202159658358910.1038/s41586‑021‑03819‑2
    [Google Scholar]
  118. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The Protein Data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  119. NecciM. PiovesanD. HoqueM.T. WalshI. IqbalS. VendruscoloM. SormanniP. WangC. RaimondiD. SharmaR. ZhouY. LitfinT. GalzitskayaO.V. LobanovM.Y. VrankenW. WallnerB. MirabelloC. MalhisN. DosztányiZ. ErdősG. MészárosB. GaoJ. WangK. HuG. WuZ. SharmaA. HansonJ. PaliwalK. CallebautI. Bitard-FeildelT. OrlandoG. PengZ. XuJ. WangS. JonesD.T. CozzettoD. MengF. YanJ. GsponerJ. ChengJ. WuT. KurganL. PromponasV.J. TamanaS. Marino-BusljeC. Martínez-PérezE. ChasapiA. OuzounisC. DunkerA.K. KajavaA.V. LeclercqJ.Y. Aykac-FasB. LambrughiM. MaianiE. PapaleoE. ChemesL.B. ÁlvarezL. González-FoutelN.S. IglesiasV. PujolsJ. VenturaS. PalopoliN. BenítezG.I. ParisiG. BassotC. ElofssonA. GovindarajanS. LambJ. SalvatoreM. HatosA. MonzonA.M. BevilacquaM. MičetićI. MinerviniG. PaladinL. QuagliaF. LeonardiE. DaveyN. HorvathT. KovacsO.P. MurvaiN. PancsaR. SchadE. SzaboB. TantosA. Macedo-RibeiroS. MansoJ.A. PereiraP.J.B. DavidovićR. VeljkovicN. Hajdu-SoltészB. PajkosM. SzaniszlóT. GuharoyM. LazarT. Macossay-CastilloM. TompaP. TosattoS.C.E. Critical assessment of protein intrinsic disorder prediction.Nat. Methods202118547248110.1038/s41592‑021‑01117‑3 33875885
    [Google Scholar]
  120. RadhakrishnanI. Pérez-AlvaradoG.C. ParkerD. DysonH.J. MontminyM.R. WrightP.E. Structural analyses of CREB-CBP transcriptional activator-coactivator complexes by NMR spectroscopy: implications for mapping the boundaries of structural domains.J. Mol. Biol.1999287585986510.1006/jmbi.1999.2658 10222196
    [Google Scholar]
  121. WrightP.E. DysonH.J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm.J. Mol. Biol.1999293232133110.1006/jmbi.1999.3110 10550212
    [Google Scholar]
  122. MillesS. JensenM.R. LazertC. GusevaS. IvashchenkoS. CommunieG. MaurinD. GerlierD. RuigrokR.W.H. BlackledgeM. An ultraweak interaction in the intrinsically disordered replication machinery is essential for measles virus function.Sci. Adv.201848eaat777810.1126/sciadv.aat7778 30140745
    [Google Scholar]
  123. JensenM.R. CommunieG. RibeiroE.A.Jr MartinezN. DesfossesA. SalmonL. MollicaL. GabelF. JaminM. LonghiS. RuigrokR.W.H. BlackledgeM. Intrinsic disorder in measles virus nucleocapsids.Proc. Natl. Acad. Sci. USA2011108249839984410.1073/pnas.1103270108 21613569
    [Google Scholar]
  124. RuffK.M. PappuR.V. AlphaFold and Implications for Intrinsically Disordered Proteins.J. Mol. Biol.20214332016720810.1016/j.jmb.2021.167208 34418423
    [Google Scholar]
  125. Cruz-VicenteP. GonçalvesA.M. FerreiraO. QueirozJ.A. SilvestreS. PassarinhaL.A. GallardoE. Discovery of Small Molecules as Membrane-Bound Catechol-O-methyltransferase Inhibitors with Interest in Parkinson’s Disease: Pharmacophore Modeling, Molecular Docking and In Vitro Experimental Validation Studies.Pharmaceuticals (Basel)20211515110.3390/ph15010051 35056108
    [Google Scholar]
  126. PalakurtiR. VadrevuR. Identification of abelson tyrosine kinase inhibitors as potential therapeutics for Alzheimer’s disease using multiple e-pharmacophore modeling and molecular dynamics.J. Biomol. Struct. Dyn.201735488389610.1080/07391102.2016.1166454 26982633
    [Google Scholar]
  127. SelvarajC. ChandraI. SinghS.K. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries.Mol. Divers.20222631893191310.1007/s11030‑021‑10326‑z 34686947
    [Google Scholar]
  128. LowJ. HoE. Managing Ethical Dilemmas in End-Stage Neurodegenerative Diseases.Geriatrics (Basel)201721810.3390/geriatrics2010008 31011018
    [Google Scholar]
  129. SinghK. BhushanB. SinghB. Advances in Drug Discovery and Design using Computer-aided Molecular Modeling.Curr. Computeraided Drug Des.202420569771010.2174/1573409920666230914123005 37711101
    [Google Scholar]
  130. HospitalA. GoñiJ.R. OrozcoM. GelpíJ.L. Molecular dynamics simulations: advances and applications.Adv. Appl. Bioinform. Chem.201583747 26604800
    [Google Scholar]
  131. SalmanM.M. Al-ObaidiZ. KitchenP. LoretoA. BillR.M. Wade-MartinsR. Advances in applying computer-aided drug design for neurodegenerative diseases.Int. J. Mol. Sci.2021229468810.3390/ijms22094688 33925236
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010298545241108062449
Loading
/content/journals/cpb/10.2174/0113892010298545241108062449
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test