Skip to content
2000
Volume 26, Issue 15
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Linn. (Zingiberaceae) is a medicinal plant with significant biological activities owing to curcuminoids (CURs). Nevertheless, its low oral bioavailability because of low water solubility, inadequate absorption, short half-life, and rapid clearance hampered its clinical applications.

Objective

The study aimed to extract, isolate, characterize, and formulate the Phospholipon®90H complex and evaluate for improved solubility, antiasthmatic and pharmacokinetic potential of CURs.

Methods

Phospholipon®90H-based complex of curcuminoids (CPLC) was synthesized solvent evaporation technique and reported an improvement of solubility, antiasthmatic, and pharmacokinetic potential of CURs. CPLC was physico-chemically and functionally evaluated by Fourier transforms infrared spectroscopy, differential scanning calorimetry, powder x-ray diffractometry, oral bioavailability, and antiasthmatic activity.

Results

Ethyl acetate rhizome extracts (EARE) displayed ~17.42% w/w extraction yield of CURs. CPLC revealed high entrapment of CURs (~92.55% w/w) within the polar head of phospholipids. Small particle size ~ 194 nm with zeta potential value ~ -20.4 mV suggests the physical stability of CPLC. Physical analysis evidenced the formation of stable and amorphous CPLC by establishing hydrophobic and weak intermolecular forces between CURs and Phospholipon®90H. Undoubtedly, the amorphous CPLC raised the aqueous solubility of CURs (~2-fold) compared to pure CURs. CPLC formulations (~ 20 mg/kg of CURs, p.o.) significantly lowered the leucocyte and eosinophil count compared to pure CURs. CPLC improved the oral bioavailability of CURs compared to pure CURs.

Conclusion

Results highlight that CPLC could be established as a breakthrough respiratory nanocarrier for CURs and other phytocompounds with respiratory potential.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010326636240919094339
2024-10-03
2025-12-27
Loading full text...

Full text loading...

References

  1. PapiA. BrightlingC. PedersenS.E. ReddelH.K. Asthma.Lancet20183911012278380010.1016/S0140‑6736(17)33311‑1 29273246
    [Google Scholar]
  2. QuirtJ. HildebrandK.J. MazzaJ. NoyaF. KimH. Asthma.Allergy Asthma Clin. Immunol.201814Suppl. 250
    [Google Scholar]
  3. LemanskeR.F. BusseW.W. Asthma: clinical expression and molecular mechanisms.J. Allergy Clin. Immunol.20101252S95S10210.1016/j.jaci.2009.10.047
    [Google Scholar]
  4. HaasF. BishopM.C. Salazar-SchicchiJ. AxenK.V. LiebermanD. AxenK. Effect of milk ingestion on pulmonary function in healthy and asthmatic subjects.J. Asthma199128534935510.3109/02770909109089462 1938769
    [Google Scholar]
  5. OddyWH RosalesF A systematic review of the importance of milk TGF-β on immunological outcomes in the infant and young child.Pediatr Allergy Immunol2010211-Part-I475910.1111/j.1399‑3038.2009.00913.x19594862
    [Google Scholar]
  6. PenttilaI. Effects of transforming growth factor-beta and formula feeding on systemic immune responses to dietary beta-lactoglobulin in allergy-prone rats.Pediatr. Res.200659565065510.1203/01.pdr.0000203149.75465.74 16627876
    [Google Scholar]
  7. HusainQ. AhmadA. ShameemM. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma.Ann. Thorac. Med.20127422623210.4103/1817‑1737.102182 23189100
    [Google Scholar]
  8. CaramoriG. PapiA. Oxidants and asthma.Thorax200459217017310.1136/thorax.2002.002477 14760161
    [Google Scholar]
  9. MacNeeW. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease.Proc. Am. Thorac. Soc.200521506010.1513/pats.200411‑056SF 16113469
    [Google Scholar]
  10. SalehD. ErnstP. LimS. BarnesP.J. GiaidA. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid.FASEB J.1998121192993710.1096/fasebj.12.11.929 9707165
    [Google Scholar]
  11. MercadoN. ItoK. BarnesP.J. Accelerated ageing of the lung in COPD: new concepts.Thorax201570548248910.1136/thoraxjnl‑2014‑206084 25739910
    [Google Scholar]
  12. HonmaneS. HajareA. MoreH. OsmaniR.A.M. SalunkheS. Lung delivery of nanoliposomal salbutamol sulfate dry powder inhalation for facilitated asthma therapy.J. Liposome Res.201929433234210.1080/08982104.2018.1531022
    [Google Scholar]
  13. KonduriK.S. NandedkarS. DüzgünesN. SuzaraV. ArtwohlJ. BunteR. GangadharamP.R.J. Efficacy of liposomal budesonide in experimental asthma.J. Allergy Clin. Immunol.2003111232132710.1067/mai.2003.104 12589352
    [Google Scholar]
  14. ZhangX. LiuQ. HuJ. XuL. TanW. An aerosol formulation of R-salbutamol sulfate for pulmonary inhalation.Acta Pharm. Sin. B201441798510.1016/j.apsb.2013.12.010
    [Google Scholar]
  15. KenyonN.J. BrattJ.M. LeeJ. LuoJ. FranziL.M. ZekiA.A. LamK.S. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation.PLoS One2013810e7773010.1371/journal.pone.0077730 24204939
    [Google Scholar]
  16. Oyarzun-AmpueroF.A. BreaJ. LozaM.I. TorresD. AlonsoM.J. Chitosan–hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma.Int. J. Pharm.2009381212212910.1016/j.ijpharm.2009.04.009 19467809
    [Google Scholar]
  17. BollmeierS.G. HartmannA.P. Management of chronic obstructive pulmonary disease: A review focusing on exacerbations.Am. J. Health Syst. Pharm.202077425926810.1093/ajhp/zxz306 31930287
    [Google Scholar]
  18. KumarV. BhattP. RahmanM. KaithwasG. ChoudhryH. Al-AbbasiF. AnwarF. VermaA. Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies.Int. J. Nanomedicine2017126747675810.2147/IJN.S136629 28932118
    [Google Scholar]
  19. FuloriaS. MehtaJ. ChandelA. SekarM. RaniN.N.I.M. BegumM.Y. SubramaniyanV. ChidambaramK. ThangaveluL. NordinR. WuY.S. SathasivamK.V. LumP.T. MeenakshiD.U. KumarasamyV. AzadA.K. FuloriaN.K. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin.Front. Pharmacol.202213March82080610.3389/fphar.2022.820806 35401176
    [Google Scholar]
  20. AshrafK. SultanS. A comprehensive review on Curcuma longa Linn.: Phytochemical, pharmacological, and molecular study.International Journal of Green Pharmacy.2017114S671S685
    [Google Scholar]
  21. ChattopadhyayI. BiswasK. BandyopadhyayU. BanerjeeR.K. Turmeric and curcumin: Biological actions and medicinal applications.Curr. Sci.20048714453
    [Google Scholar]
  22. BoskabadyM.H. AminF. ShakeriF. The Effect of Curcuma longa on Inflammatory Mediators and Immunological, Oxidant, and Antioxidant Biomarkers in Asthmatic Rats.Evid. Based Complement. Alternat. Med.2021202111310.1155/2021/4234326 34804178
    [Google Scholar]
  23. SandurS.K. PandeyM.K. SungB. AhnK.S. MurakamiA. SethiG. LimtrakulP. BadmaevV. AggarwalB.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism.Carcinogenesis20072881765177310.1093/carcin/bgm123 17522064
    [Google Scholar]
  24. ParkE.J. JeonC.H. KoG. KimJ. SohnD.H. Protective effect of curcumin in rat liver injury induced by carbon tetrachloride.J. Pharm. Pharmacol.201052443744010.1211/0022357001774048 10813555
    [Google Scholar]
  25. MaitiK. MukherjeeK. GantaitA. SahaB.P. MukherjeeP.K. Curcumin–phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats.Int. J. Pharm.20073301-215516310.1016/j.ijpharm.2006.09.025 17112692
    [Google Scholar]
  26. ChenM.J. ChengY.M. LaiP.H. WuJ.F. HsuY.C. In vitro biocompatibility of thermally gelling liquid mucoadhesive loaded curcuminoids in colorectal cancer chemoprevention.Int. J. Colorectal Dis.201227786987810.1007/s00384‑011‑1393‑3 22222465
    [Google Scholar]
  27. LiX. LuY. JinY. SonJ.K. LeeS.H. ChangH.W. Curcumin inhibits the activation of immunoglobulin e-mediated mast cells and passive systemic anaphylaxis in mice by reducing serum eicosanoid and histamine levels.Biomol. Ther. (Seoul)2014221273410.4062/biomolther.2013.092 24596618
    [Google Scholar]
  28. AmmonH. WahlM. Pharmacology of Curcuma longa.Planta Med.19915711710.1055/s‑2006‑960004 2062949
    [Google Scholar]
  29. CucuzzaL.S. MottaM. MirettiS. AccorneroP. BarattaM. Curcuminoid-phospholipid complex induces apoptosis in mammary epithelial cells by STAT-3 signaling.Exp. Mol. Med.200840664765710.3858/emm.2008.40.6.647 19116450
    [Google Scholar]
  30. Bioavailability Enhancement of Curcumin by Complexation with Phosphatidyl CholineJ. Pharm. Sci.201110172271228010.1002/jps
    [Google Scholar]
  31. KhatikR. DwivediP. ShuklaA. SrivastavaP. RathS.K. PaliwalS.K. DwivediA.K. Development, characterization and toxicological evaluations of phospholipids complexes of curcumin for effective drug delivery in cancer chemotherapy.Drug Deliv.20162331057106810.3109/10717544.2014.936988 25033042
    [Google Scholar]
  32. WangJ. WangL. ZhangL. HeD. JuJ. LiW. Studies on the curcumin phospholipid complex solidified with Soluplus®.J. Pharm. Pharmacol.201870224224910.1111/jphp.12857 29148063
    [Google Scholar]
  33. LiuY. Hybrid curcumin-phospholipid complex-near-infrared dye oral drug delivery system to inhibit lung metastasis of breast cancer.Int. J. Nanomedicine20191433113330
    [Google Scholar]
  34. SongW. ChenX. DaiC. LinD. PangX. ZhangD. LiuG. JinY. LinJ. Comparative Study of Preparation, Evaluation, and Pharmacokinetics in Beagle Dogs of Curcumin β-Cyclodextrin Inclusion Complex, Curcumin Solid Dispersion, and Curcumin Phospholipid Complex.Molecules2022279299810.3390/molecules27092998 35566349
    [Google Scholar]
  35. AkhlaghiS. RabbaniS. KarimiH. HaeriA. Hyaluronic Acid Gel Incorporating Curcumin-Phospholipid Complex Nanoparticles Prevents Postoperative Peritoneal Adhesion.J. Pharm. Sci.2023112258759810.1016/j.xphs.2022.10.022
    [Google Scholar]
  36. KüllenbergD TaylorL A SchneiderM MassingU Health effects of dietary phospholipids.Lipids Health Dis20121113http://www.lipidworld.com/content/11/1/3.10.1186/1476‑511X‑11‑322221489
    [Google Scholar]
  37. LiJ. WangX. ZhangT. WangC. HuangZ. LuoX. DengY. A review on phospholipids and their main applications in drug delivery systems.Asian J. Pharm. Sci.2015102819810.1016/j.ajps.2014.09.004
    [Google Scholar]
  38. LuM. QiuQ. LuoX. LiuX. SunJ. WangC. LinX. DengY. SongY. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents.Asian J. Pharm. Sci.201914326527410.1016/j.ajps.2018.05.011
    [Google Scholar]
  39. RenukuntlaJ. VadlapudiA.D. PatelA. BodduS.H.S. MitraA.K. Approaches for enhancing oral bioavailability of peptides and proteins.Int. J. Pharm.20134471-2759310.1016/j.ijpharm.2013.02.030
    [Google Scholar]
  40. SheteV.S. TelangeD.R. MahajanN.M. PetheA.M. Mahapatra, DK Development of phospholipon®90H complex nanocarrier with enhanced oral bioavailability and anti-inflammatory potential of genistein.Drug Deliv.2023301216215810.1080/10717544.2022.2162158
    [Google Scholar]
  41. TelangeD.R. SohailN.K. HemkeA.T. KharkarP.S. PetheA.M. Phospholipid complex-loaded self-assembled phytosomal soft nanoparticles: evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability, and antioxidant potential of mangiferin.Drug Deliv. Transl. Res.20211131056108310.1007/s13346‑020‑00822‑4 32696222
    [Google Scholar]
  42. BhattacharyyaS. AhammedS.M. SahaB.P. MukherjeeP.K. The gallic acid-phospholipid complex improved the antioxidant potential of gallic acid by enhancing its bioavailability.AAPS PharmSciTech20131431025103310.1208/s12249‑013‑9991‑8 23800857
    [Google Scholar]
  43. PathanR.A. BhandariU. Gymnemic acid-phospholipid complex: Preparation and characterization.J. Dispers. Sci. Technol.20113281165117210.1080/01932691.2010.498256
    [Google Scholar]
  44. KiddP.M. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts.Altern. Med. Rev.2009143226246 19803548
    [Google Scholar]
  45. ConstantinidesP.P. ChaubalM.V. ShorrR. Advances in lipid nanodispersions for parenteral drug delivery and targeting.Adv. Drug Deliv. Rev.200860675776710.1016/j.addr.2007.10.013 18096269
    [Google Scholar]
  46. HashemzadehH. Hanafi-BojdM.Y. IranshahyM. ZarbanA. RaissiH. The combination of polyphenols and phospholipids as an efficient platform for delivery of natural products.Sci. Rep.2023131250110.1038/s41598‑023‑29237‑0
    [Google Scholar]
  47. HouZ. LiY. HuangY. ZhouC. LinJ. WangY. CuiF. ZhouS. JiaM. YeS. ZhangQ. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery.Mol. Pharm.20131019010110.1021/mp300489p 23194396
    [Google Scholar]
  48. BildsteinL. DubernetC. CouvreurP. Prodrug-based intracellular delivery of anticancer agents.Adv. Drug Deliv. Rev.2011631-232310.1016/j.addr.2010.12.005
    [Google Scholar]
  49. YuZ. LiuX. ChenH. ZhuL. Naringenin-Loaded Dipalmitoylphosphatidylcholine Phytosome Dry Powders for Inhaled Treatment of Acute Lung Injury.J. Aerosol Med. Pulm. Drug Deliv.202033419420410.1089/jamp.2019.1569 32176552
    [Google Scholar]
  50. PatilS.S. BhasarkarS. RathodV.K. Extraction of curcuminoids from Curcuma longa: comparative study between batch extraction and novel three phase partitioning.Prep. Biochem. Biotechnol.201949440741810.1080/10826068.2019.1575859
    [Google Scholar]
  51. EvansW.C. Trease and Evans’ Pharmacognosy.Sixteenth EditionElsevier2009
    [Google Scholar]
  52. DibactoR.E.K. TchuenteB.R.T. NguedjoM.W. TientcheuY.M.T. NyobeE.C. EdounF.L.E. KaminiM.F.G. DibandaR.F. MedouaG.N. Total Polyphenol and Flavonoid Content and Antioxidant Capacity of Some Varieties of Persea americana Peels Consumed in Cameroon.ScientificWorldJournal2021202111110.1155/2021/8882594 33976588
    [Google Scholar]
  53. NoreenH. SemmarN. FarmanM. McCullaghJ.S.O. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus.Asian Pac. J. Trop. Med.201710879280110.1016/j.apjtm.2017.07.024 28942828
    [Google Scholar]
  54. ShraimA.M. AhmedT.A. RahmanM.M. HijjiY.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation.L. W. T.202115011193210.1016/j.lwt.2021.111932
    [Google Scholar]
  55. LaddhaK.S. Extraction and Isolation of Phytochemicals: A Practical Approach.MumbaiYucca Enterprises2019
    [Google Scholar]
  56. TelangeD.R. PatilA.T. PetheA.M. FegadeH. AnandS. DaveV.S. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential.Eur. J. Pharm. Sci.2017108364910.1016/j.ejps.2016.12.009 27939619
    [Google Scholar]
  57. MaitiK. MukherjeeK. MuruganV. SahaB.P. MukherjeeP.K. Exploring the effect of Hesperetin-HSPC complex-a novel drug delivery system on the in vitro release, therapeutic efficacy and pharmacokinetics.AAPS PharmSciTech200910394395010.1208/s12249‑009‑9282‑6 19629709
    [Google Scholar]
  58. GnananathK. Sri NatarajK. Ganga RaoB. Phospholipid complex technique for superior bioavailability of phytoconstituents.Adv. Pharm. Bull.201771354210.15171/apb.2017.005 28507935
    [Google Scholar]
  59. SaojiS.D. BelgamwarV.S. DharashivkarS.S. RodeA.A. MackC. DaveV.S. The Study of the Influence of Formulation and Process Variables on the Functional Attributes of Simvastatin–Phospholipid Complex.J. Pharm. Innov.201611326427810.1007/s12247‑016‑9256‑7
    [Google Scholar]
  60. VikheS. NirmalS. Antiallergic and antihistaminic actions of Ceasalpinia bonducella seeds: Possible role in treatment of asthma.J. Ethnopharmacol.201821625125810.1016/j.jep.2017.12.007
    [Google Scholar]
  61. TaurD.J. PatilR.Y. Evaluation of antiasthmatic activity of Clitoria ternatea L. roots.J. Ethnopharmacol.2011136237437610.1016/j.jep.2011.04.064
    [Google Scholar]
  62. MagdyG. BelalF. El-DeenA.K. Green synchronous spectrofluorimetric method for the simultaneous determination of agomelatine and venlafaxine in human plasma at part per billion levels.Sci. Rep.20221212255910.1038/s41598‑022‑26827‑2
    [Google Scholar]
  63. AhmedO.A.A. El-BassossyH.M. El-SayedH.M. El-HayS.S.A. Rp-HPLC determination of quercetin in a novel D-α-tocopherol polyethylene glycol 1000 succinate based SNEDDS formulation: Pharmacokinetics in Rat Plasma.Molecules2021265143510.3390/molecules26051435 33800848
    [Google Scholar]
  64. TungB.T. NhamD.T. HaiN.T. ThuD.K. Chapter 10 -Curcuma longa, the Polyphenolic Curcumin Compound and Pharmacological Effects on Liver. Dietary Interventions in Liver Disease.Chapter 10Elsevier Inc.201910.1016/B978‑0‑12‑814466‑4.00010‑0
    [Google Scholar]
  65. IwealaE.J. UcheM.E. DikeE.D. EtumnuL.R. DokunmuT.M. OluwapelumiA.E. OkoroB.C. DaniaO.E. AdebayoA.H. Ugbogu, EA Curcuma longa (Turmeric): Ethnomedicinal Uses, Phytochemistry, Pharmacological Activities and Toxicity Profiles- A Review.Pharmacol. Res. Mod. Chin. Med.20236410022210.1016/j.prmcm.2023.100222
    [Google Scholar]
  66. ArablouT. Kolahdouz-MohammadiR. Curcumin and endometriosis: Review on potential roles and molecular mechanisms.Biomed. Pharmacother.201897919710.1016/j.biopha.2017.10.119
    [Google Scholar]
  67. Le-TanH. FausterT. HaasK. JaegerH. Aqueous Extraction of Curcuminoids from Curcuma longa: Effect of Cell Disintegration Pre-treatment and Extraction Condition.Food Bioprocess Technol.2022151359137310.1007/s11947‑022‑02820‑5
    [Google Scholar]
  68. ParkJ. DoS. LeeM. HaS. LeeK.G. Preparation of turmeric powder with various extraction and drying methods.Chemical and Biological Technologies Agriculture.20229110.1186/s40538‑022‑00307‑1
    [Google Scholar]
  69. ShirsathS.R. SableS.S. GaikwadS.G. SonawaneS.H. SainiD.R. GogateP.R. Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of different operating parameters.Ultrason. Sonochem.20173843744510.1016/j.ultsonch.2017.03.040
    [Google Scholar]
  70. DiasM.C. PintoD.C.G.A. SilvaA.M.S. Plant flavonoids: Chemical characteristics and biological activity.Molecules20212617537710.3390/molecules26175377 34500810
    [Google Scholar]
  71. YangQ.Q. ChengL.Z. ZhangT. YaronS. JiangH.X. SuiZ.Q. CorkeH. Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa).Industrial Crops and Products.202015211256110.1016/j.indcrop.2020.112561
    [Google Scholar]
  72. BlainskiA. LopesG. De MelloJ. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L.Molecules20131866852686510.3390/molecules18066852 23752469
    [Google Scholar]
  73. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: an overview.J. Nutr. Sci.20165e4710.1017/jns.2016.41 28620474
    [Google Scholar]
  74. KimS. KoS. KimY. HaS. ParkH. ParkY. LeeS. Determination of Curcuma longa L. (Turmeric) Leaf Extraction Conditions Using Response Surface Methodology to Optimize Extraction Yield and Antioxidant Content.Journal of Food Quality.201920197575206
    [Google Scholar]
  75. SharififarF. Dehghn-NudehG. MirtajaldiniM. Major flavonoids with antioxidant activity from Teucrium polium L.Food Chem.2009112488588810.1016/j.foodchem.2008.06.064
    [Google Scholar]
  76. KwonH.L. ChungM.S. Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma long L.Food Chem.2015185586410.1016/j.foodchem.2015.03.114
    [Google Scholar]
  77. Mohsen-NiaM. AmiriH. JaziB. Dielectric constants of water, methanol, ethanol, butanol and acetone: Measurement and computational study.J. Solution Chem.201039570170810.1007/s10953‑010‑9538‑5
    [Google Scholar]
  78. ChaudharyA. NagaichU. GulatiN. SharmaV.K. KhosaR.L. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review.J. Adv. Pharm. Educ. Res.2012213267
    [Google Scholar]
  79. JungJ.Y. YooS.D. LeeS.H. KimK.H. YoonD.S. LeeK.H. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique.Int. J. Pharm.1999187220921810.1016/S0378‑5173(99)00191‑X 10502627
    [Google Scholar]
  80. QinX. YangY. FanT.T. GongT. ZhangX.N. HuangY. Preparation, characterization and in vivo evaluation of bergenin-phospholipid complex.Acta Pharmacol. Sin.201031112713610.1038/aps.2009.171
    [Google Scholar]
  81. TanQ. LiuS. ChenX. WuM. WangH. YinH. HeD. XiongH. ZhangJ. Design and evaluation of a novel evodiamine-phospholipid complex for improved oral bioavailability.AAPS PharmSciTech201213253454710.1208/s12249‑012‑9772‑9 22454136
    [Google Scholar]
  82. MulikR. MahadikK. ParadkarA. Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles: Physicochemical characterization and stability study.Eur. J. Pharm. Sci.2009373-439540410.1016/j.ejps.2009.03.009 19491031
    [Google Scholar]
  83. LiJ. LiuP. LiuJ.P. YangJ.K. ZhangW.L. FanY.Q. KanS.L. CuiY. ZhangW.J. Bioavailability and foam cells permeability enhancement of Salvianolic acid B pellets based on drug–phospholipids complex technique.Eur. J. Pharm. Biopharm.2013831768610.1016/j.ejpb.2012.09.021 23085582
    [Google Scholar]
  84. YanyuX. YunmeiS. ZhipengC. QinengP. The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats.Int. J. Pharm.20063071778210.1016/j.ijpharm.2005.10.001 16300915
    [Google Scholar]
  85. LasonderE. WeringaW.D. An NMR and DSC study of the interaction of phospholipid vesicles with some anti-inflammatory agents.J. Colloid Interface Sci.1990139246947810.1016/0021‑9797(90)90119‑9
    [Google Scholar]
  86. VenemaF.R. WeringaW.D. The interactions of phospholipid vesicles with some anti-inflammatory agents.J. Colloid Interface Sci.1988125248449210.1016/0021‑9797(88)90013‑6
    [Google Scholar]
  87. BeganG. SudharshanE. Udaya SankarK. Appu RaoA.G. Interaction of curcumin with phosphatidylcholine: A spectrofluorometric study.J. Agric. Food Chem.199947124992499710.1021/jf9900837 10606563
    [Google Scholar]
  88. YallapuM.M. JaggiM. Chauhan, SC beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells.Colloids Surf. B Biointerfaces201079111312510.1016/j.colsurfb.2010.03.039
    [Google Scholar]
  89. ChenX. ZouL.Q. NiuJ. LiuW. PengS.F. LiuC.M. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes.Molecules2015208142931431110.3390/molecules200814293 26251892
    [Google Scholar]
  90. XieH. MaL. LiY. FuJ. LiZ. YuX. GaoQ. Preparation and Characterizations of Curcumin Protection and Delivery System Using Linear Dextrin.Compounds20222435336610.3390/compounds2040029
    [Google Scholar]
  91. TrendafilovaI. ChimshirovaR. MomekovaD. PetkovH. KosevaN. PetrovaP. PopovaM. Curcumin and Capsaicin-Loaded Ag-Modified Mesoporous Silica Carriers: A New Alternative in Skin Treatment.Nanomaterials (Basel)20221217307510.3390/nano12173075 36080112
    [Google Scholar]
  92. ChenJ. QinX. ZhongS. ChenS. SuW. LiuY. Characterization of curcumin/cyclodextrin polymer inclusion complex and investigation on its antioxidant and antiproliferative activities.Molecules2018235117910.3390/molecules23051179 29762477
    [Google Scholar]
  93. CaiX. LuanY. JiangY. SongA. ShaoW. LiZ. ZhaoZ. Huperzine A-phospholipid complex-loaded biodegradable thermosensitive polymer gel for controlled drug release.Int. J. Pharm.20124331-210211110.1016/j.ijpharm.2012.05.009
    [Google Scholar]
  94. YueP.F. ZhangW.J. YuanH.L. YangM. ZhuW.F. CaiP.L. XiaoX.H. Process optimization, characterization and pharmacokinetic evaluation in rats of ursodeoxycholic acid-phospholipid complex.AAPS PharmSciTech20089132232910.1208/s12249‑008‑9040‑1 18446498
    [Google Scholar]
  95. XieJ. LiY. SongL. PanZ. YeS. HouZ. Design of a novel curcumin-soybean phosphatidylcholine complex-based targeted drug delivery systems.Drug Deliv.201724170771910.1080/10717544.2017.1303855 28436718
    [Google Scholar]
  96. AmalrajA. PiusA. GopiS. GopiS. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review.J. Tradit. Complement. Med.20177220523310.1016/j.jtcme.2016.05.005
    [Google Scholar]
  97. PerrutM. JungJ. LeboeufF. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes.Int. J. Pharm.2005288131010.1016/j.ijpharm.2004.09.007 15607252
    [Google Scholar]
  98. SinghD. RawatM.S.M. SemaltyA. SemaltyM. Chrysophanol–phospholipid complex.J. Therm. Anal. Calorim.201311132069207710.1007/s10973‑012‑2448‑6
    [Google Scholar]
  99. XiaH. ZhangZ. JinX. HuQ. ChenX.Y. JiaX. A novel drug–phospholipid complex enriched with micelles: preparation and evaluation in vitro and in vivo.Int. J. Nanomedicine2013854555410.2147/IJN.S39526 23431115
    [Google Scholar]
  100. LeeS. ZulkipliI.N. DavidS.R. AhmadS.R. HuanS. LeeF. ZulkipliI.N. DavidS.R. Ja’afarF. LimY.C. A review on milk and its biological effects on human health: Neurological conditions, cardiovascular diseases and cancer.Int. J. Food Sci. Nutr.20183684-89.www.foodsciencejournal.com
    [Google Scholar]
  101. Bazan-SochaS. WójcikK. OlchawaM. SarnaT. PiętaJ. JakiełaB. SojaJ. OkońK. ZarychtaJ. ZarębaL. StojakM. PotaczekD.P. BazanJ.G. Celińska-LowenhoffM. Increased Oxidative Stress in Asthma—Relation to Inflammatory Blood and Lung Biomarkers and Airway Remodeling Indices.Biomedicines2022107149910.3390/biomedicines10071499 35884804
    [Google Scholar]
  102. NadeemA. SiddiquiN. AlharbiN.O. AlharbiM.M. Airway and systemic oxidant-antioxidant dysregulation in asthma: a possible scenario of oxidants spill over from lung into blood.Pulm. Pharmacol. Ther.2014291314010.1016/j.pupt.2014.06.001
    [Google Scholar]
  103. LiuX. YiM. JinR. FengX. MaL. WangY. ShanY. YangZ. ZhaoB. Correlation between oxidative stress and NF-κB signaling pathway in the obesity-asthma mice.Mol. Biol. Rep.20204753735374410.1007/s11033‑020‑05466‑8
    [Google Scholar]
  104. ManarinG. Anderson, D Curcuma longa L. ameliorates asthma control in children and adolescents: A randomized, double-blind, controlled trial.J. Ethnopharmacol.201923811188210.1016/j.jep.2019.111882
    [Google Scholar]
  105. ZengX. ChengY. QuY. XuJ. HanZ. ZhangT. Curcumin inhibits the proliferation of airway smooth muscle cells in vitro and in vivo.Int. J. Mol. Med.201332362963610.3892/ijmm.2013.1425 23807697
    [Google Scholar]
  106. HidalgoA CruzA Pérez-GilJ Barrier or carrier? Pulmonary surfactant and drug delivery.Eur J Pharm Biopharm201595(PT A)11712710.1016/j.ejpb.2015.02.014
    [Google Scholar]
  107. LeclercqI.A. FarrellG.C. SempouxC. PeñaA. HorsmansY. Curcumin inhibits NF-κB activation and reduces the severity of experimental steatohepatitis in mice.J. Hepatol.200441692693410.1016/j.jhep.2004.08.010 15582125
    [Google Scholar]
  108. XuX LanJ KorfmacherW A Rapid LC/MS/MS method development for drug discovery.Anal Chem20057719389A394A10.1021/ac053476f16247935
    [Google Scholar]
  109. HenryM. KowalczykM. MaldiniM. PiacenteS. StochmalA. OleszekW. Saponin inventory from Argania spinosa kernel cakes by liquid chromatography and mass spectrometry.Phytochem. Anal.201324661662210.1002/pca.2440 23780812
    [Google Scholar]
  110. MaJ. ShiJ. LeH. ChoR. HuangJ.C. MiaoS. WongB.K. A fully automated plasma protein precipitation sample preparation method for LC–MS/MS bioanalysis.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20088621-221922610.1016/j.jchromb.2007.12.012 18226589
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010326636240919094339
Loading
/content/journals/cpb/10.2174/0113892010326636240919094339
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test