Skip to content
2000
Volume 26, Issue 15
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Bacterial infection and oxidative stress generation are significant obstacles to dermal wound healing. The present study undertakes the isolation of a sulfated polysaccharide from the Tunisian green algal “” named PCA.

Methods

The polysaccharide PCA was structurally characterized using Fourier Transformed Infrared (FT-IR), and monosaccharide analysis was carried out by HPLC-FID X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The antioxidant potential of polysaccharides extracted from the was evaluated using various antioxidant assays, and the antibacterial activity of PCA against four Gram-negative bacteria was estimated. The wound healing capacity of PCA was evaluated using an excision wound model in rats.

Results

FT-IR spectra revealed the characteristic bands of polysaccharides. HPLC–FID revealed a heteropolysaccharide composed of arabinose, glucose, glucuronic acid, and galactose units. Indeed, the X-ray diffraction revealed a semi-crystalline structure of PCA. The obtained data showed a strong antioxidant capacity and an interesting antibacterial activity against four-gram negative bacteria , and These biological data strongly support the beneficial effects of PCA in accelerating wound healing in rats. The study on rats demonstrated that PCA significantly accelerated the wound healing process over an 11-day treatment period. The application of PCA on wounds led to enhanced collagen fiber synthesis, as evidenced by histological staining, which showed increased collagen deposition at the wound site. Additionally, PCA treatment resulted in faster wound closure, with measurements showing a marked reduction in wound size compared to control groups.

Conclusion

The present study highlights the promising pharmacological effects of PCA, suggesting its potential application in wound dressings due to its robust antioxidant, antibacterial, and wound-healing properties.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010309000240912110548
2025-04-23
2025-12-27
Loading full text...

Full text loading...

/deliver/fulltext/cpb/26/15/CPB-26-15-05.html?itemId=/content/journals/cpb/10.2174/0113892010309000240912110548&mimeType=html&fmt=ahah

References

  1. EUR-Lex. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes Text with EEA relevance.2010Available from: http://data.europa.eu/eli/dir/2010/63/oj/eng
  2. GurtnerG.C. WernerS. BarrandonY. LongakerM.T. Wound repair and regeneration.Nature2008453719331432110.1038/nature07039 18480812
    [Google Scholar]
  3. ReinkeJ.M. SorgH. Wound repair and regeneration.Eur. Surg. Res.2012491354310.1159/000339613 22797712
    [Google Scholar]
  4. LiQ. NiuY. XingP. WangC. Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair.Chin. Med.2018131710.1186/s13020‑018‑0166‑0 29445417
    [Google Scholar]
  5. Shanura FernandoI.P. Asanka SanjeewaK.K. SamarakoonK.W. KimH.S. GunasekaraU.K.D.S.S. ParkY.J. AbeytungaD.T.U. LeeW.W. JeonY.J. The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: Antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities.J. Appl. Phycol.20183063223323210.1007/s10811‑018‑1415‑4
    [Google Scholar]
  6. Priyan Shanura FernandoI. KimK.N. KimD. JeonY.J. Algal polysaccharides: Potential bioactive substances for cosmeceutical applications.Crit. Rev. Biotechnol.20193919911310.1080/07388551.2018.1503995 30198346
    [Google Scholar]
  7. PaulertR.J. Smania StadnikM.J. PizzolattiM.G. Antimicrobial properties of extracts from the green seaweed Ulva fasciata Delile against pathogenic bacteria and fungi.Algol. Stud.200712312313010.1127/1864‑1318/2007/0123‑0123
    [Google Scholar]
  8. BowlerP.G. DuerdenB.I. ArmstrongD.G. Wound microbiology and associated approaches to wound management.Clin. Microbiol. Rev.200114224426910.1128/CMR.14.2.244‑269.2001 11292638
    [Google Scholar]
  9. DunnillC. PattonT. BrennanJ. BarrettJ. DrydenM. CookeJ. LeaperD. GeorgopoulosN.T. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS‐modulating technologies for augmentation of the healing process.Int. Wound J.2017141899610.1111/iwj.12557 26688157
    [Google Scholar]
  10. HamzaouiA. GharianiM. SellemI. HamdiM. FekiA. JaballiI. NasriM. AmaraI.B. Extraction, characterization and biological properties of polysaccharide derived from green seaweed “Chaetomorpha linum” and its potential application in Tunisian beef sausages.Int. J. Biol. Macromol.20201481156116810.1016/j.ijbiomac.2020.01.009 31917214
    [Google Scholar]
  11. QuachT.T.M. NguyenN.T. YuguchiY. DangL.V. Van NgoQ. ThanhT.T.T. Structure, anticoagulant and cytotoxic activity of a sulfated polysaccharide from green seaweed Chaetomorpha linum.Nat. Prod. Res.202320231810.1080/14786419.2023.2180506 36803099
    [Google Scholar]
  12. QinL. YangY. HaoJ. HeX. LiuS. ChuX. MaoW. Antidiabetic-activity sulfated polysaccharide from Chaetomorpha linum: Characteristics of its structure and effects on oxidative stress and mitochondrial function.Int. J. Biol. Macromol.202220733334510.1016/j.ijbiomac.2022.02.129 35227705
    [Google Scholar]
  13. GaneshA. DasS. ArunG. BalamuruganS. RajR. Heparin like compound from green alga Chaetomorpha antennina as potential anticoagulant agent.Asian J. Med. Sci.20091114116
    [Google Scholar]
  14. KalasariyaH.S. PatelN.B. YadavA. PerveenK. YadavV.K. MunshiF.M. YadavK.K. AlamS. JungY.K. JeonB.H. Characterization of fatty acids, polysaccharides, amino acids, and minerals in marine macroalga Chaetomorpha crassa and evaluation of their potentials in skin cosmetics.Molecules20212624751510.3390/molecules26247515 34946597
    [Google Scholar]
  15. PierreG. SopenaV. JuinC. MastouriA. GraberM. MaugardT. Antibacterial activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus.Biotechnol. Bioprocess Eng.; BBE201116593794510.1007/s12257‑011‑0224‑2
    [Google Scholar]
  16. LlyodA.G. TudballN. DodgsonK.S. Infrared studies on sulphate esters III. O-sulphate esters of alcohols, amino alcohols and hydroxylated amino acids.Biochim. Biophys. Acta196152341341910.1016/0006‑3002(61)90397‑3 14466045
    [Google Scholar]
  17. HorwitzW. Official methods of analysis of AOAC International.17th edGaithersburg, Md.AOAC International2000
    [Google Scholar]
  18. EljoudiS. FekiA. BkhairiaI. BarkiaA. Ben AmaraI. NasriM. HajjiM. New polysaccharides extracted from Malcolmia triloba: Structure characterization, biological properties and application to beef meat preservation.J. Food Compos. Anal.202210710438010.1016/j.jfca.2021.104380
    [Google Scholar]
  19. BersuderP. HoleM. SmithG. Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high‐performance liquid chromatography.J. Am. Oil Chem. Soc.199875218118710.1007/s11746‑998‑0030‑y
    [Google Scholar]
  20. YıldırımA. MaviA. KaraA.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts.J. Agric. Food Chem.20014984083408910.1021/jf0103572 11513714
    [Google Scholar]
  21. ReR. PellegriniN. ProteggenteA. PannalaA. YangM. Rice-EvansC. Antioxidant activity applying an improved ABTS radical cation decolorization assay.Free Radic. Biol. Med.1999269-101231123710.1016/S0891‑5849(98)00315‑3 10381194
    [Google Scholar]
  22. BergheV.A. VlietinckA.J. Screening Methods for Antibacterial and Antiviral Agents from Higher Plants.Methods Bi-ochem.199164768
    [Google Scholar]
  23. ElerouiM. FekiA. HamzaouiA. KammounI. BouhamedM. BoudawaraO. Ben AyedI. Ben AmaraI. Preparation and characterization of a novel hamada scoparia polysaccharide composite films and evaluation of their effect on cutaneous wound healing in rat.Int. J. Pharm.202160812105610.1016/j.ijpharm.2021.121056 34464667
    [Google Scholar]
  24. EdwardsC.A. O’BrienW.D.Jr Modified assay for determination of hydroxyproline in a tissue hydrolyzate.Clin. Chim. Acta1980104216116710.1016/0009‑8981(80)90192‑8 7389130
    [Google Scholar]
  25. VenkatesanM. ArumugamV. PugalendiR. RamachandranK. SengodanK. VijayanS.R. SundaresanU. RamachandranS. PugazhendhiA. Antioxidant, anticoagulant and mosquitocidal properties of water soluble polysaccharides (WSPs) from Indian seaweeds.Process Biochem.20198419620410.1016/j.procbio.2019.05.029
    [Google Scholar]
  26. ChaiklahanR. SrinorasingT. ChirasuwanN. TamtinM. BunnagB. The potential of polysaccharide extracts from Caulerpa lentillifera waste.Int. J. Biol. Macromol.20201611021102810.1016/j.ijbiomac.2020.06.104 32553952
    [Google Scholar]
  27. TabarsaM. KarnjanapratumS. ChoM. KimJ.K. YouS. Molecular characteristics and biological activities of anionic macromolecules from Codium fragile.Int. J. Biol. Macromol.20135911210.1016/j.ijbiomac.2013.04.022 23597705
    [Google Scholar]
  28. FernándezP.V. EstevezJ.M. CerezoA.S. CianciaM. Sulfated β-d-mannan from green seaweed Codium vermilara.Carbohydr. Polym.201287191691910.1016/j.carbpol.2011.06.063 34663054
    [Google Scholar]
  29. SenthilkumarD. JayanthiS. Partial characterization and anticancer activities of purified glycoprotein extracted from green seaweed Codium decorticatum.J. Funct. Foods20162532333210.1016/j.jff.2016.06.010
    [Google Scholar]
  30. AlipourH.J. RezaeiM. ShabanpourB. TabarsaM. AC SC.Food Hydrocoll.2017703810.1016/j.foodhyd.2017.07.038
    [Google Scholar]
  31. PangestutiR. HaqM. RahmadiP. ChunB.S. Nutritional value and biofunctionalities of two edible green seaweeds (Ulva lactuca and caulerpa racemosa) from indonesia by subcritical water hydrolysis.Mar. Drugs2021191057810.3390/md19100578 34677477
    [Google Scholar]
  32. PresaF.B. MarquesM.L.M. VianaR.L.S. NobreL.T.D.B. CostaL.S. RochaH.A.O. The protective role of sulfated polysaccharides from green seaweed Udotea flabellum in cells exposed to oxidative damage.Mar. Drugs201816413510.3390/md16040135 29677120
    [Google Scholar]
  33. LiuX. LiuD. LinG. WuY. GaoL. AiC. HuangY. WangM. El-SeediH.R. ChenX. ZhaoC. Anti-ageing and antioxidant effects of sulfate oligosaccharides from green algae Ulva lactuca and Enteromorpha prolifera in SAMP8 mice.Int. J. Biol. Macromol.201913934235110.1016/j.ijbiomac.2019.07.195 31377292
    [Google Scholar]
  34. KammounI. BkhairiaI. Ben AbdallahF. JaballiI. KtariN. BoudawaraO. NasriM. GharsallahN. HakimA. Ben AmaraI. Potential protective effects of polysaccharide extracted from Ulva lactuca against male reprotoxicity induced by thiacloprid.Arch. Physiol. Biochem.2017123533434310.1080/13813455.2017.1347686 28692354
    [Google Scholar]
  35. NaiJ. ZhangC. ShaoH. LiB. LiH. GaoL. DaiM. ZhuL. ShengH. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide.Int. J. Biol. Macromol.20211832337235310.1016/j.ijbiomac.2021.05.213 34090852
    [Google Scholar]
  36. FleuryN. LahayeM. Chemical and physico‐chemical characterisation of fibres from Laminaria digitata (kombu breton): A physiological approach.J. Sci. Food Agric.199155338940010.1002/jsfa.2740550307
    [Google Scholar]
  37. OlasehindeT.A. MabinyaL.V. OlaniranA.O. OkohA.I. Chemical characterization of sulfated polysaccharides from Gracilaria gracilis and Ulva lactuca and their radical scavenging, metal chelating, and cholinesterase inhibitory activities.Int. J. Food Prop.201922110011010.1080/10942912.2019.1573831
    [Google Scholar]
  38. FigueroaF.A. Abdala-DíazR.T. PérezC. Casas-ArrojoV. NesicA. TapiaC. DuránC. ValdesO. ParraC. Bravo-ArrepolG. SotoL. BecerraJ. Cabrera-BarjasG. Sulfated Polysaccharide Extracted from the Green Algae Codium bernabei: Physicochemical Characterization and Antioxidant, Anticoagulant and Antitumor Activity.Mar. Drugs202220745810.3390/md20070458 35877751
    [Google Scholar]
  39. LuoD. Identification of structure and antioxidant activity of a fraction of polysaccharide purified from Dioscorea nipponica Makino.Carbohydr. Polym.200871454454910.1016/j.carbpol.2007.06.023
    [Google Scholar]
  40. YuanQ. LinS. FuY. NieX.R. LiuW. SuY. HanQ.H. ZhaoL. ZhangQ. LinD.R. QinW. WuD.T. Effects of extraction methods on the physicochemical characteristics and biological activities of polysaccharides from okra (Abelmoschus esculentus).Int. J. Biol. Macromol.201912717818610.1016/j.ijbiomac.2019.01.042 30639655
    [Google Scholar]
  41. VoleryP. BessonR. Schaffer-LequartC. Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection.J. Agric. Food Chem.200452257457746310.1021/jf040229o 15675788
    [Google Scholar]
  42. KtariN. TrabelsiI. BardaaS. TrikiM. BkhairiaI. Ben Slama-Ben SalemR. NasriM. Ben SalahR. Antioxidant and hemolytic activities, and effects in rat cutaneous wound healing of a novel polysaccharide from fenugreek (Trigonella foenum-graecum) seeds.Int. J. Biol. Macromol.20179562563410.1016/j.ijbiomac.2016.11.091 27914964
    [Google Scholar]
  43. RoziP. AbuduwailiA. MaS. BaoX. XuH. ZhuJ. YadikarN. WangJ. YangX. YiliA. Isolations, characterizations and bioactivities of polysaccharides from the seeds of three species Glycyrrhiza.Int. J. Biol. Macromol.202014536437110.1016/j.ijbiomac.2019.12.107 31857172
    [Google Scholar]
  44. RashidF. AhmedZ. HussainS. HuangJ.Y. AhmadA. Linum usitatissimum L. seeds: Flax gum extraction, physicochemical and functional characterization.Carbohydr. Polym.2019215293810.1016/j.carbpol.2019.03.054 30981357
    [Google Scholar]
  45. ZhongQ. WeiB. WangS. KeS. ChenJ. ZhangH. WangH. The antioxidant activity of polysaccharides derived from marine organisms: An overview.Mar. Drugs2019171267410.3390/md17120674 31795427
    [Google Scholar]
  46. ZhangZ. WangX. ZhaoM. YuS. QiH. The immunological and antioxidant activities of polysaccharides extracted from Enteromorpha linza.Int. J. Biol. Macromol.201357454910.1016/j.ijbiomac.2013.03.006 23500444
    [Google Scholar]
  47. ShaoP. ChenX. SunP. In vitro antioxidant and antitumor activities of different sulfated polysaccharides isolated from three algae.Int. J. Biol. Macromol.20136215516110.1016/j.ijbiomac.2013.08.023 23994786
    [Google Scholar]
  48. SaviA. CalegariG.C. SantosV.Q. PereiraE.A. TeixeiraS.D. Chemical characterization and antioxidant of polysaccharide extracted from Dioscorea bulbifera.J. King Saud Univ. Sci.202032163664210.1016/j.jksus.2018.09.002
    [Google Scholar]
  49. CostaL.S. FidelisG.P. CordeiroS.L. OliveiraR.M. SabryD.A. CâmaraR.B.G. NobreL.T.D.B. CostaM.S.S.P. Almeida-LimaJ. FariasE.H.C. LeiteE.L. RochaH.A.O. Biological activities of sulfated polysaccharides from tropical seaweeds.Biomed. Pharmacother.2010641212810.1016/j.biopha.2009.03.005 19766438
    [Google Scholar]
  50. NajdenskiH.M. GigovaL.G. IlievI.I. PilarskiP.S. LukavskýJ. TsvetkovaI.V. NinovaM.S. KussovskiV.K. Antibacterial and antifungal activities of selected microalgae and cyanobacteria.Int. J. Food Sci. Technol.20134871533154010.1111/ijfs.12122
    [Google Scholar]
  51. TranT.T.V. TruongH.B. TranN.H.V. QuachT.M.T. NguyenT.N. BuiM.L. YuguchiY. ThanhT.T.T. Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata.Nat. Prod. Res.201832192291229610.1080/14786419.2017.1408098 29199449
    [Google Scholar]
  52. ShinagawaN. TaniguchiM. HirataK. FuruhataT. FukuharaK. MizugucwiT. OsanaiH. YanaiY. HataF. KiharaC. SasakiK. OonoK. NakamuraM. ShibuyaH. HasegawaI. KimuraM. WatabeK. KobayashiY. YamaueH. HironoS. TakesueY. FujiwaraT. ShinouraS. KimuraH. HoshikawaT. OshimaH. AikawaN. SasakiJ. SuzukiM. SekineK. AbeS. TakeyamaH. WakasugiT. MashitaK. TanakaM. MizunoA. IshikawaM. IwaiA. SaitoT. MuramotoM. KuboS. LeeS. FukuharaK. IwagakiH. TokunagaN. SuedaT. HiyamaE. MurakamiY. OhgeH. UemuraK. TsumuraH. KanehiroT. TakeuchiH. TanakayaK. IwasakiM. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents-special references to bacteria isolated between April 2010 and March 2011].Jpn. J. Antibiot.2014675293334 25549405
    [Google Scholar]
  53. SellimiS. MaalejH. RekikD.M. BenslimaA. KsoudaG. HamdiM. SahnounZ. LiS. NasriM. HajjiM. Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed.Int. J. Biol. Macromol.201811963364410.1016/j.ijbiomac.2018.07.171 30063934
    [Google Scholar]
  54. CunhaL. GrenhaA. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications.Mar. Drugs20161434210.3390/md14030042 26927134
    [Google Scholar]
  55. QiX. ShiY. ZhangC. CaiE. GeX. XiangY. LiY. ZengB. ShenJ. A Hybrid Hydrogel with Intrinsic Immunomodulatory Functionality for Treating Multidrug-Resistant Pseudomonas aeruginosa Infected Diabetic Foot Ulcers.ACS Materials. Letters.2024672533254710.1021/acsmaterialslett.4c00392
    [Google Scholar]
  56. TrabelsiI. KtariN. Ben SlimaS. TrikiM. BardaaS. MnifH. Ben SalahR. Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp.Ca 6.Int. J. Biol. Macromol.201710319420110.1016/j.ijbiomac.2017.05.017 28495632
    [Google Scholar]
  57. TzivelekaL.A. IoannouE. RoussisV. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review.Carbohydr. Polym.201921835537010.1016/j.carbpol.2019.04.074 31221340
    [Google Scholar]
  58. ReisS.E. AndradeR.G.C. AccardoC.M. MaiaL.F. OliveiraL.F.C. NaderH.B. AguiarJ.A.K. MedeirosV.P. Influence of sulfated polysaccharides from Ulva lactuca L. upon Xa and IIa coagulation factors and on venous blood clot formation.Algal Res.20204510175010.1016/j.algal.2019.101750
    [Google Scholar]
  59. ZhouS. SalisburyJ. PreedyV.R. EmeryP.W. Increased collagen synthesis rate during wound healing in muscle.PLoS One201383e5832410.1371/journal.pone.0058324 23526975
    [Google Scholar]
  60. PanchatcharamM. MiriyalaS. GayathriV.S. SugunaL. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species.Mol. Cell. Biochem.20062901-2879610.1007/s11010‑006‑9170‑2 16770527
    [Google Scholar]
  61. QiX. CaiE. XiangY. ZhangC. GeX. WangJ. LanY. XuH. HuR. ShenJ. An Immunomodulatory Hydrogel by Hyperthermia‐Assisted Self‐Cascade Glucose Depletion and ROS Scavenging for Diabetic Foot Ulcer Wound Therapeutics.Adv. Mater.20233548230663210.1002/adma.202306632 37803944
    [Google Scholar]
  62. JohnstonM. McBrideM. DahiyaD. Owusu-ApentenR. Singh NigamP. Antibacterial activity of Manuka honey and its components: An overview.AIMS Microbiol.20184465566410.3934/microbiol.2018.4.655 31294240
    [Google Scholar]
  63. De Jesus RaposoM. De MoraisA. De MoraisR. Marine polysaccharides from algae with potential biomedical applications.Mar. Drugs20151352967302810.3390/md13052967 25988519
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010309000240912110548
Loading
/content/journals/cpb/10.2174/0113892010309000240912110548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test