Skip to content
2000
Volume 26, Issue 16
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Influenza, a highly transmissible respiratory infection caused by influenza viruses A and B, poses a persistent threat to global public health due to its high mutation rate, ability to develop resistance to existing antiviral drugs, and capacity for rapid spread. Current treatment options, including four main classes of antiviral agents—adamantanes, neuraminidase inhibitors, RNA-dependent RNA polymerase inhibitors, and polymerase acidic endonuclease inhibitors—are limited by the emergence of drug-resistant viral strains, non-specific drug distribution, and adverse side effects. Moreover, the effectiveness of traditional vaccines is often compromised by antigenic drift and shift, necessitating the development of alternative therapeutic strategies. This review comprehensively explores the potential of novel targeted drug delivery systems to address these limitations and improve influenza management. Nanotechnology-based platforms, including lipid-based, polymer-based, inorganic, and hybrid nanoparticles, offer enhanced drug delivery through improved bioavailability, targeted action, and controlled release, thus minimizing systemic toxicity and optimizing therapeutic outcomes. Inhalation delivery systems such as dry powder inhalers (DPIs), nebulizers, and nanotechnology-based inhalation formulations provide direct delivery of antiviral agents to the respiratory tract, ensuring rapid onset of action with reduced systemic side effects. Transdermal delivery methods, including microneedle patches and hydrogel-based systems, offer non-invasive alternatives that enhance patient compliance and allow for sustained drug release. Furthermore, this review discusses recent innovations, such as responsive drug delivery systems and multifunctional nanoparticles capable of simultaneous delivery of multiple therapeutic agents, representing a significant advancement in the fight against influenza. These novel approaches promise improved targeting and efficacy and enable personalized treatment strategies, enhancing patient outcomes in both seasonal flu and pandemic scenarios. Integrating these advanced drug delivery systems into clinical practice could revolutionize the management of influenza, offering a promising pathway toward more effective and safer therapies.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010326373241012061547
2024-10-21
2025-12-13
Loading full text...

Full text loading...

References

  1. ShresthaS. FoxmanB. BerusJ. van PanhuisW.G. SteinerC. ViboudC. RohaniP. The role of influenza in the epidemiology of pneumonia.Sci. Rep.2015511531410.1038/srep15314 26486591
    [Google Scholar]
  2. MoghadamiM. MoattariA. TabatabaeeH.R. MirahmadizadehA. RezaianzadehA. HasanzadehJ. EbrahimiM. ZamiriN. AlborziA. Bagheri LankaraniK. High titers of hemagglutination inhibition antibodies against 2009 H1N1 influenza virus in Southern Iran.Iran. J. Immunol.2010713948 20371918
    [Google Scholar]
  3. LeeB.Y. McGloneS.M. BaileyR.R. WiringaA.E. ZimmerS.M. SmithK.J. ZimmermanR.K. To test or to treat? An analysis of influenza testing and antiviral treatment strategies using economic computer modeling.PLoS One201056e1128410.1371/journal.pone.0011284 20585642
    [Google Scholar]
  4. SamsonM. PizzornoA. AbedY. BoivinG. Influenza virus resistance to neuraminidase inhibitors.Antiviral Res.201398217418510.1016/j.antiviral.2013.03.014 23523943
    [Google Scholar]
  5. ItohY. ShichinoheS. NakayamaM. IgarashiM. IshiiA. IshigakiH. IshidaH. KitagawaN. SasamuraT. ShioharaM. DoiM. TsuchiyaH. NakamuraS. OkamatsuM. SakodaY. KidaH. OgasawaraK. Emergence of H7N9 influenza A virus resistant to neuraminidase inhibitors in nonhuman primates.Antimicrob. Agents Chemother.20155984962497310.1128/AAC.00793‑15 26055368
    [Google Scholar]
  6. KitanoM. ItohY. KodamaM. IshigakiH. NakayamaM. IshidaH. BabaK. NodaT. SatoK. NihashiY. KanazuT. YoshidaR. ToriiR. SatoA. OgasawaraK. Efficacy of single intravenous injection of peramivir against influenza B virus infection in ferrets and cynomolgus macaques.Antimicrob. Agents Chemother.201155114961497010.1128/AAC.00412‑11 21844317
    [Google Scholar]
  7. KitanoM. ItohY. IshigakiH. NakayamaM. IshidaH. PhamV.L. ArikataM. ShichinoheS. TsuchiyaH. KitagawaN. KobayashiM. YoshidaR. SatoA. LeQ.M. KawaokaY. OgasawaraK. Efficacy of repeated intravenous administration of peramivir against highly pathogenic avian influenza A (H5N1) virus in cynomolgus macaques.Antimicrob. Agents Chemother.20145884795480310.1128/AAC.02817‑14 24913156
    [Google Scholar]
  8. StittelaarK. TisdaleM. VanamerongenG. VanlavierenR. PistoorF. SimonJ. OsterhausA. Evaluation of intravenous zanamivir against experimental influenza A (H5N1) virus infection in cynomolgus macaques.Antiviral Res.200880222522810.1016/j.antiviral.2008.06.014 18647621
    [Google Scholar]
  9. KalilA.C. ThomasP.G. Influenza virus-related critical illness: Pathophysiology and epidemiology.Crit. Care201923125810.1186/s13054‑019‑2539‑x 31324202
    [Google Scholar]
  10. LakdawalaS.S. JayaramanA. HalpinR.A. LamirandeE.W. ShihA.R. StockwellT.B. LinX. SimenauerA. HansonC.T. VogelL. PaskelM. MinaiM. MooreI. OrandleM. DasS.R. WentworthD.E. SasisekharanR. SubbaraoK. The soft palate is an important site of adaptation for transmissible influenza viruses.Nature2015526757112212510.1038/nature15379 26416728
    [Google Scholar]
  11. NichollsJ.M. BourneA.J. ChenH. GuanY. PeirisJ.S.M. Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses.Respir. Res.2007817310.1186/1465‑9921‑8‑73 17961210
    [Google Scholar]
  12. ZangrilloA. Biondi-ZoccaiG. LandoniG. FratiG. PatronitiN. PesentiA. PappalardoF. Extracorporeal membrane oxygenation (ECMO) in patients with H1N1 influenza infection: A systematic review and meta-analysis including 8 studies and 266 patients receiving ECMO.Crit. Care2013171R3010.1186/cc12512 23406535
    [Google Scholar]
  13. HuberT. DietrichD. EmrichH. Possible use of amantadine in depression.Pharmacopsychiatry1999322475510.1055/s‑2007‑979191 10333162
    [Google Scholar]
  14. TokimatsuI. NasuM. Anti-influenza A viral drug - Amantadine.Jpn. J. Clin. Med.2000581122882292 11225319
    [Google Scholar]
  15. YiM. CrossT.A. ZhouH.X. A secondary gate as a mechanism for inhibition of the M2 proton channel by amantadine.J. Phys. Chem. B2008112277977797910.1021/jp800171m 18476738
    [Google Scholar]
  16. BalannikV. WangJ. OhigashiY. JingX. MagavernE. LambR.A. DeGradoW.F. PintoL.H. Design and pharmacological characterization of inhibitors of amantadine-resistant mutants of the M2 ion channel of influenza A virus.Biochemistry20094850118721188210.1021/bi9014488 19905033
    [Google Scholar]
  17. BatoolS. ChokkakulaS. SongM.S. Influenza treatment: Limitations of antiviral therapy and advantages of drug combination therapy.Microorganisms202311118310.3390/microorganisms11010183 36677475
    [Google Scholar]
  18. GubarevaL.V. KaiserL. HaydenF.G. Influenza virus neuraminidase inhibitors.Lancet2000355920682783510.1016/S0140‑6736(99)11433‑8 10711940
    [Google Scholar]
  19. von ItzsteinM. WuW.Y. KokG.B. PeggM.S. DyasonJ.C. JinB. Van PhanT. SmytheM.L. WhiteH.F. OliverS.W. ColmanP.M. VargheseJ.N. RyanD.M. WoodsJ.M. BethellR.C. HothamV.J. CameronJ.M. PennC.R. Rational design of potent sialidase-based inhibitors of influenza virus replication.Nature1993363642841842310.1038/363418a0 8502295
    [Google Scholar]
  20. YuY. GargS. YuP.A. KimH.J. PatelA. MerlinT. ReddS. UyekiT.M. Peramivir use for treatment of hospitalized patients with influenza A(H1N1)pdm09 under emergency use authorization, October 2009-June 2010.Clin. Infect. Dis.201255181510.1093/cid/cis352 22491506
    [Google Scholar]
  21. IkematsuH. KawaiN. Laninamivir octanoate: A new long-acting neuraminidase inhibitor for the treatment of influenza.Expert Rev. Anti Infect. Ther.201191085185710.1586/eri.11.112 21973296
    [Google Scholar]
  22. MosconaA. Neuraminidase inhibitors for influenza.N. Engl. J. Med.2005353131363137310.1056/NEJMra050740 16192481
    [Google Scholar]
  23. JeffersonT. JonesM. DoshiP. Del MarC. Neuraminidase inhibitors for preventing and treating influenza in healthy adults: Systematic review and meta-analysis.BMJ2009339b510610.1136/bmj.b5106 19995812
    [Google Scholar]
  24. TakahashiK. FurutaY. FukudaY. KunoM. KamiyamaT. KozakiK. NomuraN. EgawaH. MinamiS. ShirakiK. In vitro and in vivo activities of T-705 and oseltamivir against influenza virus.Antivir. Chem. Chemother.200314523524110.1177/095632020301400502 14694986
    [Google Scholar]
  25. HaydenF.G. SugayaN. HirotsuN. LeeN. de JongM.D. HurtA.C. IshidaT. SekinoH. YamadaK. PortsmouthS. KawaguchiK. ShishidoT. AraiM. TsuchiyaK. UeharaT. WatanabeA. Baloxavir marboxil for uncomplicated influenza in adults and adolescents.N. Engl. J. Med.20183791091392310.1056/NEJMoa1716197 30184455
    [Google Scholar]
  26. IsonM.G. PortsmouthS. YoshidaY. ShishidoT. HaydenF. UeharaT. LB16. Phase 3 trial of baloxavir marboxil in high-risk influenza patients (CAPSTONE-2 Study).Open Forum Infect. Dis.20185Suppl. 1S764S76510.1093/ofid/ofy229.2190
    [Google Scholar]
  27. KlimovA.I. GartenR. RussellC. BarrI.G. BesselaarT.G. DanielsR. EngelhardtO.G. GrohmannG. ItamuraS. KelsoA. McCauleyJ. OdagiriT. SmithD. TashiroM. XuX. WebbyR. WangD. YeZ. YuelongS. ZhangW. CoxN. WHO recommendations for the viruses to be used in the 2012 Southern Hemisphere Influenza Vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from February to September 2011.Vaccine201230456461647110.1016/j.vaccine.2012.07.089 22917957
    [Google Scholar]
  28. TenfordeM.W. KondorR.J.G. ChungJ.R. ZimmermanR.K. NowalkM.P. JacksonM.L. JacksonL.A. MontoA.S. MartinE.T. BelongiaE.A. McLeanH.Q. GaglaniM. RaoA. KimS.S. StarkT.J. BarnesJ.R. WentworthD.E. PatelM.M. FlanneryB. Effect of antigenic drift on influenza vaccine effectiveness in the United States — 2019–2020.Clin. Infect. Dis.20217311e4244e425010.1093/cid/ciaa1884 33367650
    [Google Scholar]
  29. ErbeldingE.J. PostD.J. StemmyE.J. RobertsP.C. AugustineA.D. FergusonS. PaulesC.I. GrahamB.S. FauciA.S. A universal influenza vaccine: The strategic plan for the National Institute of Allergy and Infectious Diseases.J. Infect. Dis.2018218334735410.1093/infdis/jiy103 29506129
    [Google Scholar]
  30. DongG. PengC. LuoJ. WangC. HanL. WuB. JiG. HeH. Adamantane-resistant influenza a viruses in the world (1902-2013): Frequency and distribution of M2 gene mutations.PLoS One2015103e011911510.1371/journal.pone.0119115 25768797
    [Google Scholar]
  31. GarciaV. Aris-BrosouS. Comparative dynamics and distribution of influenza drug resistance acquisition to protein m2 and neuraminidase inhibitors.Mol. Biol. Evol.201431235536310.1093/molbev/mst204 24214415
    [Google Scholar]
  32. BrightR.A. MedinaM. XuX. Perez-OronozG. WallisT.R. DavisX.M. PovinelliL. CoxN.J. KlimovA.I. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: A cause for concern.Lancet200536694921175118110.1016/S0140‑6736(05)67338‑2 16198766
    [Google Scholar]
  33. PageM.J. Di CeraE. Role of Na+ and K+ in enzyme function.Physiol. Rev.20068641049109210.1152/physrev.00008.2006 17015484
    [Google Scholar]
  34. OmotoS. SperanziniV. HashimotoT. NoshiT. YamaguchiH. KawaiM. KawaguchiK. UeharaT. ShishidoT. NaitoA. CusackS. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil.Sci. Rep.201881963310.1038/s41598‑018‑27890‑4 29941893
    [Google Scholar]
  35. GubarevaL.V. MishinV.P. PatelM.C. ChesnokovA. NguyenH.T. De La CruzJ. SpencerS. CampbellA.P. SinnerM. ReidH. GartenR. KatzJ.M. FryA.M. BarnesJ. WentworthD.E. Assessing baloxavir susceptibility of influenza viruses circulating in the United States during the 2016/17 and 2017/18 seasons.Euro Surveill.2019243180066610.2807/1560‑7917.ES.2019.24.3.1800666 30670144
    [Google Scholar]
  36. TakashitaE. MoritaH. OgawaR. NakamuraK. FujisakiS. ShirakuraM. KuwaharaT. KishidaN. WatanabeS. OdagiriT. Susceptibility of influenza viruses to the novel cap-dependent endonuclease inhibitor baloxavir marboxil.Front. Microbiol.20189302610.3389/fmicb.2018.03026 30574137
    [Google Scholar]
  37. TakashitaE. KawakamiC. OgawaR. MoritaH. FujisakiS. ShirakuraM. MiuraH. NakamuraK. KishidaN. KuwaharaT. OtaA. TogashiH. SaitoA. MitamuraK. AbeT. IchikawaM. YamazakiM. WatanabeS. OdagiriT. InfluenzaA. H3N2) virus exhibiting reduced susceptibility to baloxavir due to a polymerase acidic subunit I38T substitution detected from a hospitalised child without prior baloxavir treatment, Japan, January 2019.Euro Surveill.20192412190017010.2807/1560‑7917.ES.2019.24.12.1900170 30914078
    [Google Scholar]
  38. O’HanlonR. ShawM.L. Baloxavir marboxil: The new influenza drug on the market.Curr. Opin. Virol.201935141810.1016/j.coviro.2019.01.006 30852344
    [Google Scholar]
  39. BakerD.E. Baloxavir marboxil.Hosp. Pharm.201954316516910.1177/0018578719841044 31205326
    [Google Scholar]
  40. FlynnS. Modulating docetaxel encapsulation and release from branched vinyl copolymer nanoparticles formed via co-nanoprecipitation. Doctor of Philosophy.The University of Liverpool2019
    [Google Scholar]
  41. WebsterR.G. BeanW.J. GormanO.T. ChambersT.M. KawaokaY. Evolution and ecology of influenza A viruses.Microbiol. Rev.199256115217910.1128/mr.56.1.152‑179.1992 1579108
    [Google Scholar]
  42. YoonS-W. WebbyR.J. WebsterR.G. Evolution and ecology of influenza A viruses.Influenza Pathogenesis and Control - Volume ICompans, R.; Oldstone, M., Eds.; Springer: Cham201435937510.1007/82_2014_396
    [Google Scholar]
  43. ParryR. WilleM. TurnbullO. GeogheganJ. HolmesE. Divergent influenza-like viruses of amphibians and fish support an ancient evolutionary association.Viruses2020129104210.3390/v12091042 32962015
    [Google Scholar]
  44. LyonsD.M. LauringA.S. Mutation and epistasis in influenza virus evolution.Viruses201810840710.3390/v10080407 30081492
    [Google Scholar]
  45. JiangD. Could the Environment Affect the Mutation of H1N1 Influenza Virus?Advances in Clinical Immunology, Medical Microbiology, COVID-19, and Big Data1st ed; Jenny Stanford Publishing2021255267
    [Google Scholar]
  46. ShenZ. LouK. WangW. New small-molecule drug design strategies for fighting resistant influenza A.Acta Pharm. Sin. B20155541943010.1016/j.apsb.2015.07.006 26579472
    [Google Scholar]
  47. YenH.L. Current and novel antiviral strategies for influenza infection.Curr. Opin. Virol.20161812613410.1016/j.coviro.2016.05.004 27344481
    [Google Scholar]
  48. ScheldW.M. Drug delivery to the central nervous system: General principles and relevance to therapy for infections of the central nervous system.Clin. Infect. Dis.198911Suppl. 7S1669S169010.1093/clinids/11.Supplement_7.S1669 2690302
    [Google Scholar]
  49. TakashitaE. DanielsR.S. FujisakiS. GregoryV. GubarevaL.V. HuangW. HurtA.C. LackenbyA. NguyenH.T. PereyaslovD. RoeM. SamaanM. SubbaraoK. TseH. WangD. YenH.L. ZhangW. MeijerA. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2017–2018.Antiviral Res.202017510471810.1016/j.antiviral.2020.104718 32004620
    [Google Scholar]
  50. PradhanD. BiswasroyP. GoyalA. GhoshG. RathG. Recent advancement in nanotechnology-based drug delivery system against viral infections.AAPS PharmSciTech20212214710.1208/s12249‑020‑01908‑5 33447909
    [Google Scholar]
  51. AderibigbeB.A. Polymeric therapeutic delivery systems for the treatment of infectious diseases.Ther. Deliv.20178755757610.4155/tde‑2017‑0008 28633590
    [Google Scholar]
  52. SinghL. KrugerH.G. MaguireG.E.M. GovenderT. ParboosingR. The role of nanotechnology in the treatment of viral infections.Ther. Adv. Infect. Dis.20174410513110.1177/2049936117713593 28748089
    [Google Scholar]
  53. ChaurasiyaB. ZhaoY.Y. Dry powder for pulmonary delivery: A comprehensive review.Pharmaceutics20201313110.3390/pharmaceutics13010031 33379136
    [Google Scholar]
  54. ZhuC. ChenJ. YuS. QueC. TaylorL.S. TanW. WuC. ZhouQ.T. Inhalable nanocomposite microparticles with enhanced dissolution and superior aerosol performance.Mol. Pharm.20201793270328010.1021/acs.molpharmaceut.0c00390 32643939
    [Google Scholar]
  55. PhamD.T. ChokamonsirikunA. PhattaravorakarnV. TiyaboonchaiW. Polymeric micelles for pulmonary drug delivery: A comprehensive review.J. Mater. Sci.20215632016203610.1007/s10853‑020‑05361‑4
    [Google Scholar]
  56. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nano-Enabled Medical Applications.1st ed BaloghL.P. Jenny Stanford Publishing2020619110.1201/9780429399039‑2
    [Google Scholar]
  57. MuraS. NicolasJ. CouvreurP. Stimuli-responsive nanocarriers for drug delivery.Nat. Mater.20131211991100310.1038/nmat3776 24150417
    [Google Scholar]
  58. ShakeelF. RamadanW. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions.Colloids Surf. B Biointerfaces201075135636210.1016/j.colsurfb.2009.09.010 19783127
    [Google Scholar]
  59. BoboD. RobinsonK.J. IslamJ. ThurechtK.J. CorrieS.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date.Pharm. Res.201633102373238710.1007/s11095‑016‑1958‑5 27299311
    [Google Scholar]
  60. HoqueM. HossainM.S. AkramT. DasS.R. Advancing healthcare: Exploring recent innovations in drug delivery systems.Int. J. Multidiscip. Res. Growth Eval.202345505510.54660/.IJMRGE.2023.4.5.50‑55
    [Google Scholar]
  61. SultanaA. ZareM. ThomasV. KumarT.S.S. RamakrishnaS. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects.Med. Drug Discov.20221510013410.1016/j.medidd.2022.100134
    [Google Scholar]
  62. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials (Basel)2020107140310.3390/nano10071403 32707641
    [Google Scholar]
  63. HickeyA.J. Emerging trends in inhaled drug delivery.Adv. Drug Deliv. Rev.2020157637010.1016/j.addr.2020.07.006 32663488
    [Google Scholar]
  64. da RochaS.R. BharatwajB. HeyderR.S. YangL. Pressurized metered-dose inhalers.Pharmaceutical Inhalation Aerosol Technology3rd ed3rd ed; CRC Press2019427453
    [Google Scholar]
  65. TorchilinV.P. Liposomes as targetable drug carriers.Crit. Rev. Ther. Drug Carrier Syst.19852165115 3913530
    [Google Scholar]
  66. CaiW. WangJ. ChuC. ChenW. WuC. LiuG. Metal–organic framework‐based stimuli‐responsive systems for drug delivery.Adv. Sci. (Weinh.)201961180152610.1002/advs.201801526 30643728
    [Google Scholar]
  67. MehtaM. PrasherP. SharmaM. ShastriM.D. KhuranaN. VyasM. DurejaH. GuptaG. AnandK. SatijaS. ChellappanD.K. DuaK. Advanced drug delivery systems can assist in targeting coronavirus disease (COVID-19): A hypothesis.Med. Hypotheses202014411025410.1016/j.mehy.2020.110254 33254559
    [Google Scholar]
  68. KouassiG.K. IrudayarajJ. McCartyG. Interaction of silver nanoparticles with HIV-1.J. Nanobiotechnology20053111010.1186/1477‑3155‑3‑1 15661076
    [Google Scholar]
  69. ParveenS. MisraR. SahooS.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imagingNanomedicine in Cancer1st ed; Jenny Stanford Publishing20174798
    [Google Scholar]
  70. HeQ. CuiY. LiJ. Molecular assembly and application of biomimetic microcapsules.Chem. Soc. Rev.20093882292230310.1039/b816475b 19623351
    [Google Scholar]
  71. TiminA.S. MuslimovA.R. PetrovaA.V. LepikK.V. OkilovaM.V. VasinA.V. AfanasyevB.V. SukhorukovG.B. Hybrid inorganic-organic capsules for efficient intracellular delivery of novel siRNAs against influenza A (H1N1) virus infection.Sci. Rep.20177110210.1038/s41598‑017‑00200‑0 28273907
    [Google Scholar]
  72. GaoH. GoriachevaO.A. TarakinaN.V. SukhorukovG.B. Intracellularly biodegradable polyelectrolyte/silica composite microcapsules as carriers for small molecules.ACS Appl. Mater. Interfaces20168159651966110.1021/acsami.6b01921 27008032
    [Google Scholar]
  73. MhlwatikaZ. AderibigbeB.A. Application of dendrimers for the treatment of infectious diseases.Molecules2018239220510.3390/molecules23092205 30200314
    [Google Scholar]
  74. PatiR. ShevtsovM. SonawaneA. Nanoparticle vaccines against infectious diseases.Front. Immunol.20189222410.3389/fimmu.2018.02224 30337923
    [Google Scholar]
  75. NgP.Q. LingL.S.C. ChellianJ. MadheswaranT. PanneerselvamJ. KunnathA.P. GuptaG. SatijaS. MehtaM. HansbroP.M. ColletT. DuaK. ChellappanD.K. Applications of nanocarriers as drug delivery vehicles for active phytoconstituents.Curr. Pharm. Des.202026364580459010.2174/1381612826666200610111013 32520681
    [Google Scholar]
  76. PandeyP. SatijaS. WadhwaR. MehtaM. PurohitD. GuptaG. PrasherP. ChellappanD.K. AwasthiR. DurejaH. DuaK. Emerging trends in nanomedicine for topical delivery in skin disorders: Current and translational approaches.Dermatol. Ther.2020333e1329210.1111/dth.13292 32126154
    [Google Scholar]
  77. MehtaM. Deeksha; Tewari, D.; Gupta, G.; Awasthi, R.; Singh, H.; Pandey, P.; Chellappan, D.K.; Wadhwa, R.; Collet, T.; Hansbro, P.M.; Kumar, S.R.; Thangavelu, L.; Negi, P.; Dua, K.; Satija, S. Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases.Chem. Biol. Interact.201930820621510.1016/j.cbi.2019.05.028 31136735
    [Google Scholar]
  78. SharmaP. MehtaM. DhanjalD.S. KaurS. GuptaG. SinghH. ThangaveluL. RajeshkumarS. TambuwalaM. BakshiH.A. ChellappanD.K. DuaK. SatijaS. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer.Chem. Biol. Interact.201930910872010.1016/j.cbi.2019.06.033 31226287
    [Google Scholar]
  79. MehtaM. Deeksha; Sharma, N.; Vyas, M.; Khurana, N.; Maurya, P.K.; Singh, H.; Andreoli de Jesus, T.P.; Dureja, H.; Chellappan, D.K.; Gupta, G.; Wadhwa, R.; Collet, T.; Hansbro, P.M.; Dua, K.; Satija, S. Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases.Chem. Biol. Interact.2019304101910.1016/j.cbi.2019.02.021 30849336
    [Google Scholar]
  80. KhairnarS.V. JainD.D. TambeS.M. ChavanY.R. AminP.D. Nebulizer systems: A new frontier for therapeutics and targeted delivery.Ther. Deliv.2022131314910.4155/tde‑2021‑0070 34766509
    [Google Scholar]
  81. AlhamadB.R. FinkJ.B. HarwoodR.J. SheardM.M. AriA. Effect of aerosol devices and administration techniques on drug delivery in a simulated spontaneously breathing pediatric tracheostomy model.Respir. Care20156071026103210.4187/respcare.03592 25737572
    [Google Scholar]
  82. WeersJ. TararaT. The PulmoSphere™ platform for pulmonary drug delivery.Ther. Deliv.20145327729510.4155/tde.14.3 24592954
    [Google Scholar]
  83. UsmaniO.S. RocheN. JenkinsM. StjepanovicN. MackP. De BackerW. Consistent pulmonary drug delivery with whole lung deposition using the aerosphere inhaler: A review of the evidence.Int. J. Chron. Obstruct. Pulmon. Dis.20211611312410.2147/COPD.S274846 33500616
    [Google Scholar]
  84. ZhangF. SantosH.A. Chapter 8 - Photosensitive materials for constructing on-demanded drug-release systems.Photoactive Inorganic Nanoparticles.Elsevier201919321010.1016/B978‑0‑12‑814531‑9.00008‑7
    [Google Scholar]
  85. SuY. ZhangB. SunR. LiuW. ZhuQ. ZhangX. WangR. ChenC. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application.Drug Deliv.20212811397141810.1080/10717544.2021.1938756 34184949
    [Google Scholar]
  86. ZhengB. PengW. GuoM. HuangM. GuY. WangT. NiG. MingD. Inhalable nanovaccine with biomimetic coronavirus structure to trigger mucosal immunity of respiratory tract against COVID-19.Chem. Eng. J.202141812939210.1016/j.cej.2021.129392 33762883
    [Google Scholar]
  87. PimentelT.A.P.F. YanZ. JeffersS.A. HolmesK.V. HodgesR.S. BurkhardP. Peptide nanoparticles as novel immunogens: Design and analysis of a prototypic severe acute respiratory syndrome vaccine.Chem. Biol. Drug Des.2009731536110.1111/j.1747‑0285.2008.00746.x 19152635
    [Google Scholar]
  88. PaudelK.S. MilewskiM. SwadleyC.L. BrogdenN.K. GhoshP. StinchcombA.L. Challenges and opportunities in dermal/transdermal delivery.Ther. Deliv.20101110913110.4155/tde.10.16 21132122
    [Google Scholar]
  89. LarrañetaE. LuttonR.E.M. WoolfsonA.D. DonnellyR.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development.Mater. Sci. Eng. Rep.201610413210.1016/j.mser.2016.03.001
    [Google Scholar]
  90. ChenX. ProwT.W. CrichtonM.L. JenkinsD.W.K. RobertsM.S. FrazerI.H. FernandoG.J.P. KendallM.A.F. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin.J. Control. Release2009139321222010.1016/j.jconrel.2009.06.029 19577597
    [Google Scholar]
  91. LiX.G. ChenJ. WangW. LinF. LiL. LiangJ.J. DengZ.H. ZhangB.Y. JiaY. SuY.B. KangY.F. DuJ. LiuY.Q. XuJ. LuQ.B. Oseltamivir treatment for influenza during the flu season of 2018–2019: A longitudinal study.Front. Microbiol.20221386500110.3389/fmicb.2022.865001 35620096
    [Google Scholar]
  92. ZhaoL. ZhangC. Abu-ErshaidJ.M. LiM. LiY. NaserY. DaiX. AbbateM.T.A. DonnellyR.F. Smart responsive microarray patches for transdermal drug delivery and biological monitoring.Adv. Healthc. Mater.20211020210099610.1002/adhm.202100996 34449129
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010326373241012061547
Loading
/content/journals/cpb/10.2174/0113892010326373241012061547
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anti-viral; drug delivery approach; drug resistance; influenza; nanomedicine; pandemics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test