Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Cham. & Schltdl., “veludinho do campo”, is used in the Brazilian Amazon for its effects on the central nervous system (CNS) as a “brain tonic”; however, scientific evidence is needed to elucidate its ethnobotanical uses.

Objectives

This study evaluated the neurobehavioural effects of an ethanolic extract of (EEGV). Molecular docking, microchemical and morphoanatomical features of the species were investigated.

Methods

EEGV was investigated by UHPLC‒MS/MS and dereplication and molecular network were investigated using platforms available for natural product chemistry. For the assay, EEGV was administered to mice orally (3, 30 or 100 mg/kg). The effect of EEGV on spatial memory was measured using the Morris water maze test in mice with scopolamine-induced amnesia. The depression- and anxiety-like effects were assessed by forced swimming, tail suspension, marble burying and elevated plus maze tests. The AChE inhibition was evaluated in the brains of treated mice and molecular docking simulations were carried out with the main constituents. The leaves and stems of were analysed optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy.

Results

Secoxyloganin, grandifloroside, hyperin/or isoquercitrin, uncaric acid and ursolic acid were identified by UHPLC‒MS/MS. Molecular networking by three flavonoids, three triterpenes, two coumarins, two iridoids, and one phenolic acid. EEGV reversed these scopolamine-induced effects. In the forced swim and tail suspension test, EEGV (30 and 100 mg/kg) significantly reduced the immobility time. EEGV significantly reduced the number of buried marbles, while in the elevated plus maze test, no changes were observed compared to the Sco group. AChE activity was altered in the hippocampus. Studies of the molecular coupling of iridoid glycosides (grandifloroside and secoxyloganin) and flavonoid hyperin with AChE revealed significant interactions, corroborating the activity indicated by the inhibition assay.

Conclusion

These results might be in accordance with medicinal use for neuroprotetor effects and important microchemical and micromorphological data that support the identification and quality control of .

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010318163240822063318
2024-09-05
2025-09-16
Loading full text...

Full text loading...

References

  1. IrwinH.S. Reflora.1971Available From: https://floradobrasil.jbrj.gov.br/reflora/geral/ExibeFiguraFSIUC/ExibeFiguraFSIUC.do?idFigura=228519735
  2. LorenziH. Brazilian Trees.Instituto Plantarum: Nova Odessa200224370
    [Google Scholar]
  3. TaylorC. DelpreteP.G. VincentiniA. CortésR. ZappiD. PerssonC. CostaC.B. da AnunciaçãoE.A. Flora of the Venezuelan Guayana.St. Louis, MissouriMissouri Botanical Garden Press2004
    [Google Scholar]
  4. RodriguesE. MendesF. NegriG. Plants indicated by brazilian indians for disturbances of the central nervous system: A bibliographical survey.Cent. Nerv. Syst. Agents Med. Chem.20066321124410.2174/187152406778226725
    [Google Scholar]
  5. RibeiroD.A. OliveiraL.G.S. MacêdoD.G. MenezesI.R.A. CostaJ.G.M. SilvaM.A.P. LacerdaS.R. SouzaM.M.A. Promising medicinal plants for bioprospection in a Cerrado area of Chapada do Araripe, Northeastern Brazil.J. Ethnopharmacol.201415531522153310.1016/j.jep.2014.07.04225086410
    [Google Scholar]
  6. NaressiM.A. ManholerD.D. AmesF.Q. Bersani-AmadoC.A. FormagioA.S.N. PereiraZ.V. CostaW.F. BaldoquiD.C. SarragiottoM.H. CHemical constituents, anti-inflammatory, and free-radical scavenging activities of Guettarda viburnoides.Quim. Nova20153893293610.5935/0100‑4042.20150093
    [Google Scholar]
  7. Sharifi-RadM. LankatillakeC. DiasD.A. DoceaA.O. MahomoodallyM.F. LobineD. ChazotP.L. KurtB. Boyunegmez TumerT. Catarina MoreiraA. SharopovF. MartorellM. MartinsN. ChoW.C. CalinaD. Sharifi-RadJ. Impact of natural compounds on neurodegenerative disorders: From preclinical to pharmacotherapeutics.J. Clin. Med.202094106110.3390/jcm904106132276438
    [Google Scholar]
  8. AlyS.H. ElissawyA.M. FayezA.M. EldahshanO.A. ElshanawanyM.A. SingabA.N.B. Neuroprotective effects of Sophora secundiflora, Sophora tomentosa leaves and formononetin on scopolamine-induced dementia.Nat. Prod. Res.202135245848585210.1080/14786419.2020.179585332696670
    [Google Scholar]
  9. ÜçelU.İ. CanÖ.D. Demir ÖzkayÜ. UlupinarE. Antiamnesic effects of tofisopam against scopolamine-induced cognitive impairments in rats.Pharmacol. Biochem. Behav.202019017285810.1016/j.pbb.2020.17285831981560
    [Google Scholar]
  10. AntunesE. GordoW.M. de OliveiraJ.F. TeixeiraC.E. HyslopS. De NucciG. The relaxation of isolated rabbit corpus cavernosum by the herbal medicine Catuama ® and its constituents.Phytother. Res.200115541642110.1002/ptr.86111507734
    [Google Scholar]
  11. da SilvaA.L. PiatoÂ.L.S. BardiniS. NettoC.A. NunesD.S. ElisabetskyE. Memory retrieval improvement by Ptychopetalum olacoides in young and aging mice.J. Ethnopharmacol.2004952-319920310.1016/j.jep.2004.07.01915507336
    [Google Scholar]
  12. BrentonA.G. GodfreyA.R. Accurate mass measurement: Terminology and treatment of data.J. Am. Soc. Mass Spectrom.201021111821183510.1016/j.jasms.2010.06.00620650651
    [Google Scholar]
  13. AllenF. GreinerR. WishartD. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification.Metabolomics20151119811010.1007/s11306‑014‑0676‑4
    [Google Scholar]
  14. OlivonF. RoussiF. LitaudonM. TouboulD. Optimized experimental workflow for tandem mass spectrometry molecular networking in metabolomics.Anal. Bioanal. Chem.2017409245767577810.1007/s00216‑017‑0523‑328762069
    [Google Scholar]
  15. AronA.T. GentryE.C. McPhailK.L. NothiasL.F. Nothias-EspositoM. BouslimaniA. PetrasD. GauglitzJ.M. SikoraN. VargasF. van der HooftJ.J.J. ErnstM. KangK.B. AcevesC.M. Caraballo-RodríguezA.M. KoesterI. WeldonK.C. BertrandS. RoullierC. SunK. TehanR.M. Boya PC.A. ChristianM.H. GutiérrezM. UlloaA.M. Tejeda MoraJ.A. Mojica-FloresR. Lakey-BeitiaJ. Vásquez-ChavesV. ZhangY. CalderónA.I. TaylerN. KeyzersR.A. TugizimanaF. NdlovuN. AksenovA.A. JarmuschA.K. SchmidR. TrumanA.W. BandeiraN. WangM. DorresteinP.C. Reproducible molecular networking of untargeted mass spectrometry data using GNPS.Nat. Protoc.20201561954199110.1038/s41596‑020‑0317‑532405051
    [Google Scholar]
  16. MorrisR. Developments of a water-maze procedure for studying spatial learning in the rat.J. Neurosci. Methods1984111476010.1016/0165‑0270(84)90007‑46471907
    [Google Scholar]
  17. PorsoltR.D. BertinA. BlavetN. DenielM. JalfreM. Immobility induced by forced swimming in rats: Effects of agents which modify central catecholamine and serotonin activity.Eur. J. Pharmacol.1979572-320121010.1016/0014‑2999(79)90366‑2488159
    [Google Scholar]
  18. SteruL. ChermatR. ThierryB. SimonP. The tail suspension test: A new method for screening antidepressants in mice.Psychopharmacology198585336737010.1007/BF004282033923523
    [Google Scholar]
  19. SkaliszL.L. BeijaminiV. AndreatiniR. Effect of Hypericum perforatum on marble‐burying by mice.Phytother. Res.200418539940210.1002/ptr.145015174001
    [Google Scholar]
  20. PellowS. ChopinP. FileS.E. BrileyM. Validation of open : Closed arm entries in an elevated plus-maze as a measure of anxiety in the rat.J. Neurosci. Methods198514314916710.1016/0165‑0270(85)90031‑72864480
    [Google Scholar]
  21. EllmanG.L. CourtneyK.D. AndresV.Jr FeatherstoneR.M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196172889510.1016/0006‑2952(61)90145‑913726518
    [Google Scholar]
  22. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  23. JonesG. WillettP. GlenR.C. LeachA.R. TaylorR. Development and validation of a genetic algorithm for flexible docking.J Mol Biol19976737274810.1006/jmbi.1996.0897
    [Google Scholar]
  24. de BritoP.S. SabedottiC. FloresT.B. RamanV. BussadeJ.E. FaragoP.V. ManfronJ. Light and scanning electron microscopy, energy dispersive x-ray spectroscopy, and histochemistry of eucalyptus tereticornis.Microsc. Microanal.20212751295130310.1017/S1431927621012514
    [Google Scholar]
  25. GabeM. Techniques Histologiques.ParisMasson & Cie1968
    [Google Scholar]
  26. JohansenD.A. Plant Microtechnique.New YorkMc Graw Hill Book1940
    [Google Scholar]
  27. MaceM.E. HowellC.R. Histochemistry and identification of condensed tannin precursors in roots of cotton seedlings.Can. J. Bot.197452112423242610.1139/b74‑314
    [Google Scholar]
  28. OliveiraF. AkisueG. AkisueM.K. Farmacognosia: Identificação de drogas vegetais.Atheneu201421418
    [Google Scholar]
  29. PearseA.G.E. Histochemistry: Theoretical and applied.United StatesThe Williams & Wilkins Company19723
    [Google Scholar]
  30. CainA.J. The use of Nile blue in the examination of lipids.J. Cell Sci.1947S38838339210.1242/jcs.s3‑88.3.383
    [Google Scholar]
  31. FurrM. MahlbergP.G. Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa..J. Nat. Prod.198144215315910.1021/np50014a002
    [Google Scholar]
  32. YoderL.R. MahlbergP.G. Reactions of alkaloid and histochemical indicators in laticifers and specialized parenchyma cells of Catharanthus roseus (Apocynaceae).Am. J. Bot.19766391167117310.1002/j.1537‑2197.1976.tb13202.x
    [Google Scholar]
  33. VidalBde.C. Dichroism in collagen bundles stained with Xylidine-Ponceau 2R.Ann. Histochim.19701542892964105098
    [Google Scholar]
  34. FisherD.B. Protein staining of ribboned epon sections for light microscopy.Histochemie1968161929610.1007/BF003062144180491
    [Google Scholar]
  35. O’BrienT.P. McCyllyM.E. The study of plant structure: Principles and selected methods.Melbourne, AUTermarcarphi Pty Ltd.1981
    [Google Scholar]
  36. BertorelliR. ConsoloS. D1 and D2 dopaminergic regulation of acetylcholine release from striata of freely moving rats.J. Neurochem.19905462145214810.1111/j.1471‑4159.1990.tb04922.x1971013
    [Google Scholar]
  37. KlinkenbergI. BloklandA. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies.Neurosci. Biobehav. Rev.20103481307135010.1016/j.neubiorev.2010.04.00120398692
    [Google Scholar]
  38. PalomboP. EngiS.A. YokoyamaT.S. BezerraA.G. CuradoD.F. AnésioA. LeãoR.M. SantosP.C.J.L. CruzF.C. GaldurózJ.C.F. Effects of biperiden (cholinergic muscarinic m1/m4 receptor antagonist) on ethanol conditioned place preference in mice.Neurosci. Lett.2021745613555110.1016/j.neulet.2020.13555133346074
    [Google Scholar]
  39. NobakhtM. HoseiniS.M. MortazaviP. SohrabiI. EsmailzadeB. Rahbar RooshandelN. OmidzahirS. Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer’s disease.Iran. Biomed. J.2011151-2515821725500
    [Google Scholar]
  40. KhanH. Marya AminS. KamalM.A. PatelS. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects.Biomed. Pharmacother.201810186087010.1016/j.biopha.2018.03.00729635895
    [Google Scholar]
  41. ZhangZ. DaiL. WangH. ChangX. RenS. LaiH. LiuL. Phytochemical profiles and antioxidant, anticholinergic, and antidiabetic activities of Odontites serotina (Lam.) Dum.Eur. J. Integr. Med.20214410134010.1016/j.eujim.2021.101340
    [Google Scholar]
  42. ChenH. WangJ.H. RenZ.X. YangX.B. Protective effect of hyperin on focal cerebral ischemia reperfusion injury in rats.J. Chin. Integr. Med.20064552652910.3736/jcim2006051816965751
    [Google Scholar]
  43. ChoiJ.H. KimD.W. YunN. ChoiJ.S. IslamM.N. KimY.S. LeeS.M. Protective effects of hyperoside against carbon tetrachloride-induced liver damage in mice.J. Nat. Prod.20117451055106010.1021/np200001x21428416
    [Google Scholar]
  44. LiL. ZhangX. CuiL. WangL. LiuH. JiH. DuY. Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice.Brain Res.20131497323910.1016/j.brainres.2012.12.03223276496
    [Google Scholar]
  45. PengJ. RenX. LanT. ChenY. ShaoZ. YangC. Renoprotective effects of ursolic acid on ischemia/reperfusion-induced acute kidney injury through oxidative stress, inflammation and the inhibition of STAT3 and NF-κB activities.Mol. Med. Rep.20161443397340210.3892/mmr.2016.565427573738
    [Google Scholar]
  46. DingH. WangH. ZhuL. WeiW. Ursolic acid ameliorates early brain injury after experimental traumatic brain injury in mice by activating the Nrf2 pathway.Neurochem. Res.201742233734610.1007/s11064‑016‑2077‑827734181
    [Google Scholar]
  47. Ramos-HrybA.B. CunhaM.P. PaziniF.L. LieberknechtV. PredigerR.D.S. KasterM.P. RodriguesA.L.S. Ursolic acid affords antidepressant-like effects in mice through the activation of PKA, PKC, CAMK-II and MEK1/2.Pharmacol. Rep.20176961240124610.1016/j.pharep.2017.05.00929128805
    [Google Scholar]
  48. HabtemariamS. Antioxidant and anti-inflammatory mechanisms of neuroprotection by ursolic acid: Addressing brain injury, cerebral ischemia, cognition deficit, anxiety, and depression.Oxid. Med. Cell. Longev.2019201911810.1155/2019/851204831223427
    [Google Scholar]
  49. NaßJ. EfferthT. Ursolic acid ameliorates stress and reactive oxygen species in C. elegans knockout mutants by the dopamine Dop1 and Dop3 receptors.Phytomedicine20218115343910.1016/j.phymed.2020.15343933352493
    [Google Scholar]
  50. NaßJ. AbdelfatahS. EfferthT. The triterpenoid ursolic acid ameliorates stress in Caenorhabditis elegans by affecting the depression-associated genes skn-1 and prdx2.Phytomedicine20218815359810.1016/j.phymed.2021.15359834111615
    [Google Scholar]
  51. YangJ.Y. SanchezL.M. RathC.M. LiuX. BoudreauP.D. BrunsN. GlukhovE. WodtkeA. de FelicioR. FennerA. WongW.R. LiningtonR.G. ZhangL. DebonsiH.M. GerwickW.H. DorresteinP.C. Molecular networking as a dereplication strategy.J. Nat. Prod.20137691686169910.1021/np400413s24025162
    [Google Scholar]
  52. PauzerM.S. BorsatoT.O. AlmeidaV.P. RamanV. JustusB. PereiraC.B. FloresT.B. MaiaB.H.L.N.S. MeneghettiE.K. KanunfreC.C. PaulaJ.F.P. FaragoP.V. BudelJ.M. Eucalyptus cinerea: Microscopic profile, chemical composition of essential oil and its antioxidant, microbiological and cytotoxic activities.Braz. Arch. Biol. Technol.202164spee2120077210.1590/1678‑4324‑75years‑2021200772
    [Google Scholar]
  53. Nazari FormagioA.S. VilegasW. Ferreira VolobuffC.R. Leite KassuyaC.A. Paes de AlmeidaV. ManfronJ. PereiraZ.V. Pereira CabralM.R. SarragiottoM.H. Palicourea tomentosa (Aubl.) Borhidi: Microscopy, chemical composition and the analgesic, anti-inflammatory and anti-acetylcholinesterase potential.J. Ethnopharmacol.202229111505010.1016/j.jep.2022.11505035150816
    [Google Scholar]
  54. BouropoulosN. WeinerS. AddadiL. Calcium oxalate crystals in tomato and tobacco plants: Morphology and in vitro interactions of crystal-associated macromolecules.Chemistry2001791881188810.1002/1521‑3765(20010504)7:9<1881::AID‑CHEM1881>3.0.CO;2‑I11405466
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010318163240822063318
Loading
/content/journals/cpb/10.2174/0113892010318163240822063318
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test