Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Organophosphorus insecticides, widely used in farming and agriculture, have been associated with various health issues. Curcumin, a natural antioxidant, has shown potential in mitigating the adverse effects induced by these insecticides.

Aims

This study aimed to evaluate the nephroprotective effects of Curcumin (CUR) against Chlorpyrifos (CPF)-induced renal damage.

Methods

Forty male Wistar albino rats were randomly assigned to five groups, each containing eight rats: control (0.5 mL of olive oil, the solvent for chlorpyrifos), CPF (10 mg/kg of chlorpyrifos), CPF + CUR 25 mg/kg/day, CPF + CUR 50 mg/kg/day, and CPF + CUR 100 mg/k/day. All groups were treated for 90 days. Finally, kidney tissue was assessed for oxidative stress, inflammatory markers, and histopathological changes.

Results

A considerable elevation in urea and Creatinine (Cr) concentrations was observed in the CPF group compared to the control rats ( < 0.01). CUR decreased creatinine and urea levels in the CPF-exposed group compared to the non-CUR-treated animals ( < 0.05). Additionally, the concentrations of NO, MDA, IL-6, IL-1β, and TNFα were significantly increased in the kidneys of the CPF-induced rats compared to the controls ( < 0.001). However, CUR (100 mg/kg) administration significantly reduced the abovementioned parameters in rat kidneys ( < 0.01). CUR (100 mg/kg) also increased superoxide dismutase activity and glutathione concentration in the kidneys of CPF-exposed animals compared to non-CUR-treated rats ( < 0.05). Histopathological analysis revealed severe congestion in the kidney tissue after CPF exposure. However, co-administration of CUR restored the normal structure of the kidney in the experimental rats.

Conclusion

Our findings suggest that curcumin, a potent antioxidant, can help alleviate chlorpyrifos-induced nephrotoxicity.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010307571240817190846
2024-09-05
2025-10-02
Loading full text...

Full text loading...

References

  1. FarkhondehT. SamarghandianS. Antidotal Effects of Curcumin Against Agents-Induced Cardiovascular Toxicity.Cardiovasc. Hematol. Disord. Drug Targets2016161303710.2174/1871529X1666616080214451027492624
    [Google Scholar]
  2. HussainZ. ThuH.E. AmjadM.W. HussainF. AhmedT.A. KhanS. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives.Mater. Sci. Eng. C2017771316132610.1016/j.msec.2017.03.22628532009
    [Google Scholar]
  3. Farkhondeh T, Samarghandian S, Azimin-Nezhad M, Samini F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats.Int. J. Clin. Exp. Med.2015822465
    [Google Scholar]
  4. EdwardsR.L. LuisP.B. VaruzzaP.V. JosephA.I. PresleyS.H. ChaturvediR. SchneiderC. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites.J. Biol. Chem.201729252212432125210.1074/jbc.RA117.00012329097552
    [Google Scholar]
  5. RazaviB.M. Ghasemzadeh RahbardarM. HosseinzadehH. A review of therapeutic potentials of turmeric ( Curcuma longa ) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents.Phytother. Res.202135126489651310.1002/ptr.722434312922
    [Google Scholar]
  6. Jafari-NozadA.M. JafariA. ZangooieA. BehdadfardM. ZangoueiA.S. AschnerM. FarkhondehT. SamarghandianS. Curcumin Combats against Gastrointestinal Cancer: A Review of Current Knowledge Regarding Epigenetics Mechanisms with a Focus on DNA Methylation.Curr. Med. Chem.202330384374438810.2174/092986733066623011209280236644869
    [Google Scholar]
  7. AzhdariM. KarandishM. MansooriA. Metabolic benefits of curcumin supplementation in patients with metabolic syndrome: A systematic review and meta‐analysis of randomized controlled trials.Phytother. Res.20193351289130110.1002/ptr.632330941814
    [Google Scholar]
  8. PivariF. MingioneA. BrasacchioC. SoldatiL. Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment.Nutrients2019118183710.3390/nu1108183731398884
    [Google Scholar]
  9. Samarghandian S, Hadjzadeh MA, Afshari JT, Hosseini M. Antiproliferative activity and induction of apoptotic by ethanolic extract of Alpinia galanga rhizhome in human breast carcinoma cell line.BMC Complement. Altern. Med.2014141910.1080/13813455.2019.167145831564166
    [Google Scholar]
  10. GroverM. BehlT. SachdevaM. BungaoS. AleyaL. SetiaD. Focus on Multi-targeted Role of Curcumin: A Boon in Therapeutic Paradigm.Environ. Sci. Pollut. Res. Int.20212815188931890710.1007/s11356‑021‑12809‑w33595796
    [Google Scholar]
  11. FarkhondehT. SamarghandianS. BorjiA. An overview on cardioprotective and anti-diabetic effects of thymoquinone.Asian Pac. J. Trop. Med.201710984985410.1016/j.apjtm.2017.08.02029080612
    [Google Scholar]
  12. Alaa-EldinE.A. El-ShafeiD.A. AbouhashemN.S. Individual and combined effect of chlorpyrifos and cypermethrin on reproductive system of adult male albino rats.Environ. Sci. Pollut. Res. Int.20172421532154310.1007/s11356‑016‑7912‑627785720
    [Google Scholar]
  13. ZhaoL. TangG. XiongC. HanS. YangC. HeK. LiuQ. LuoJ. LuoW. WangY. LiZ. YangS. Chronic chlorpyrifos exposure induces oxidative stress, apoptosis and immune dysfunction in largemouth bass (Micropterus salmoides).Environ. Pollut.202128211701010.1016/j.envpol.2021.11701033848913
    [Google Scholar]
  14. SumonK.A. RicoA. Ter HorstM.M.S. Van den BrinkP.J. HaqueM.M. RashidH. Risk assessment of pesticides used in rice-prawn concurrent systems in Bangladesh.Sci. Total Environ.201656849850610.1016/j.scitotenv.2016.06.01427328394
    [Google Scholar]
  15. LiJ. PangG. RenF. FangB. Chlorpyrifos-induced reproductive toxicity in rats could be partly relieved under high-fat diet.Chemosphere20192299410210.1016/j.chemosphere.2019.05.02031078036
    [Google Scholar]
  16. AlbasherG. AlmeerR. Al-OtibiF.O. Al-KubaisiN. MahmoudA.M. Ameliorative Effect of Beta vulgaris Root Extract on Chlorpyrifos-Induced Oxidative Stress, Inflammation and Liver Injury in Rats.Biomolecules20199726110.3390/biom907026131284640
    [Google Scholar]
  17. SasikalaC. JiwalS. RoutP. RamyaM. Biodegradation of chlorpyrifos by bacterial consortium isolated from agriculture soil.World J. Microbiol. Biotechnol.20122831301130810.1007/s11274‑011‑0879‑z22805851
    [Google Scholar]
  18. Samarghandian S, Shoshtari ME, Sargolzaei J, Hossinimoghadam H, Farahzad JA. Anti-tumor activity of safranal against neuroblastoma cells.Pharmacogn. Magaz.201410Suppl 2S419
    [Google Scholar]
  19. EronatK. SağırD. Protective effects of curcumin and Ganoderma lucidum on hippocampal damage caused by the organophosphate insecticide chlorpyrifos in the developing rat brain: Stereological, histopathological and immunohistochemical study.Acta Histochem.2020122715162110.1016/j.acthis.2020.15162133066842
    [Google Scholar]
  20. UzunF.G. KalenderY. Chlorpyrifos induced hepatotoxic and hematologic changes in rats: The role of quercetin and catechin.Food Chem. Toxicol.20135554955610.1016/j.fct.2013.01.05623402859
    [Google Scholar]
  21. MansourS.A. MossaA.T.H. Oxidative damage, biochemical and histopathological alterations in rats exposed to chlorpyrifos and the antioxidant role of zinc.Pestic. Biochem. Physiol.2010961142310.1016/j.pestbp.2009.08.008
    [Google Scholar]
  22. HsuS.S. LinY.S. ChenH.C. LiangW.Z. Involvement of oxidative stress‐related apoptosis in chlorpyrifos‐induced cytotoxicity and the ameliorating potential of the antioxidant vitamin E in human glioblastoma cells.Environ. Toxicol.20233892143215410.1002/tox.2385037283489
    [Google Scholar]
  23. AlipanahH. Kabi DoraghiH. SayadiM. NematollahiA. Soltani HekmatA. NejatiR. Subacute toxicity of chlorpyrifos on histopathological damages, antioxidant activity, and pro‐inflammatory cytokines in the rat model.Environ. Toxicol.202237488088810.1002/tox.2345134985812
    [Google Scholar]
  24. VermaR.J. MathuriaN. Curcumin ameliorates aflatoxin-induced lipid-peroxidation in liver and kidney of mice.Acta Pol. Pharm.200865219520218666425
    [Google Scholar]
  25. AshrafizadehM. AhmadiZ. FarkhondehT. SamarghandianS. Resveratrol targeting the Wnt signaling pathway: A focus on therapeutic activities.J. Cell. Physiol.202023554135414510.1002/jcp.2932731637721
    [Google Scholar]
  26. AmbaliS.F. AkanbiD.O. ShittuM. GiwaA. OladipoO.O. AyoJ.O. Chlorpyrifos-induced clinical, haematological and biochemical changes in Swiss albino mice: Mitigating effect by co-administration of vitamins C and E.Life Sci. J.2010733744
    [Google Scholar]
  27. PohlF. Kong Thoo LinP. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In vitro, In vivo and Clinical Trials.Molecules20182312328310.3390/molecules2312328330544977
    [Google Scholar]
  28. (a AshrafizadehM. FekriH.S. AhmadiZ. FarkhondehT. SamarghandianS. Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway.J. Cell. Biochem.202012121575158510.1002/jcb.2939231609017
    [Google Scholar]
  29. (bJia Y, Poor SMM, Dufault B, Lu V, Nayak JG, Pruthi DK, Gibson IW. Chronic kidney damage pathology score for systematic assessment of the non-neoplastic kidney tissue and prediction of postoperative renal function outcomes.Hum. Pathol.2022124768410.1016/j.humpath.2022.03.003
    [Google Scholar]
  30. BhatiaP. SandersM.M. HansenM.F. Expression of receptor activator of nuclear factor-kappaB is inversely correlated with metastatic phenotype in breast carcinoma.Clin. Cancer Res.200511116216510.1158/1078‑0432.162.11.115671541
    [Google Scholar]
  31. Al-BrakatiA.Y. FoudaM.S. TharwatA.M. ElmahallawyE.K. KassabR.B. Abdel MoneimA.E. The protective efficacy of soursop fruit extract against hepatic injury associated with acetaminophen exposure is mediated through antioxidant, anti-inflammatory, and anti-apoptotic activities.Environ. Sci. Pollut. Res. Int.20192613135391355010.1007/s11356‑019‑04935‑330915694
    [Google Scholar]
  32. SalyhaN. SalyhaY. Protective role of l-glutamic acid and l-cysteine in mitigation the chlorpyrifos-induced oxidative stress in rats.Environ. Toxicol. Pharmacol.20186415516310.1016/j.etap.2018.10.01030412861
    [Google Scholar]
  33. Abd-ElhakimY.M. MoustafaG.G. El-SharkawyN.I. HusseinM.M.A. GhoneimM.H. El DeibM.M. The ameliorative effect of curcumin on hepatic CYP1A1 and CYP1A2 genes dysregulation and hepatorenal damage induced by fenitrothion oral intoxication in male rats.Pestic. Biochem. Physiol.202117910495910.1016/j.pestbp.2021.10495934802538
    [Google Scholar]
  34. AlbasherG. AlmeerR. AlarifiS. AlkhtaniS. FarhoodM. Al-OtibiF.O. AlkubaisiN. RizwanaH. Nephroprotective Role of Beta vulgaris L. Root Extract against Chlorpyrifos-Induced Renal Injury in Rats.Evid. Based Complement. Alternat. Med.201920191910.1155/2019/359576131885644
    [Google Scholar]
  35. OwumiS.E. DimU.J. Manganese suppresses oxidative stress, inflammation and caspase-3 activation in rats exposed to chlorpyrifos.Toxicol. Rep.2019620220910.1016/j.toxrep.2019.02.00730859069
    [Google Scholar]
  36. NasrH.M. El-DemerdashF.M. El-NagarW.A. Neuro and renal toxicity induced by chlorpyrifos and abamectin in rats.Environ. Sci. Pollut. Res. Int.20162321852185910.1007/s11356‑015‑5448‑926403246
    [Google Scholar]
  37. IsmailA.A. HendyO. Abdel RasoulG. OlsonJ.R. BonnerM.R. RohlmanD.S. Acute and Cumulative Effects of Repeated Exposure to Chlorpyrifos on the Liver and Kidney Function among Egyptian Adolescents.Toxics20219613710.3390/toxics906013734200920
    [Google Scholar]
  38. SaoudiM. HmidaI.B. KammounW. RebahF.B. JamoussiK. FekiA.E. Protective effects of oil of Sardinella pilchardis against subacute chlorpyrifos-induced oxidative stress in female rats.Arch. Environ. Occup. Health201873212813510.1080/19338244.2017.131762728394715
    [Google Scholar]
  39. BabaN. RainaR. VermaP. SultanaM. Free radical-induced nephrotoxicity following repeated oral exposureto chlorpyrifos alone and in conjunction with fluoride in rats.Turk. J. Med. Sci.201646251251710.3906/sag‑1403‑10927511519
    [Google Scholar]
  40. Al-BrakatiA.Y. KassabR.B. LokmanM.S. ElmahallawyE.K. AminH.K. Abdel MoneimA.E. Role of thymoquinone and ebselen in the prevention of sodium arsenite–induced nephrotoxicity in female rats.Hum. Exp. Toxicol.201938448249310.1177/096032711881824630558456
    [Google Scholar]
  41. HommaT. FujiiJ. Application of Glutathione as Anti-Oxidative and Anti-Aging Drugs.Curr. Drug Metab.201516756057110.2174/138920021666615101511451526467067
    [Google Scholar]
  42. El-SayedN.M. AhmedA.A.M. SelimM.A.A. Cytotoxic effect of chlorpyrifos is associated with activation of Nrf-2/HO-1 system and inflammatory response in tongue of male Wistar rats.Environ. Sci. Pollut. Res. Int.20182512120721208210.1007/s11356‑018‑1391‑x29453720
    [Google Scholar]
  43. SamarghandianS. Azimi-NezhadM. BorjiA. FarkhondehT. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state.Phytother. Res.20163081345135310.1002/ptr.563827279282
    [Google Scholar]
  44. KassabR.B. LokmanM.S. EssawyE.A. Neurochemical alterations following the exposure to di-n-butyl phthalate in rats.Metab. Brain Dis.201934123524410.1007/s11011‑018‑0341‑030446882
    [Google Scholar]
  45. JakubczykK. DrużgaA. KatarzynaJ. Skonieczna-ŻydeckaK. Antioxidant Potential of Curcumin—A Meta-Analysis of Randomized Clinical Trials.Antioxidants2020911109210.3390/antiox911109233172016
    [Google Scholar]
  46. Shaterzadeh-YazdiH. NoorbakhshM.F. HayatiF. SamarghandianS. FarkhondehT. Immunomodulatory and Anti-inflammatory Effects of Thymoquinone.Cardiovasc. Hematol. Disord. Drug Targets2018181526010.2174/1871529X1866618021211481629437018
    [Google Scholar]
  47. Topcu-TarladacalisirY. Sapmaz-MetinM. KaracaT. Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis.Ren. Fail.201638101741174810.1080/0886022X.2016.122999627758164
    [Google Scholar]
  48. Al-AmoudiW.M. Curcumin ameliorates nephrotoxicity and histopathological alterations induced by chlorpyrifos in albino rats.J. Pharma Res.20133164
    [Google Scholar]
  49. ChenY.H. ChenH.L. FanH.C. TungY.T. KuoC.W. TuM.Y. ChenC.M. Anti-Inflammatory, Antioxidant, and Antifibrotic Effects of Kefir Peptides on Salt-Induced Renal Vascular Damage and Dysfunction in Aged Stroke-Prone Spontaneously Hypertensive Rats.Antioxidants20209979010.3390/antiox909079032858955
    [Google Scholar]
  50. Şener AkçoraD ErdoğanD Take KaplanoğluG GöktaşGE ŞekerU ElmasÇ Electron microscopic investigation of benzo(a)pyrene-induced alterations in the rat kidney tissue and the protective effects of curcumin.Ultrastruct Pathol202246651953010.1080/01913123.2022.2152144
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010307571240817190846
Loading
/content/journals/cpb/10.2174/0113892010307571240817190846
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Chlorpyrifos; curcumin; inflammation; kidney; oxidative stress; Wistar rat
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test