Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Immunotoxins (ITs) represent a novel class of therapeutics with bi-functional structures that facilitate their penetration through cell membranes to induce target cell destruction. Programmed cell death ligand-1 (PD-L1), a human cell surface protein, is over-expressed in various cancers. This study aimed to construct a novel IT by genetically fusing an anti-PD-L1 Nanobody (Nb) to a truncated diphtheria toxin (DT).

Methods

The IT construct comprised a 127-amino acid anti-PD-L1 Nb fused to a 380-amino acid fragment of DT, with an N-terminal 6x-His tag. Molecular cloning techniques were employed, followed by transformation and verification through colony-PCR, enzyme digestion, and sequencing. The anti-PD-L1 Nb was expressed in WK6 cells induced by Isopropyl β-D-1-Thiogalactopyranoside (IPTG) and purified from periplasmic extracts using immobilized Metal Ion Affinity hromatography (IMAC). The IT was similarly expressed, purified, and validated SDS-PAGE and Western blot analysis.

Results

ELISA confirmed the binding activity of both Nb and IT to immobilized PD-L1 antigen, whereas truncated DT exhibited no binding. MTT assays demonstrated significant cytotoxicity of IT on A-431 cell lines compared to Nb and truncated DT controls. Statistical analyses underscored the significance of these findings.

Conclusion

This study provides a thorough characterization of the constructed IT, highlighting its potential as a therapeutic agent targeting PD-L1-expressing cancer cells. The results support the potential of this IT in cancer immunotherapy, emphasizing the need for further investigation into its efficacy and safety profiles.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010321088240823062243
2024-09-05
2025-09-16
Loading full text...

Full text loading...

References

  1. KythreotouA. SiddiqueA. MauriF.A. BowerM. PinatoD.J. PD-L1.J. Clin. Pathol.201871318919410.1136/jclinpath‑2017‑20485329097600
    [Google Scholar]
  2. HanY. LiuD. LiL. PD-1/PD-L1 pathway: Current researches in cancer.Am. J. Cancer Res.202010372774232266087
    [Google Scholar]
  3. SunC. MezzadraR. SchumacherT.N. Regulation and function of the PD-L1 checkpoint.Immunity201848343445210.1016/j.immuni.2018.03.01429562194
    [Google Scholar]
  4. ChaJ.H. ChanL.C. LiC.W. HsuJ.L. HungM.C. Mechanisms controlling PD-L1 expression in cancer.Mol. Cell201976335937010.1016/j.molcel.2019.09.03031668929
    [Google Scholar]
  5. YiM. ZhengX. NiuM. ZhuS. GeH. WuK. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions.Mol. Cancer20222112810.1186/s12943‑021‑01489‑235062949
    [Google Scholar]
  6. HamanishiJ. MandaiM. MatsumuraN. AbikoK. BabaT. KonishiI. PD-1/PD-L1 blockade in cancer treatment: Perspectives and issues.Int. J. Clin. Oncol.201621346247310.1007/s10147‑016‑0959‑z26899259
    [Google Scholar]
  7. AiL. XuA. XuJ. Roles of PD-1/PD-L1 pathway: Signaling, cancer, and beyond.Adv Exp Med Biol.20201248335910.1007/978‑981‑15‑3266‑5_3.
    [Google Scholar]
  8. GhoshC. LuongG. SunY. A snapshot of the PD-1/PD-L1 pathway.J. Cancer20211292735274610.7150/jca.5733433854633
    [Google Scholar]
  9. KimJ.M. ChenD.S. Immune escape to PD-L1/PD-1 blockade: Seven steps to success (or failure).Ann. Oncol.20162781492150410.1093/annonc/mdw21727207108
    [Google Scholar]
  10. ShiL. ChenS. YangL. LiY. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies.J. Hematol. Oncol.2013617410.1186/1756‑8722‑6‑7424283718
    [Google Scholar]
  11. YiM. NiuM. XuL. LuoS. WuK. Regulation of PD-L1 expression in the tumor microenvironment.J. Hematol. Oncol.20211411010.1186/s13045‑020‑01027‑533413496
    [Google Scholar]
  12. YuH. BoyleT.A. ZhouC. RimmD.L. HirschF.R. PD-L1 expression in lung cancer.J. Thorac. Oncol.201611796497510.1016/j.jtho.2016.04.01427117833
    [Google Scholar]
  13. YuJ. WangX. TengF. KongL. PD-L1 expression in human cancers and its association with clinical outcomes.OncoTargets Ther.201695023503910.2147/OTT.S10586227574444
    [Google Scholar]
  14. ZitvogelL. KroemerG. Targeting PD-1/PD-L1 interactions for cancer immunotherapy.Oncoimmunology.2012181223122510.4161/onci.21335.
    [Google Scholar]
  15. LinQ. WangX. HuY. The opportunities and challenges in immunotherapy: Insights from the regulation of PD-L1 in cancer cells.Cancer Lett.202356921631810.1016/j.canlet.2023.21631837454966
    [Google Scholar]
  16. MazelM. JacotW. PantelK. BartkowiakK. TopartD. CayrefourcqL. RossilleD. MaudelondeT. FestT. Alix-PanabièresC. Frequent expression of PD‐L1 on circulating breast cancer cells.Mol. Oncol.2015991773178210.1016/j.molonc.2015.05.00926093818
    [Google Scholar]
  17. SolimanH. KhalilF. AntoniaS. PD-L1 expression is increased in a subset of basal type breast cancer cells.PLoS One201492e8855710.1371/journal.pone.008855724551119
    [Google Scholar]
  18. ZhangH. LiuL. LiuJ. DangP. HuS. YuanW. SunZ. LiuY. WangC. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers.Mol. Cancer20232215810.1186/s12943‑023‑01725‑x36941614
    [Google Scholar]
  19. PatelS.P. KurzrockR. PD-L1 expression as a predictive biomarker in cancer ImmunotherapyPD-L1 IHC as a predictive biomarker in cancer immunotherapy.Mol. Cancer Ther.201514484785610.1158/1535‑7163.MCT‑14‑098325695955
    [Google Scholar]
  20. ShiY. Regulatory mechanisms of PD-L1 expression in cancer cells.Cancer Immunol. Immunother.201867101481148910.1007/s00262‑018‑2226‑930120503
    [Google Scholar]
  21. LiechtensteinT. DufaitI. BricogneC. LannaA. PenJ. BreckpotK. EscorsD. PD-L1/PD-1 co-stimulation, a brake for T cell activation and a T cell differentiation signal.J. Clin. Cell. Immunol.2012S1200623525238
    [Google Scholar]
  22. ZhengY. FangY.C. LiJ. PD‑L1 expression levels on tumor cells affect their immunosuppressive activity.Oncol. Lett.20191855399540710.3892/ol.2019.1090331612048
    [Google Scholar]
  23. MizunoR. SugiuraD. ShimizuK. MaruhashiT. WatadaM. OkazakiI. OkazakiT. PD-1 primarily targets TCR signal in the inhibition of functional T cell activation.Front. Immunol.20191063010.3389/fimmu.2019.0063031001256
    [Google Scholar]
  24. BlankC. GajewskiT.F. MackensenA. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy.Cancer Immunol. Immunother.200554430731410.1007/s00262‑004‑0593‑x15599732
    [Google Scholar]
  25. TopalianS.L. DrakeC.G. PardollD.M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity.Curr. Opin. Immunol.201224220721210.1016/j.coi.2011.12.00922236695
    [Google Scholar]
  26. PangK. ShiZ.D. WeiL.Y. DongY. MaY.Y. WangW. WangG.Y. CaoM.Y. DongJ.J. ChenY.A. ZhangP. HaoL. XuH. PanD. ChenZ.S. HanC.H. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade.Drug Resist. Updat.20236610090710.1016/j.drup.2022.10090736527888
    [Google Scholar]
  27. Xu-MonetteZ.Y. ZhangM. LiJ. YoungK.H. PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response?.Front. Immunol.20178159710.3389/fimmu.2017.0159729255458
    [Google Scholar]
  28. SuiX. MaJ. HanW. WangX. FangY. LiD. PanH. ZhangL. The anticancer immune response of anti-PD-1/PD-L1 and the genetic determinants of response to anti-PD-1/PD-L1 antibodies in cancer patients.Oncotarget2015623193931940410.18632/oncotarget.510726305724
    [Google Scholar]
  29. ZhangL. GajewskiT.F. KlineJ. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model.Blood200911481545155210.1182/blood‑2009‑03‑20667219417208
    [Google Scholar]
  30. SantarpiaM. KarachaliouN. Tumor immune microenvironment characterization and response to anti-PD-1 therapy.Cancer Biol. Med.2015122747826175922
    [Google Scholar]
  31. DovediS.J. IllidgeT.M. The antitumor immune response generated by fractionated radiation therapy may be limited by tumor cell adaptive resistance and can be circumvented by PD-L1 blockade.OncoImmunology201547e101670910.1080/2162402X.2015.101670926140246
    [Google Scholar]
  32. ChenD.S. IrvingB.A. HodiF.S. Molecular pathways: Next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1.Clin. Cancer Res.201218246580658710.1158/1078‑0432.CCR‑12‑136223087408
    [Google Scholar]
  33. DengL. LiangH. BurnetteB. BeckettM. DargaT. WeichselbaumR.R. FuY.X. Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice.J. Clin. Invest.2014124268769510.1172/JCI6731324382348
    [Google Scholar]
  34. MedinaP.J. AdamsV.R. PD‐1 pathway inhibitors: Immuno‐oncology agents for restoring antitumor immune responses.Pharmacotherapy201636331733410.1002/phar.171426822752
    [Google Scholar]
  35. YangY. LiC.W. ChanL.C. WeiY. HsuJ.M. XiaW. ChaJ.H. HouJ. HsuJ.L. SunL. HungM.C. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth.Cell Res.201828886286410.1038/s41422‑018‑0060‑429959401
    [Google Scholar]
  36. TangF. ZhengP. Tumor cells versus host immune cells: Whose PD-L1 contributes to PD-1/PD-L1 blockade mediated cancer immunotherapy?.Cell Biosci.2018813410.1186/s13578‑018‑0232‑429744030
    [Google Scholar]
  37. ThompsonR.H. GillettM.D. ChevilleJ.C. LohseC.M. DongH. WebsterW.S. KrejciK.G. LoboJ.R. SenguptaS. ChenL. ZinckeH. BluteM.L. StromeS.E. LeibovichB.C. KwonE.D. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target.Proc. Natl. Acad. Sci. USA200410149171741717910.1073/pnas.040635110115569934
    [Google Scholar]
  38. KunzS. DurandyM. SeguinL. FeralC.C. NANOBODY® Molecule, a giga medical tool in nanodimensions.Int. J. Mol. Sci.202324171322910.3390/ijms24171322937686035
    [Google Scholar]
  39. SalvadorJ.P. VilaplanaL. MarcoM.P. Nanobody: outstanding features for diagnostic and therapeutic applications.Anal. Bioanal. Chem.201941191703171310.1007/s00216‑019‑01633‑430734854
    [Google Scholar]
  40. MuyldermansS. BaralT.N. RetamozzoV.C. De BaetselierP. De GenstE. KinneJ. LeonhardtH. MagezS. NguyenV.K. RevetsH. RothbauerU. StijlemansB. TillibS. WerneryU. WynsL. Hassanzadeh-GhassabehG. SaerensD. Camelid immunoglobulins and nanobody technology.Vet. Immunol. Immunopathol.20091281-317818310.1016/j.vetimm.2008.10.29919026455
    [Google Scholar]
  41. SunX. ZhouC. XiaS. ChenX. Small molecule-nanobody conjugate induced proximity controls intracellular processes and modulates endogenous unligandable targets.Nat. Commun.2023141163510.1038/s41467‑023‑37237‑x36964170
    [Google Scholar]
  42. BaoG. TangM. ZhaoJ. ZhuX. Nanobody: a promising toolkit for molecular imaging and disease therapy.EJNMMI Res.2021111610.1186/s13550‑021‑00750‑533464410
    [Google Scholar]
  43. NarbonaJ. Hernández-BarazaL. GordoR.G. SanzL. LacadenaJ. Nanobody-based EGFR-targeting immunotoxins for colorectal cancer treatment.Biomolecules2023137104210.3390/biom1307104237509078
    [Google Scholar]
  44. AllahyariH. HeidariS. GhamgoshaM. SaffarianP. AmaniJ. Immunotoxin: A new tool for cancer therapy.Tumour Biol.201739210.1177/101042831769222628218037
    [Google Scholar]
  45. ZhangT. DongS. ZhaiY. NaatzL. ZhouZ. ChenM. Diphtheria toxin‐derived, anti‐PD‐1 immunotoxin, a potent and practical tool to selectively deplete PD‐1 + cells.Protein Sci.2023329e474110.1002/pro.474137515422
    [Google Scholar]
  46. BortolottiM. PolitoL. BolognesiA. Toxin and immunotoxin based therapeutic approaches.Toxins20221416310.3390/toxins14010063
    [Google Scholar]
  47. CollierR.J. Understanding the mode of action of diphtheria toxin: A perspective on progress during the 20th century.Toxicon200139111793180310.1016/S0041‑0101(01)00165‑911595641
    [Google Scholar]
  48. PrygielM. PolakM. MosiejE. WdowiakK. FormińskaK. ZasadaA. New Corynebacterium species with the potential to produce diphtheria toxin.Pathogens20221111126410.3390/pathogens1111126436365015
    [Google Scholar]
  49. HavaeiS.M. AucoinM.G. Jahanian-NajafabadiA. Pseudomonas exotoxin-based immunotoxins: Over three decades of efforts on targeting cancer cells with the toxin.Front. Oncol.20211178180010.3389/fonc.2021.78180034976821
    [Google Scholar]
  50. WuT. ZhuJ. Recent development and optimization of Pseudomonas aeruginosa exotoxin immunotoxins in cancer therapeutic applications.Int. Immunopharmacol.20219610775910.1016/j.intimp.2021.10775934162138
    [Google Scholar]
  51. FischerA. WolfI. FuchsH. MasilamaniA.P. WolfP. Pseudomonas exotoxin A based toxins targeting epidermal growth factor receptor for the treatment of prostate cancer.Toxins (Basel)2020121275310.3390/toxins1212075333260619
    [Google Scholar]
  52. AttiaP. MakerA.V. HaworthL.R. Rogers-FreezerL. RosenbergS.A. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma.J Immunother.20052865829210.1097/01.cji.0000175468.19742.10.16224276
    [Google Scholar]
  53. FossF.M. DAB(389)IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma.Clin. Lymphoma20001211011610.3816/CLM.2000.n.00911707818
    [Google Scholar]
  54. ZhengQ. WangZ. ZhangH. HuangQ. MadsenJ.C. SachsD.H. HuangC.A. WangZ. Diphtheria toxin‐based anti‐human CD 19 immunotoxin for targeting human CD 19 + tumors.Mol. Oncol.201711558459410.1002/1878‑0261.1205628306193
    [Google Scholar]
  55. WangZ. WeiM. ZhangH. ChenH. GermanaS. HuangC.A. MadsenJ.C. SachsD.H. WangZ. Diphtheria‐toxin based anti‐human CCR4 immunotoxin for targeting human CCR4+ cells in vivo .Mol. Oncol.2015971458147010.1016/j.molonc.2015.04.00425958791
    [Google Scholar]
  56. ArakiD. MagnaniD.M. WangZ. SmithR.H. LarochelleA. Diphtheria toxin based bivalent Anti-cMPL immunotoxin effectively depletes human hematopoietic stem and progenitor cells.Blood2021138380810.1182/blood‑2021‑147392
    [Google Scholar]
  57. PotalaS. SahooS.K. VermaR.S. Targeted therapy of cancer using diphtheria toxin-derived immunotoxins.Drug Discov. Today20081317-1880781510.1016/j.drudis.2008.06.01718678276
    [Google Scholar]
  58. ShafieeF. AucoinM.G. Jahanian-NajafabadiA. Targeted diphtheria toxin-based therapy: A review article.Front. Microbiol.201910234010.3389/fmicb.2019.0234031681205
    [Google Scholar]
  59. OghalaieA. MahboudiF. Rahimi-JamnaniF. Piri-GavganiS. Kazemi-LomedashtF. Hassanzadeh EskafiA. ShahbazzadehD. AdeliA. TalebkhanY. BehdaniM. Development and characterization of single domain monoclonal antibody against programmed cell death ligand-1; as a cancer inhibitor candidate.Iran. J. Basic Med. Sci.202225331331935656179
    [Google Scholar]
  60. RoshanR. NaderiS. BehdaniM. CohanR.A. GhaderiH. ShokrgozarM.A. GolkarM. Kazemi-LomedashtF. Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy.Mol. Immunol.2021129707710.1016/j.molimm.2020.10.02133183767
    [Google Scholar]
  61. AhadiM. GhasemianH. BehdaniM. Kazemi-LomedashtF. Oligoclonal selection of nanobodies targeting vascular endothelial growth factor.J. Immunotoxicol.2019161344210.1080/1547691X.2018.152623430409071
    [Google Scholar]
  62. BeattyJ.D. BeattyB.G. VlahosW.G. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay.J. Immunol. Methods19871001-217317910.1016/0022‑1759(87)90187‑62439600
    [Google Scholar]
  63. KaramiE. Mesbahi MoghaddamM. BehdaniM. Kazemi-LomedashtF. Effective blocking of neuropilin-1activity using oligoclonal nanobodies targeting different epitopes.Prep. Biochem. Biotechnol.202353552353110.1080/10826068.2022.211158335984637
    [Google Scholar]
  64. BaharlouR. TajikN. BehdaniM. ShokrgozarM.A. TavanaV. Kazemi-LomedashtF. FarajiF. Habibi-AnbouhiM. An antibody fragment against human delta-like ligand-4 for inhibition of cell proliferation and neovascularization.Immunopharmacol. Immunotoxicol.201840536837410.1080/08923973.2018.150590730183441
    [Google Scholar]
  65. LiangH.P. BeilhartzG.L. Bo CaoS. MelnykR.A. Abstract 1919: Activity and affinity tuning next-generation immunotoxins for targeted therapy.Cancer Res.2024846_Supplement1919191910.1158/1538‑7445.AM2024‑1919
    [Google Scholar]
  66. XieG. ShanL. YangC. LiuY. PangX. TengS. WuT.C. GuX. Recombinant immunotoxin induces tumor intrinsic STING signaling against head and neck squamous cell carcinoma.Sci. Rep.20231311847610.1038/s41598‑023‑45797‑737898690
    [Google Scholar]
  67. AntignaniA. FitzGeraldD. Immunotoxins: the role of the toxin.Toxins (Basel)2013581486150210.3390/toxins508148623965432
    [Google Scholar]
  68. KhirehgeshM.R. SharifiJ. SafariF. AkbariB. Immunotoxins and nanobody-based immunotoxins: Review and update.J. Drug Target.202129884886210.1080/1061186X.2021.189443533615933
    [Google Scholar]
  69. CaoL. LiQ. TongZ. XingY. XuK. Yijia WangJ. LiW. ZhaoJ. ZhaoL. HongZ. HER2-specific immunotoxins constructed based on single-domain antibodies and the improved toxin PE24X7.Int. J. Pharm.202057411893910.1016/j.ijpharm.2019.11893931836485
    [Google Scholar]
  70. MarimonR.P. Development of an immunotoxin derived from Pseudomonas aeruginosa for the treatment of triple-negative breast cancer.Master's Thesis, Applied Microbiology, 2024, University of Lisbon, Faculty of Sciences2023Available from: https://repositorio.ul.pt/handle/10451/62850
    [Google Scholar]
  71. JangJ. NguyenM.Q. ParkS. RyuD. ParkH. LeeG. KimC.J. JangY.J. ChoeH. Crotamine-based recombinant immunotoxin targeting HER2 for enhanced cancer cell specificity and cytotoxicity.Toxicon202323010715710.1016/j.toxicon.2023.10715737196787
    [Google Scholar]
  72. KreitmanR.J. PastanI. Immunotoxins: From design to clinical application.Biomolecules.20211111169610.3390/biom11111696
    [Google Scholar]
  73. YinL. ThakerH. Cancer drug delivery systems using bacterial toxin translocation mechanisms.Bioengineering (Basel)202310781310.3390/bioengineering1007081337508840
    [Google Scholar]
  74. Márquez-LópezA. FanarragaM.L. AB toxins as high-affinity ligands for cell targeting in cancer therapy.Int. J. Mol. Sci.202324131122710.3390/ijms24131122737446406
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010321088240823062243
Loading
/content/journals/cpb/10.2174/0113892010321088240823062243
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): anti-PD-L1; Diphtheria toxin; drug delivery; immunotoxin; nanobody; PD-L1; target therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test