Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

Endocrine-disrupting drugs, also called endocrine disruptors or micropollutants, cause serious environmental and public health problems due to their ability to disrupt the endocrine functions of organisms and humans, even at low concentrations. This report provides a summary of current removal techniques, such as activated sludge processes, membrane filtration, adsorption, and membrane bioreactor techniques for endocrine-disrupting chemicals, including their efficiency, limitations, and practical implementation.

Methods

This review evaluates these methods by considering their treatment efficiency, costs, and environmental impact. To curb this menace, several developed countries have distinct strategies, such as physical remediation techniques, biological processes, phytoremediation, and chemical processes to remove endocrine disruptors.

Results

In developing nations, most conventional wastewater treatment plants do not even monitor those contaminants due to the low biodegradability and high complexity of such compounds.

Conclusion

Hence, in this review work, potential endocrine-disrupting chemicals, their impacts, mechanisms of action, consequences for human health, and bio-mitigation strategies reported so far have been discussed in the context of the relevant literature.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010317251240826051110
2024-09-09
2025-09-01
Loading full text...

Full text loading...

References

  1. AntonyS. AntonyS. RebelloS. GeorgeS. BijuD.T. R, R.; Madhavan, A.; Binod, P.; Pandey, A.; Sindhu, R.; Awasthi, M.K. Bioremediation of endocrine disrupting chemicals-advancements and challenges.Environ. Res.202221311350910.1016/j.envres.2022.113509 35660566
    [Google Scholar]
  2. CarvalhoI.T. SantosL. Antibiotics in the aquatic environments: A review of the European scenario.Environ. Int.20169473675710.1016/j.envint.2016.06.025 27425630
    [Google Scholar]
  3. PivettaR.C. Rodrigues-SilvaC. RibeiroA.R. RathS. Tracking the occurrence of psychotropic pharmaceuticals in Brazilian wastewater treatment plants and surface water, with assessment of environmental risks.Sci. Total Environ.202072713866110.1016/j.scitotenv.2020.138661 32334225
    [Google Scholar]
  4. Jimenez-LopezO. PonderJ. NaultA. BuenoI. Non-steroidal anti-inflammatory drugs (NSAIDs) and their effect on Old World vultures: A scoping review.J. Raptor Res.202155329731010.3356/JRR‑20‑30
    [Google Scholar]
  5. GrosM. MartiE. BalcázarJ.L. Boy-RouraM. BusquetsA. ColónJ. Sànchez-MelsióA. LekunberriI. BorregoC.M. PonsáS. PetrovicM. Fate of pharmaceuticals and antibiotic resistance genes in a full-scale on-farm livestock waste treatment plant.J. Hazard. Mater.201937812071610.1016/j.jhazmat.2019.05.109 31279253
    [Google Scholar]
  6. MargotJ. RossiL. BarryD.A. HolligerC. A review of the fate of micropollutants in wastewater treatment plants.WIREs. Water20152545748710.1002/wat2.1090
    [Google Scholar]
  7. Jan-RobleroJ. Cruz-MayaJ.A. Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant.Molecules2023285209710.3390/molecules28052097 36903343
    [Google Scholar]
  8. RichmondE.K. GraceM.R. KellyJ.J. ReisingerA.J. RosiE.J. WaltersD.M. Pharmaceuticals and personal care products (PPCPs) are ecological disrupting compounds (EcoDC).Elementa201756610.1525/elementa.252
    [Google Scholar]
  9. BatoniG. MaisettaG. EsinS. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria.Biochim. Biophys. Acta Biomembr.2016185851044106010.1016/j.bbamem.2015.10.013 26525663
    [Google Scholar]
  10. LiC. WeiY. ZhangS. TanW. Advanced methods to analyze steroid estrogens in environmental samples.Environ. Chem. Lett.202018354355910.1007/s10311‑019‑00961‑2
    [Google Scholar]
  11. FengC. ZhangY. WangL. LiX. ChenY. QuJ. ZhenK. Uptake mechanism of di-n-butyl phthalate by Novosphingobium species DNB-S3.Int. Biodeterior. Biodegradation202014810491010.1016/j.ibiod.2020.104910
    [Google Scholar]
  12. GrassiL. MaisettaG. EsinS. BatoniG. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms.Front. Microbiol.20178240910.3389/fmicb.2017.02409 29375486
    [Google Scholar]
  13. PirontiC. RicciardiM. ProtoA. BiancoP.M. MontanoL. MottaO. Endocrine-disrupting compounds: An overview of their occurrence in the aquatic environment and human exposure.Water20211310134710.3390/w13101347
    [Google Scholar]
  14. GrenniP. AnconaV. Barra CaraccioloA. Ecological effects of antibiotics on natural ecosystems: A review.Microchem. J.2018136253910.1016/j.microc.2017.02.006
    [Google Scholar]
  15. GuerraP. KimM. ShahA. AlaeeM. SmythS.A. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.Sci. Total Environ.2014473-47423524310.1016/j.scitotenv.2013.12.008 24370698
    [Google Scholar]
  16. DeoR.P. Pharmaceuticals in the Surface Water of the USA: A Review.Curr. Environ. Health Rep.20141211312210.1007/s40572‑014‑0015‑y
    [Google Scholar]
  17. ComberS. GardnerM. SörmeP. LeverettD. EllorB. Active pharmaceutical ingredients entering the aquatic environment from wastewater treatment works: A cause for concern?Sci. Total Environ.2018613-61453854710.1016/j.scitotenv.2017.09.101 28926808
    [Google Scholar]
  18. GengN. WuY. ZhangM. TsangD.C.W. RinklebeJ. XiaY. LuD. ZhuL. PalansooriyaK.N. KimK.H. OkY.S. Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A critical review.Environ. Int.201913110501510.1016/j.envint.2019.105015 31369978
    [Google Scholar]
  19. GmurekM. Olak-KucharczykM. LedakowiczS. Photochemical decomposition of endocrine disrupting compounds – A review.Chem. Eng. J.201731043745610.1016/j.cej.2016.05.014
    [Google Scholar]
  20. MonneretC. What is an endocrine disruptor?C. R. Biol.20173409-1040340510.1016/j.crvi.2017.07.004 29126512
    [Google Scholar]
  21. GoreA.C. CrewsD. DoanL.L. La MerrillM. PatisaulH. ZotaA. Introduction to Endocrine Disrupting Chemicals (EDCs).2014Available From: https://ipen.org/documents/introductionendocrine-disrupting-chemicals-edcs
  22. TijaniJ.O. FatobaO.O. BabajideO.O. PetrikL.F. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: A review.Environ. Chem. Lett.2016141274910.1007/s10311‑015‑0537‑z
    [Google Scholar]
  23. Andrade-EiroaA. CanleM. Leroy-CancellieriV. CerdàV. Solid-phase extraction of organic compounds: A critical review (Part I).Trends Analyt. Chem.20168064165410.1016/j.trac.2015.08.015
    [Google Scholar]
  24. GuarnottaV. AmodeiR. FrascaF. AversaA. GiordanoC. Impact of chemical endocrine disruptors and hormone modulators on the endocrine system.Int. J. Mol. Sci.20222310571010.3390/ijms23105710 35628520
    [Google Scholar]
  25. BhatnagarA. AnastopoulosI. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review.Chemosphere201716888590210.1016/j.chemosphere.2016.10.121 27839878
    [Google Scholar]
  26. VermaM.L. RaniV. Biosensors for toxic metals, polychlorinated biphenyls, biological oxygen demand, endocrine disruptors, hormones, dioxin, phenolic and organophosphorus compounds: A review.Environ. Chem. Lett.20211921657166610.1007/s10311‑020‑01116‑4
    [Google Scholar]
  27. DopicoM. GómezA. Review of the current state and main sources of dioxins around the world.J. Air Waste Manag. Assoc.20156591033104910.1080/10962247.2015.1058869 26068294
    [Google Scholar]
  28. WangY. QianH. Phthalates and their impacts on human health.Healthcare (Basel)20219560310.3390/healthcare9050603
    [Google Scholar]
  29. LinaresV. BellésM. DomingoJ.L. Human exposure to PBDE and critical evaluation of health hazards.Arch. Toxicol.201589333535610.1007/s00204‑015‑1457‑1 25637414
    [Google Scholar]
  30. CostaL.G. de LaatR. TagliaferriS. PellacaniC. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity.Toxicol. Lett.2014230228229410.1016/j.toxlet.2013.11.011 24270005
    [Google Scholar]
  31. YuL. HanZ. LiuC. A review on the effects of PBDEs on thyroid and reproduction systems in fish.Gen. Comp. Endocrinol.2015219647310.1016/j.ygcen.2014.12.010 25585150
    [Google Scholar]
  32. BanksD. JunB.M. HeoJ. HerN. ParkC.M. YoonY. Selected advanced water treatment technologies for perfluoroalkyl and polyfluoroalkyl substances: A review.Separ. Purif. Tech.202023111592910.1016/j.seppur.2019.115929
    [Google Scholar]
  33. ReddyA.V.B. MoniruzzamanM. AminabhaviT.M. Polychlorinated biphenyls (PCBs) in the environment: Recent updates on sampling, pretreatment, cleanup technologies and their analysis.Chem. Eng. J.20193581186120710.1016/j.cej.2018.09.205
    [Google Scholar]
  34. SchwinglP.J. LunnR.M. MehtaS.S. A tiered approach to prioritizing registered pesticides for potential cancer hazard evaluations: Implications for decision making.Environ. Health20212011310.1186/s12940‑021‑00696‑0 33579300
    [Google Scholar]
  35. NowakK. Ratajczak-WronaW. GórskaM. JabłońskaE. Parabens and their effects on the endocrine system.Mol. Cell. Endocrinol.201847423825110.1016/j.mce.2018.03.014 29596967
    [Google Scholar]
  36. WeiF. MortimerM. ChengH. SangN. GuoL.H. Parabens as chemicals of emerging concern in the environment and humans: A review.Sci. Total Environ.202177814615010.1016/j.scitotenv.2021.146150 34030374
    [Google Scholar]
  37. BachettiR.A. UrselerN. MorganteV. DamilanoG. PorporattoC. AgostiniE. MorganteC. Monitoring of atrazine pollution and its spatial-seasonal variation on surface water sources of an agricultural river basin.Bull. Environ. Contam. Toxicol.2021106692993510.1007/s00128‑021‑03264‑x 34047806
    [Google Scholar]
  38. CaoF. JaunatJ. SturchioN. CancèsB. MorvanX. DevosA. BarbinV. OllivierP. Worldwide occurrence and origin of perchlorate ion in waters: A review.Sci. Total Environ.201966173774910.1016/j.scitotenv.2019.01.107 30684841
    [Google Scholar]
  39. JarošováB. JavůrekJ. AdamovskýO. HilscherováK. Phytoestrogens and mycoestrogens in surface waters — Their sources, occurrence, and potential contribution to estrogenic activity.Environ. Int.201581264410.1016/j.envint.2015.03.019 25916939
    [Google Scholar]
  40. Futran FuhrmanV. TalA. ArnonS. Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond.J. Hazard. Mater.201528658961110.1016/j.jhazmat.2014.12.012 25646754
    [Google Scholar]
  41. AdeleyeA.S. ConwayJ.R. GarnerK. HuangY. SuY. KellerA.A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability.Chem. Eng. J.201628664066210.1016/j.cej.2015.10.105
    [Google Scholar]
  42. AminM.T. AlazbaA.A. ManzoorU. A review of removal of pollutants from water/wastewater using different types of nanomaterials.Adv. Mater. Sci. Eng.2014201412410.1155/2014/825910
    [Google Scholar]
  43. WanM.L.Y. CoV.A. El-NezamiH. Endocrine disrupting chemicals and breast cancer: A systematic review of epidemiological studies.Crit. Rev. Food Sci. Nutr.202262246549657610.1080/10408398.2021.1903382 33819127
    [Google Scholar]
  44. SharmaS.K. Ed.; Green chemistry for dyes removal from wastewater: Research trends and applications.Austin, TexasScrivener Publishing201510.1002/9781118721001
    [Google Scholar]
  45. Galindo-MirandaJ.M. Guízar-GonzálezC. Becerril-BravoE.J. Moeller-ChávezG. León-BecerrilE. Vallejo-RodríguezR. Occurrence of emerging contaminants in environmental surface waters and their analytical methodology – a review.Water Sci. Technol. Water Supply20191971871188410.2166/ws.2019.087
    [Google Scholar]
  46. VieiraW.T. de FariasM.B. SpaolonziM.P. da SilvaM.G.C. VieiraM.G.A. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review.Environ. Chem. Lett.20201841113114310.1007/s10311‑020‑01000‑1
    [Google Scholar]
  47. KatibiK.K. YunosK.F. Che ManH. ArisA.Z. bin Mohd NorM.Z. binti AzisR.S. Recent advances in the rejection of endocrine-disrupting compounds from water using membrane and membrane bioreactor technologies: A review.Polymers (Basel)202113339210.3390/polym13030392 33513670
    [Google Scholar]
  48. JungC. SonA. HerN. ZohK.D. ChoJ. YoonY. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review.J. Ind. Eng. Chem.20152711110.1016/j.jiec.2014.12.035
    [Google Scholar]
  49. McKieM.J. AndrewsS.A. AndrewsR.C. Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: A pilot-scale approach.Sci. Total Environ.2016544101710.1016/j.scitotenv.2015.11.145 26657244
    [Google Scholar]
  50. HuZ. WenX. SiX. Pre‐ultrafiltration or pre‐ozonation for EDCS removal in a combined ultrafiltration and ozonation process.J. Chem. Technol. Biotechnol.201691122929293410.1002/jctb.4907
    [Google Scholar]
  51. NoutsopoulosC. KoumakiE. MamaisD. NikaM.C. BletsouA.A. ThomaidisN.S. Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: The effect of pH, total suspended solids and humic acids and identification of degradation by-products.Chemosphere2015119S109S11410.1016/j.chemosphere.2014.04.107
    [Google Scholar]
  52. ZhangX. LiW. BlatchleyE.R.III WangX. RenP. UV/chlorine process for ammonia removal and disinfection by-product reduction: Comparison with chlorination.Water Res.20156880481110.1016/j.watres.2014.10.044 25466638
    [Google Scholar]
  53. RemucalC.K. ManleyD. Emerging investigators series: The efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment.Environ. Sci. Water Res. Technol.20162456557910.1039/C6EW00029K
    [Google Scholar]
  54. BrillasE. Martínez-HuitleC.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review.Appl. Catal. B2015166-16760364310.1016/j.apcatb.2014.11.016
    [Google Scholar]
  55. CookM. SymondsE. GerberB. HoareA. Van VleetE. BreitbartM. Removal of six estrogenic endocrine-disrupting compounds (EDCs) from municipal wastewater using aluminium electrocoagulation.Water20168412810.3390/w8040128
    [Google Scholar]
  56. FrontistisZ. AntonopoulouM. VenieriD. KonstantinouI. MantzavinosD. Boron-doped diamond oxidation of amoxicillin pharmaceutical formulation: Statistical evaluation of operating parameters, reaction pathways and antibacterial activity.J. Environ. Manage.2017195Pt 210010910.1016/j.jenvman.2016.04.035 27117507
    [Google Scholar]
  57. AntoninV.S. SantosM.C. Garcia-SeguraS. BrillasE. Electrochemical incineration of the antibiotic ciprofloxacin in sulfate medium and synthetic urine matrix.Water Res.201583314110.1016/j.watres.2015.05.066 26117371
    [Google Scholar]
  58. SirésI. BrillasE. OturanM.A. RodrigoM.A. PanizzaM. Electrochemical advanced oxidation processes: Today and tomorrow. A review.Environ. Sci. Pollut. Res. Int.201421148336836710.1007/s11356‑014‑2783‑1 24687788
    [Google Scholar]
  59. OuardaY. BouchardF. AzaïsA. VaudreuilM.A. DroguiP. Dayal TyagiR. SauvéS. BuelnaG. DubéR. Electrochemical treatment of real hospital wastewaters and monitoring of pharmaceutical residues by using surrogate models.J. Environ. Chem. Eng.20197510333210.1016/j.jece.2019.103332
    [Google Scholar]
  60. RajhiH. BardiA. Phytoremediation of endocrine disrupting pollutants in industrial wastewater.Current Developments in Biotechnology and Bioengineering.AmsterdamElsevier2023558410.1016/B978‑0‑323‑91902‑9.00002‑X
    [Google Scholar]
  61. AslamZ. AlamP. IslamR. KhanA.H. SamaraweeraH. HussainA. ZargarT.I. Recent developments in moving bed biofilm reactor (MBBR) for the treatment of phenolic wastewater -A review.J. Taiwan Inst. Chem. Eng.202410551710551710.1016/j.jtice.2024.105517
    [Google Scholar]
  62. KumarR. QureshiM. VishwakarmaD.K. Al-AnsariN. KuriqiA. ElbeltagiA. SaraswatA. A review on emerging water contaminants and the application of sustainable removal technologies.Case Stud. Chem. Environ. Eng.2022610021910.1016/j.cscee.2022.100219
    [Google Scholar]
  63. MacedoS. TeixeiraE. GasparT.B. BoaventuraP. SoaresM.A. Miranda-AlvesL. SoaresP. Endocrine-disrupting chemicals and endocrine neoplasia: A forty-year systematic review.Environ. Res.202321811486910.1016/j.envres.2022.114869 36460069
    [Google Scholar]
  64. MoreiraF.C. BoaventuraR.A.R. BrillasE. VilarV.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters.Appl. Catal. B201720221726110.1016/j.apcatb.2016.08.037
    [Google Scholar]
  65. WuS. HuY.H. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics.Chem. Eng. J.202140912773910.1016/j.cej.2020.127739
    [Google Scholar]
  66. BachaA-U-R. NabiI. ChengH. LiK. AjmalS. WangT. ZhangL. Photoelectrocatalytic degradation of endocrine-disruptor bisphenol – A with significantly activated peroxymonosulfate by Co-BiVO4 photoanode.Chem. Eng. J.202038912448210.1016/j.cej.2020.124482
    [Google Scholar]
  67. da SilvaS.W. ViegasC. FerreiraJ.Z. RodriguesM.A.S. BernardesA.M. The effect of the UV photon flux on the photoelectrocatalytic degradation of endocrine-disrupting alkylphenolic chemicals.Environ. Sci. Pollut. Res. Int.20162319192371924510.1007/s11356‑016‑7121‑3 27364484
    [Google Scholar]
  68. VijayakumarK. GovindharajM. JustinA.L. Photoelectrocatalytic degradation of endocrine disrupting chemical from aqueous solution using ZNO nanocatalyst.J. Optoelectron. Biomed. Mater.2018102435310.1155/2009/634369
    [Google Scholar]
  69. HuangY. ChenQ. WangZ. YanH. ChenC. YanD. JiX. Abatement technology of endocrine-disrupting chemicals (EDCs) by means of enhanced coagulation and ozonation for wastewater reuse.Chemosphere202128513151510.1016/j.chemosphere.2021.131515 34265705
    [Google Scholar]
  70. KumarK. SinghG.K. DastidarM.G. SreekrishnanT.R. Effect of mixed liquor volatile suspended solids (MLVSS) and hydraulic retention time (HRT) on the performance of activated sludge process during the biotreatment of real textile wastewater.Water Resour. Ind.201451810.1016/j.wri.2014.01.001
    [Google Scholar]
  71. MatamorosV. GutiérrezR. FerrerI. GarcíaJ. BayonaJ.M. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study.J. Hazard. Mater.2015288344210.1016/j.jhazmat.2015.02.002 25682515
    [Google Scholar]
  72. JamesS.N. VijayanandanA. Recent advances in simultaneous nitrification and denitrification for nitrogen and micropollutant removal: A review.Biodegradation202334210312310.1007/s10532‑023‑10015‑8 36899211
    [Google Scholar]
  73. YeasminF. RasheduzzamanM. ManikM. HasanM.M. Activated Sludge Process for Wastewater Treatment.Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment.SingaporeSpringer Nature Singapore2023235010.1007/978‑981‑99‑2598‑8_2
    [Google Scholar]
  74. VilelaC.L.S. BassinJ.P. PeixotoR.S. Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection.Environ. Pollut.201823554655910.1016/j.envpol.2017.12.098 29329096
    [Google Scholar]
  75. NuansawanN. WitthayaphiromC. SawasdeeA. ChiemchaisriC. ShodaM. Removals of endocrine disrupting compounds during landfill leachate treatment in two-stage aerobic sequential batch reactor: Effect of Alcaligenes faecalis no.4 bio-augmentation.Emerg. Contam.20239210022310.1016/j.emcon.2023.100223
    [Google Scholar]
  76. GomesI.B. MaillardJ.Y. SimõesL.C. Emerging contaminants affect the microbiome of water systems—strategies for their mitigation.Emerg. Contam.2020133910.1038/s41545‑020‑00086‑y
    [Google Scholar]
  77. StrempelN. StrehmelJ. OverhageJ. Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections.Curr. Pharm. Des.2014211678410.2174/1381612820666140905124312 25189860
    [Google Scholar]
  78. FernandesG. BastosM.C. de VargasJ.P.R. Le GuetT. ClasenB. dos SantosD.R. The use of epilithic biofilms as bioaccumulators of pesticides and pharmaceuticals in aquatic environments.Ecotoxicology20202991293130510.1007/s10646‑020‑02259‑4 32740705
    [Google Scholar]
  79. TripathiS. SharmaP. ChandraR. Degradation of organometallic pollutants of distillery wastewater by autochthonous bacterial community in biostimulation and bioaugmentation process.Bioresour. Technol.202133812551810.1016/j.biortech.2021.125518 34273628
    [Google Scholar]
  80. Amaro BittencourtG. VandenbergheL.P.S. Martínez-BurgosW.J. Valladares-DiestraK.K. Murawski de MelloA.F. MaskeB.L. BrarS.K. VarjaniS. de Melo PereiraG.V. SoccolC.R. Emerging contaminants bioremediation by enzyme and nanozyme-based processes – A review.iScience202326610678510.1016/j.isci.2023.106785
    [Google Scholar]
  81. AminM.M. BinaB. EbrahimK. YavariZ. MohammadiF. Biodegradation of natural and synthetic estrogens in moving bed bioreactor.Chin. J. Chem. Eng.201826239339910.1016/j.cjche.2017.06.006
    [Google Scholar]
  82. MoghaddamA. KhayatanD. Esmaeili Fard BarzegarP. RanjbarR. YazdanianM. TahmasebiE. AlamM. AbbasiK. Esmaeili Gouvarchin GhalehH. TebyaniyanH. Biodegradation of pharmaceutical compounds in industrial wastewater using biological treatment: A comprehensive overview.Int. J. Environ. Sci. Technol.20232055659569610.1007/s13762‑023‑04880‑2
    [Google Scholar]
  83. DaghrirR. DroguiP. DeleganN. El KhakaniM.A. Removal of chlortetracycline from spiked municipal wastewater using a photoelectrocatalytic process operated under sunlight irradiations.Sci. Total Environ.2014466-46730030510.1016/j.scitotenv.2013.07.001 23911841
    [Google Scholar]
  84. EktaP. ModiN.R. A review of phytoremediation.J. Pharmacogn. Phytochem.20187414851489
    [Google Scholar]
  85. ChandraR. KumarV. TripathiS. SharmaP. Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in-situ phytoremediation.Ecol. Eng.201811114315610.1016/j.ecoleng.2017.12.007
    [Google Scholar]
  86. OrugantiR.K. KatamK. ShowP.L. GadhamshettyV. UpadhyayulaV.K.K. BhattacharyyaD. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal.Bioengineered2022134104121045310.1080/21655979.2022.2056823 35441582
    [Google Scholar]
  87. KumarM. NgasepamJ. DhangarK. MahlknechtJ. MannaS. Critical review on negative emerging contaminant removal efficiency of wastewater treatment systems: Concept, consistency and consequences.Bioresour. Technol.202235212705410.1016/j.biortech.2022.127054 35351567
    [Google Scholar]
  88. GanzenkoO. HuguenotD. van HullebuschE.D. EspositoG. OturanM.A. Electrochemical advanced oxidation and biological processes for wastewater treatment: A review of the combined approaches.Environ. Sci. Pollut. Res. Int.201421148493852410.1007/s11356‑014‑2770‑6 24965093
    [Google Scholar]
  89. ZhangY. ZhaoY.G. HuY. GaoM. GuoL. JiJ. Insight in degradation of tetracycline in mariculture wastewater by ultraviolet/persulfate advanced oxidation process.Environ. Res.2022212Pt B11332410.1016/j.envres.2022.113324 35439457
    [Google Scholar]
  90. ChenX. YangY. KeY. ChenC. XieS. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect.Sci. Total Environ.202281415285210.1016/j.scitotenv.2021.152852 34995606
    [Google Scholar]
  91. DuttaK. LeeM.Y. LaiW.W.P. LeeC.H. LinA.Y.C. LinC.F. LinJ.G. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor.Bioresour. Technol.2014165424910.1016/j.biortech.2014.03.054 24745898
    [Google Scholar]
  92. LiuY. CaiD. LiX. WuQ. DingP. ShenL. Occurrence, fate, and risk assessment of antibiotics in typical pharmaceutical manufactories and receiving surface waters from different regions.medRxiv202210.1101/2022.06.22.22276743
    [Google Scholar]
  93. CizmasL. SharmaV.K. GrayC.M. McDonaldT.J. Pharmaceuticals and personal care products in waters: Occurrence, toxicity, and risk.Environ. Chem. Lett.201513438139410.1007/s10311‑015‑0524‑4 28592954
    [Google Scholar]
  94. LiD. O’BrienJ.W. TscharkeB.J. ChoiP.M. ZhengQ. AhmedF. ThompsonJ. LiJ. MuellerJ.F. SunH. ThomasK.V. National wastewater reconnaissance of artificial sweetener consumption and emission in Australia.Environ. Int.202014310596310.1016/j.envint.2020.105963 32688159
    [Google Scholar]
  95. González-MariñoI. RodilR. BarrioI. CelaR. QuintanaJ.B. Wastewater-based epidemiology as a new tool for estimating population exposure to phthalate plasticizers.Environ. Sci. Technol.20175173902391010.1021/acs.est.6b05612 28240866
    [Google Scholar]
  96. NgenoE. OnguluR. OrataF. MatovuH. ShikukuV. OnchiriR. MayakaA. MajangaE. GetengaZ. GichumbiJ. SsebugereP. Endocrine disrupting chemicals in wastewater treatment plants in Kenya, East Africa: Concentrations, removal efficiency, mass loading rates and ecological impacts.Environ. Res.2023237Pt 211707610.1016/j.envres.2023.117076 37683795
    [Google Scholar]
  97. PinterJ. JonesB.S. VriensB. Loads and elimination of trace elements in wastewater in the Great Lakes basin.Water Res.202220911794910.1016/j.watres.2021.117949 34915334
    [Google Scholar]
  98. EFSA Panel on Contaminants in the Food Chain (CONTAM)Presence of microplastics and nanoplastics in food, with particular focus on seafood.EFSA J.2016146e0450110.2903/j.efsa.2016.4501
    [Google Scholar]
  99. AziziD. ArifA. BlairD. DionneJ. FilionY. OuardaY. PazminoA.G. PulicharlaR. RilstoneV. TiwariB. VignaleL. BrarS.K. ChampagneP. DroguiP. LangloisV.S. BlaisJ.F. A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters.Environ. Res.202220711219610.1016/j.envres.2021.112196 34634314
    [Google Scholar]
  100. AhmedM.B. ZhouJ.L. NgoH.H. GuoW. ThomaidisN.S. XuJ. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review.J. Hazard. Mater.2017323Pt A27429810.1016/j.jhazmat.2016.04.045 27143286
    [Google Scholar]
  101. ShahidM.K. KashifA. FuwadA. ChoiY. Current advances in treatment technologies for removal of emerging contaminants from water – A critical review.Coord. Chem. Rev.202144221399310.1016/j.ccr.2021.213993
    [Google Scholar]
  102. Escolà CasasM. BesterK. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?Sci. Total Environ.2015506-50731532210.1016/j.scitotenv.2014.10.113 25460965
    [Google Scholar]
  103. BlairB. NikolausA. HedmanC. KlaperR. GrundlT. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment.Chemosphere201513439540110.1016/j.chemosphere.2015.04.078 25985097
    [Google Scholar]
  104. MonsalvoV.M. McDonaldJ.A. KhanS.J. Le-ClechP. Removal of trace organics by anaerobic membrane bioreactors.Water Res.20144910311210.1016/j.watres.2013.11.026 24321247
    [Google Scholar]
  105. DoM.T. StuckeyD.C. Fate and removal of Ciprofloxacin in an anaerobic membrane bioreactor (AnMBR).Bioresour. Technol.201928912168310.1016/j.biortech.2019.121683 31238291
    [Google Scholar]
  106. JiJ. KakadeA. YuZ. KhanA. LiuP. LiX. Anaerobic membrane bioreactors for treatment of emerging contaminants: A review.J. Environ. Manage.202027011091310.1016/j.jenvman.2020.110913 32721347
    [Google Scholar]
  107. PhanH.V. HaiF.I. KangJ. DamH.K. ZhangR. PriceW.E. BroeckmannA. NghiemL.D. Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal by an anoxic–aerobic membrane bioreactor (MBR).Bioresour. Technol.20141659610410.1016/j.biortech.2014.03.094 24726773
    [Google Scholar]
  108. Garcia-RodríguezA. MatamorosV. FontàsC. SalvadóV. The ability of biologically based wastewater treatment systems to remove emerging organic contaminants—a review.Environ. Sci. Pollut. Res. Int.20142120117081172810.1007/s11356‑013‑2448‑5 24414147
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010317251240826051110
Loading
/content/journals/cpb/10.2174/0113892010317251240826051110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test