Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

As the world recovers from the COVID-19 pandemic, a resurgence in MPXV cases is causing serious concern. The early clinical similarity of MPXV to common ailments like the flu and cold, coupled with the resemblances of its progressing rash to other infections, underscores the importance of prompt and accurate diagnosis. Among the infections, smallpox is clinically closest to MPXV, and rashes similar to MPXV stages also appear in syphilis and varicella zoster. A comprehensive review of MPXV, herpes, and syphilis was carried out, including structural and morphological features, origins, transmission modes, and computational studies. PubMed literature search on MPXV, using MeSH key terms, yielded 1904 results, with the analysis revealing prominent links to sexually transmitted diseases. More in-depth exploration of MPXV, Herpes Simplex Virus (HSV), and Syphilis revealed further disease interconnections and geographical correlations. These findings emphasize the need for a holistic understanding of these interconnected infectious agents for better control and management.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010293479240709074020
2024-07-19
2025-10-07
Loading full text...

Full text loading...

References

  1. KhabbazR. BellB.P. SchuchatA. OstroffS.M. MoseleyR. LevittA. HughesJ.M. Emerging and reemerging infectious disease threats.Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases20152015158177.e6
    [Google Scholar]
  2. KabugaA.I. El ZowalatyM.E. A review of the monkeypox virus and a recent outbreak of skin rash disease in Nigeria.J. Med. Virol.201991453354010.1002/jmv.25348 30357851
    [Google Scholar]
  3. SukhdeoS. MishraS. WalmsleyS. Human monkeypox: A comparison of the characteristics of the new epidemic to the endemic disease.BMC Infect. Dis.202222192810.1186/s12879‑022‑07900‑7 36503476
    [Google Scholar]
  4. GoyalR. DeviM. GautamR.K. GuptaS. A comprehensive review on rising concern of transmission potential of monkeypox virus on healthcare system, indo global.J. Pharm. Sci.202212265272
    [Google Scholar]
  5. ThornhillJ.P. BarkatiS. WalmsleyS. RockstrohJ. AntinoriA. HarrisonL.B. PalichR. NoriA. ReevesI. HabibiM.S. ApeaV. BoeseckeC. VandekerckhoveL. YakubovskyM. SendagortaE. BlancoJ.L. FlorenceE. MoscheseD. MaltezF.M. GoorhuisA. PourcherV. MigaudP. NoeS. PintadoC. MaggiF. HansenA.B.E. HoffmannC. LezamaJ.I. MussiniC. CattelanA. MakofaneK. TanD. NozzaS. NemethJ. KleinM.B. OrkinC.M. Monkeypox virus infection in humans across 16 countries — april–june 2022.N. Engl. J. Med.2022387867969110.1056/NEJMoa2207323 35866746
    [Google Scholar]
  6. HussainA. KalerJ. LauG. MaxwellT. Clinical conundrums: Differentiating monkeypox from similarly presenting infections.Cureus20221410e2992910.7759/cureus.29929 36348880
    [Google Scholar]
  7. HasanS. SaeedS. Monkeypox disease: An emerging public health concern in the shadow of COVID-19 pandemic: An update.Trop. Med. Infect. Dis.202271028310.3390/tropicalmed7100283 36288024
    [Google Scholar]
  8. CheemaA.Y. OgedegbeO.J. MunirM. AlugbaG. OjoT.K. Monkeypox: A review of clinical features, diagnosis, and treatment.Cureus2022147e2675610.7759/cureus.26756 35967174
    [Google Scholar]
  9. MossB. Poxvirus cell entry: How many proteins does it take?Viruses20124568870710.3390/v4050688 22754644
    [Google Scholar]
  10. HutsonC.L. CarrollD.S. Gallardo-RomeroN. DrewC. ZakiS.R. NagyT. HughesC. OlsonV.A. SandersJ. PatelN. SmithS.K. KecklerM.S. KaremK. DamonI.K. Comparison of monkeypox virus clade kinetics and pathology within the prairie dog animal model using a serial sacrifice study design.BioMed Res. Int.2015201511910.1155/2015/965710 26380309
    [Google Scholar]
  11. BrownK. LeggatP. Human monkeypox: Current state of knowledge and implications for the future.Trop. Med. Infect. Dis.201611810.3390/tropicalmed1010008 30270859
    [Google Scholar]
  12. JamilH. TariqW. TahirM.J. MahfoozR.S. AsgharM.S. AhmedA. Human monkeypox expansion from the endemic to non-endemic regions: Control measures.Ann. Med. Surg.20227910404810.1016/j.amsu.2022.104048 35860124
    [Google Scholar]
  13. SinglaR.K. SinglaS. ShenB. Biased Studies and Sampling from LGBTQ Communities Created a Next-Level Social Stigma in Monkeypox: A Public Health Emergency of International Concern (PHEIC).Indo Global Journal of Pharmaceutical Sciences20221220520810.35652/IGJPS.2022.12025
    [Google Scholar]
  14. BragazziN.L. KongJ.D. MahroumN. TsigalouC. Khamisy-FarahR. ConvertiM. WuJ. Epidemiological trends and clinical features of the ongoing monkeypox epidemic: A preliminary pooled data analysis and literature review.J. Med. Virol.2023951e2793110.1002/jmv.27931 35692117
    [Google Scholar]
  15. LapaD. CarlettiF. MazzottaV. MatusaliG. PinnettiC. MeschiS. GagliardiniR. ColavitaF. MondiA. MinosseC. ScorzoliniL. CicaliniS. MaffongelliG. SpecchiarelloE. CamiciM. BettiniA. BaldiniF. FrancalanciaM. MizzoniK. GarbugliaA.R. NicastriE. GirardiE. AntinoriA. VaiaF. MaggiF. Monkeypox virus isolation from a semen sample collected in the early phase of infection in a patient with prolonged seminal viral shedding.Lancet Infect. Dis.20222291267126910.1016/S1473‑3099(22)00513‑8 35931095
    [Google Scholar]
  16. AdlerH. GouldS. HineP. SnellL.B. WongW. HoulihanC.F. OsborneJ.C. RamplingT. BeadsworthM.B.J. DuncanC.J.A. DunningJ. FletcherT.E. HunterE.R. JacobsM. KhooS.H. NewsholmeW. PorterD. PorterR.J. RatcliffeL. SchmidM.L. SempleM.G. TunbridgeA.J. WingfieldT. PriceN.M. AbouyannisM. Al-BalushiA. AstonS. BallR. BeechingN.J. BlanchardT.J. CarlinF. DaviesG. GillespieA. HicksS.R. HoyleM.C. IlozueC. MairL. MarshallS. NearyA. NsutebuE. ParkerS. RyanH. TurtleL. SmithC. van AartsenJ. WalkerN.F. WoolleyS. ChawlaA. HartI. SmielewskaA. JoekesE. BensonC. BrindleyC. DasU. Eyton-ChongC.K. GnanalinghamC. HalfhideC. LarruB. MayellS. McBrideJ. OliverC. PaulP. RiordanA. SridharL. StoreyM. AbdulA. AbrahamsenJ. AthanB. BhaganiS. BrownC.S. CarpenterO. CropleyI. FrostK. HopkinsS. JoyceJ. LambL. LyonsA. MahunguT. MephamS. MukwairaE. RodgerA. TaylorC. WarrenS. WilliamsA. LevittD. AllenD. DixonJ. EvansA. McNicholasP. PayneB. PriceD.A. SchwabU. SykesA. TahaY. WardM. EmontsM. OwensS. BotgrosA. DouthwaiteS.T. GoodmanA. LuintelA. MacMahonE. NebbiaG. O’HaraG. ParsonsJ. SenA. StevensonD. SullivanT. TajU. van Nipsen tot Pannerden, C.; Winslow, H.; Zatyka, E.; Alozie-Otuka, E.; Beviz, C.; Ceesay, Y.; Gargee, L.; Kabia, M.; Mitchell, H.; Perkins, S.; Sasson, M.; Sehmbey, K.; Tabios, F.; Wigglesworth, N.; Aarons, E.J.; Brooks, T.; Dryden, M.; Furneaux, J.; Gibney, B.; Small, J.; Truelove, E.; Warrell, C.E.; Firth, R.; Hobson, G.; Johnson, C.; Dewynter, A.; Nixon, S.; Spence, O.; Bugert, J.J.; Hruby, D.E. Clinical features and management of human monkeypox: A retrospective observational study in the UK.Lancet Infect. Dis.20222281153116210.1016/S1473‑3099(22)00228‑6 35623380
    [Google Scholar]
  17. HarapanH. OphinniY. MegawatiD. FrediansyahA. MamadaS.S. SalampeM. Bin EmranT. WinardiW. FathimaR. SirinamS. SittikulP. StoianA.M. NainuF. SallamM. Monkeypox: A comprehensive review.Viruses20221410215510.3390/v14102155 36298710
    [Google Scholar]
  18. HuhnG.D. BauerA.M. YoritaK. GrahamM.B. SejvarJ. LikosA. DamonI.K. ReynoldsM.G. KuehnertM.J. Clinical characteristics of human monkeypox, and risk factors for severe disease.Clin. Infect. Dis.200541121742175110.1086/498115 16288398
    [Google Scholar]
  19. McCollumA.M. DamonI.K. Human Monkeypox.Clin. Infect. Dis.201458226026710.1093/cid/cit703 24158414
    [Google Scholar]
  20. HawleyK.L. Montezuma-RuscaJ.M. DelgadoK.N. SinghN. UverskyV.N. CaimanoM.J. RadolfJ.D. LuthraA. Structural modeling of the treponema pallidum outer membrane protein repertoire: A road map for deconvolution of syphilis pathogenesis and development of a syphilis vaccine.J. Bacteriol.202120315e000822110.1128/JB.00082‑21 33972353
    [Google Scholar]
  21. TieccoG. Degli AntoniM. StortiS. MarcheseV. FocàE. TortiC. CastelliF. Quiros-RoldanE.A. 2021 update on syphilis: Taking stock from pathogenesis to vaccines.Pathogens20211011136410.3390/pathogens10111364 34832520
    [Google Scholar]
  22. AddetiaA. TantaloL.C. LinM.J. XieH. HuangM.L. MarraC.M. GreningerA.L. Comparative genomics and full-length Tprk profiling of Treponema pallidum subsp. pallidum reinfection.PLoS Negl. Trop. Dis.2020144e000792110.1371/journal.pntd.0007921 32251462
    [Google Scholar]
  23. SouzaR.O. SilvaK.E. PereiraR.M. Comparison of Treponema pallidum genomes for the prediction of resistance genes.J. Biosci.201944234
    [Google Scholar]
  24. LithgowK.V. ChurchB. GomezA. TsaoE. HoustonS. SwayneL.A. CameronC.E. Identification of the Neuroinvasive Pathogen Host Target, LamR, as an Endothelial Receptor for the Treponema pallidum Adhesin Tp0751.MSphere202052e00195e2010.1128/mSphere.00195‑20 32238570
    [Google Scholar]
  25. MarraC.M. SahiS.K. TantaloL.C. GodornesC. ReidT. BehetsF. RompaloA. KlausnerJ.D. YinY.P. MulcahyF. GoldenM.R. Centurion-LaraA. LukehartS.A. Enhanced molecular typing of treponema pallidum: Geographical distribution of strain types and association with neurosyphilis.J. Infect. Dis.201020291380138810.1086/656533 20868271
    [Google Scholar]
  26. SellatiT.J. WilkinsonD.A. SheffieldJ.S. KoupR.A. RadolfJ.D. NorgardM.V. Virulent Treponema pallidum, lipoprotein, and synthetic lipopeptides induce CCR5 on human monocytes and enhance their susceptibility to infection by human immunodeficiency virus type 1.J. Infect. Dis.2000181128329310.1086/315209 10608777
    [Google Scholar]
  27. MucciniC. CrowellT.A. PinyakornS. KroonE. SacdalanC. AnanworanichJ. VasanS. PhanuphakN. ColbyD.J. Brief Report: Syphilis incidence and effect on viral load, CD4, and CD4/CD8 ratio in a thai cohort of predominantly men who have sex with men living with HIV.J. Acquir. Immune Defic. Syndr.202186221922310.1097/QAI.0000000000002542 33433124
    [Google Scholar]
  28. De SantisM. De LucaC. MappaI. SpagnuoloT. LicameliA. StrafaceG. ScambiaG. Syphilis Infection during pregnancy: Fetal risks and clinical management.Infect. Dis. Obstet. Gynecol.201220121510.1155/2012/430585 22829747
    [Google Scholar]
  29. FanfairR.N. WallingfordM. LongL.L. ChiK.H. PillayA. ChenC.Y. WorkowskiK.A. Acquired macrolide-resistant Treponema pallidum after a human bite.Sex. Transm. Dis.201441849349510.1097/OLQ.0000000000000156 25013977
    [Google Scholar]
  30. StolteyJ.E. CohenS.E. Syphilis transmission: A review of the current evidence.Sex. Health201512210310910.1071/SH14174 25702043
    [Google Scholar]
  31. GrayR.T. HoareA. McCannP.D. BradleyJ. DownI. DonovanB. PrestageG. WilsonD.P. Will changes in gay men’s sexual behavior reduce syphilis rates?Sex. Transm. Dis.201138121151115810.1097/OLQ.0b013e318238b85d 22082727
    [Google Scholar]
  32. LopesC. PowellM.L. SantosA.L. Syphilis and cirrhosis: A lethal combination in a XIX century individual identified from the Medical Schools Collection at the University of Coimbra (Portugal).Mem. Inst. Oswaldo Cruz201010581050105310.1590/S0074‑02762010000800016 21225204
    [Google Scholar]
  33. PeelingR.W. MabeyD. KambM.L. ChenX.S. RadolfJ.D. BenzakenA.S. Syphilis.Nat. Rev. Dis. Primers2017311707310.1038/nrdp.2017.73 29022569
    [Google Scholar]
  34. WhitleyR.J. RoizmanB. Herpes simplex virus infections.Lancet200135792671513151810.1016/S0140‑6736(00)04638‑9 11377626
    [Google Scholar]
  35. BradyR.C. BernsteinD.I. Treatment of herpes simplex virus infections.Antiviral Res.2004612738110.1016/j.antiviral.2003.09.006 14670580
    [Google Scholar]
  36. ChilukuriS. RosenT. Management of acyclovir-resistant herpes simplex virus.Dermatol. Clin.200321231132010.1016/S0733‑8635(02)00093‑1 12757254
    [Google Scholar]
  37. SchifferJ.T. CoreyL. New concepts in understanding genital herpes.Curr. Infect. Dis. Rep.200911645746410.1007/s11908‑009‑0066‑7 19857385
    [Google Scholar]
  38. FatahzadehM. SchwartzR.A. Human herpes simplex virus infections: Epidemiology, pathogenesis, symptomatology, diagnosis, and management.J. Am. Acad. Dermatol.200757573776310.1016/j.jaad.2007.06.027 17939933
    [Google Scholar]
  39. ChenK.T. SegúM. LumeyL.H. KuhnL. CarterR.J. BulterysM. AbramsE.J. Genital herpes simplex virus infection and perinatal transmission of human immunodeficiency virus.Obstet. Gynecol.200510661341134810.1097/01.AOG.0000185917.90004.7c 16319261
    [Google Scholar]
  40. LautenschlagerS. EichmannA. The heterogeneous clinical spectrum of genital herpes.Dermatology2001202321121910.1159/000051639 11385226
    [Google Scholar]
  41. NikkelsA.F. PièrardG.E. Treatment of mucocutaneous presentations of herpes simplex virus infections.Am. J. Clin. Dermatol.20023747548710.2165/00128071‑200203070‑00004 12180895
    [Google Scholar]
  42. SimmonsA. Clinical manifestations and treatment considerations of herpes simplex virus infection.J. Infect. Dis.2002186s1Suppl. 1S71S7710.1086/342967 12353190
    [Google Scholar]
  43. NadelmanC.M. NewcomerV.D. Herpes simplex virus infections.Postgrad. Med.20001073189-200, 199-20010.3810/pgm.2000.03.948 10728143
    [Google Scholar]
  44. KleymannG. Novel agents and strategies to treat herpes simplex virus infections.Expert Opin. Investig. Drugs200312216518310.1517/13543784.12.2.165 12556212
    [Google Scholar]
  45. RamchandaniM. KongM. TronsteinE. SelkeS. MikhaylovaA. MagaretA. HuangM.L. JohnstonC. CoreyL. WaldA. Herpes simplex virus type 1 shedding in tears and nasal and oral mucosa of healthy adults.Sex. Transm. Dis.2016431275676010.1097/OLQ.0000000000000522 27835628
    [Google Scholar]
  46. GershonA.A. GershonM.D. Pathogenesis and current approaches to control of varicella-zoster virus infections.Clin. Microbiol. Rev.201326472874310.1128/CMR.00052‑13 24092852
    [Google Scholar]
  47. TurnerR. ShehabZ. OsborneK. HendleyJ.O. Shedding and survival of herpes simplex virus from ‘fever blisters’.Pediatrics198270454754910.1542/peds.70.4.547 6289234
    [Google Scholar]
  48. MendezA.A. BoscoA. Abdel-WahedL. PalmerK. JonesK.A. KilloranA. A fatal case of herpes simplex encephalitis with two false-negative polymerase chain reactions.Case Rep. Neurol.201810221722210.1159/000492053 30283319
    [Google Scholar]
  49. Le DoareK. MensonE. PatelD. LimM. LyallH. HerbergJ. Fifteen minute consultation: Managing neonatal and childhood herpes encephalitis: Table 1.Arch. Dis. Child. Educ. Pract. Ed.20151002586310.1136/archdischild‑2014‑306321 25112286
    [Google Scholar]
  50. XieL. LuA. WangX. ChengB. ZhuX. HuH. Herpes simplex virus type 2 encephalitis in a child with chronic progressive white matter lesions: A case report.Medicine (Baltimore)202210150e3228910.1097/MD.0000000000032289 36550828
    [Google Scholar]
  51. WhitleyR.J. Herpes simplex encephalitis: Adolescents and adults.Antiviral Res.2006712-314114810.1016/j.antiviral.2006.04.002 16675036
    [Google Scholar]
  52. KimberlinD.W. LinC.Y. JacobsR.F. PowellD.A. FrenkelL.M. GruberW.C. RathoreM. BradleyJ.S. DiazP.S. KumarM. ArvinA.M. GutierrezK. SheltonM. WeinerL.B. SleasmanJ.W. de SierraT.M. SoongS.J. KiellJ. LakemanF.D. WhitleyR.J. Natural history of neonatal herpes simplex virus infections in the acyclovir era.Pediatrics2001108222322910.1542/peds.108.2.223 11483781
    [Google Scholar]
  53. KugelmanJ.R. JohnstonS.C. MulembakaniP.M. KisaluN. LeeM.S. KorolevaG. McCarthyS.E. GestoleM.C. WolfeN.D. FairJ.N. SchneiderB.S. WrightL.L. HugginsJ. WhitehouseC.A. WemakoyE.O. Muyembe-TamfumJ.J. HensleyL.E. PalaciosG.F. RimoinA.W. Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo.Emerg. Infect. Dis.201420223223910.3201/eid2002.130118 24457084
    [Google Scholar]
  54. KaragozA. TombulogluH. AlsaeedM. TombulogluG. AlRubaishA.A. MahmoudA. SmajlovićS. ĆordićS. RabaanA.A. AlsuhaimiE. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis.J. Infect. Public Health202316453154110.1016/j.jiph.2023.02.003 36801633
    [Google Scholar]
  55. PengQ. XieY. KuaiL. WangH. QiJ. GaoG.F. ShiY. Structure of monkeypox virus DNA polymerase holoenzyme.Science2023379662710010510.1126/science.ade6360 36520947
    [Google Scholar]
  56. AmaraA. MercerJ. Viral apoptotic mimicry.Nat. Rev. Microbiol.201513846146910.1038/nrmicro3469 26052667
    [Google Scholar]
  57. WildyP. RussellW.C. HorneR.W. The morphology of herpes virus.Virology196012220422210.1016/0042‑6822(60)90195‑1 13785268
    [Google Scholar]
  58. MorganC. JonesE.P. HoldenM. RoseH.M. Intranuclear crystals of herpes simplex virus observed with the electron microscope.Virology19585356857110.1016/0042‑6822(58)90047‑3 13557739
    [Google Scholar]
  59. TampaM. SarbuI. MateiC. BeneaV. GeorgescuS.R. Brief history of syphilis.J. Med. Life201471410 24653750
    [Google Scholar]
  60. ShansonD. Skin infections and infestations.Microbiology in Clinical Practice1989374399
    [Google Scholar]
  61. WileU.J. KearneyE.B. The morphology of treponema pallidum in the electron microscope.J. Am. Med. Assoc.1943122316716810.1001/jama.1943.02840200023005
    [Google Scholar]
  62. ŠmajsD. NorrisS.J. WeinstockG.M. Genetic diversity in Treponema pallidum: Implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws.Infect. Genet. Evol.201212219120210.1016/j.meegid.2011.12.001 22198325
    [Google Scholar]
  63. ŠtaudováB. StrouhalM. ZobaníkováM. ČejkováD. FultonL.L. ChenL. GiacaniL. Centurion-LaraA. BruistenS.M. SodergrenE. WeinstockG.M. ŠmajsD. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: The genome is related to yaws treponemes but contains few loci similar to syphilis treponemes.PLoS Negl. Trop. Dis.2014811e326110.1371/journal.pntd.0003261 25375929
    [Google Scholar]
  64. PatelV.M. PatelS.V. Epidemiological Review on Monkeypox.Cureus2023152e34653 36895541
    [Google Scholar]
  65. FalendyszE.A. LoperaJ.G. RockeT.E. OsorioJ.E. Monkeypox virus in animals: Current knowledge of viral transmission and pathogenesis in wild animal reservoirs and captive animal models.Viruses202315490510.3390/v15040905 37112885
    [Google Scholar]
  66. AdenD. ZaheerS. KumarR. RangaS. Monkeypox (Mpox) outbreak during COVID‐19 pandemic—Past and the future.J. Med. Virol.2023954e2870110.1002/jmv.28701 36951352
    [Google Scholar]
  67. ParkerS. BullerR.M. A review of experimental and natural infections of animals with monkeypox virus between 1958 and 2012.Future Virol.20138212915710.2217/fvl.12.130 23626656
    [Google Scholar]
  68. ElsheikhR. MakramA.M. VasanthakumaranT. TomarS. ShamimK. TranhN.D. ElsheikhS.S. VanN.T. HuyN.T. Monkeypox: A comprehensive review of a multifaceted virus.Infect. Med.202322748810.1016/j.imj.2023.04.009 38077831
    [Google Scholar]
  69. PfaffF. HoffmannD. BeerM. Monkeypox genomic surveillance will challenge lessons learned from SARS-CoV-2.Lancet202240010345222310.1016/S0140‑6736(22)01106‑0 35780786
    [Google Scholar]
  70. Ajmone-MarsanP. ColliL. GinjaC. Genomic characterization of animal genetic resources.RomeFAO Animal Production and Health Guidelines2023
    [Google Scholar]
  71. RennerD.W. SzparaM.L. Impacts of genome-wide analyses on our understanding of human herpesvirus diversity and evolution.J. Virol.2018921e009081710.1128/JVI.00908‑17 29046445
    [Google Scholar]
  72. SanjuánR. Domingo-CalapP. Genetic diversity and evolution of viral populations.Encyclopedia of Virology20212021536110.1016/B978‑0‑12‑809633‑8.20958‑8
    [Google Scholar]
  73. SereewitJ. LiebermanN.A.P. XieH. BakhashS.A.K.M. NunleyB.E. ChungB. MillsM.G. RoychoudhuryP. GreningerA.L. ORF-interrupting mutations in monkeypox virus genomes from Washington and Ohio, 2022.Viruses20221411239310.3390/v14112393 36366490
    [Google Scholar]
  74. SeveriniA. TylerS.D. PetersG.A. BlackD. EberleR. Genome sequence of a chimpanzee herpesvirus and its relation to other primate alphaherpesviruses.Arch. Virol.201315881825182810.1007/s00705‑013‑1666‑y 23508549
    [Google Scholar]
  75. WertheimJ.O. SmithM.D. SmithD.M. SchefflerK. Kosakovsky PondS.L. Evolutionary origins of human herpes simplex viruses 1 and 2.Mol. Biol. Evol.20143192356236410.1093/molbev/msu185 24916030
    [Google Scholar]
  76. DevauxC.A. MediannikovO. MedkourH. RaoultD. Infectious disease risk across the growing human-non human primate interface: A review of the evidence.Front. Public Health2019730510.3389/fpubh.2019.00305 31828053
    [Google Scholar]
  77. KumarS. FilipskiA. SwarnaV. WalkerA. HedgesS.B. Placing confidence limits on the molecular age of the human–chimpanzee divergence.Proc. Natl. Acad. Sci. USA200510252188421884710.1073/pnas.0509585102 16365310
    [Google Scholar]
  78. SchefflerK. MurrellB. Kosakovsky PondS.L. On the validity of evolutionary models with site-specific parameters.PLoS One201494e9453410.1371/journal.pone.0094534 24722425
    [Google Scholar]
  79. WertheimJ.O. HostagerR. RyuD. MerkelK. AngedakinS. ArandjelovicM. AyimisinE.A. BabweteeraF. BessoneM. Brun-JefferyK.J. DieguezP. EckardtW. FruthB. HerbingerI. JonesS. KuehlH. LangergraberK.E. LeeK. MadindaN.F. MetzgerS. OrmsbyL.J. RobbinsM.M. SommerV. StoinskiT. WesslingE.G. WittigR.M. YuhY.G. LeendertzF.H. Calvignac-SpencerS. Discovery of novel herpes simplexviruses in wild gorillas, bonobos, and chimpanzees supports zoonotic origin of HSV-2.Mol. Biol. Evol.20213872818283010.1093/molbev/msab072 33720357
    [Google Scholar]
  80. AroraN. SchuenemannV.J. JägerG. PeltzerA. SeitzA. HerbigA. StrouhalM. GrillováL. Sánchez-BusóL. KühnertD. BosK.I. DavisL.R. MikalováL. BruistenS. KomerickiP. FrenchP. GrantP.R. PandoM.A. VauletL.G. FermepinM.R. MartinezA. Centurion LaraA. GiacaniL. NorrisS.J. ŠmajsD. BosshardP.P. González-CandelasF. NieseltK. KrauseJ. BagheriH.C. Origin of modern syphilis and emergence of a pandemic treponema pallidum cluster.Nat. Microbiol.2016211624510.1038/nmicrobiol.2016.245 27918528
    [Google Scholar]
  81. BealeM.A. MarksM. SahiS.K. TantaloL.C. NoriA.V. FrenchP. LukehartS.A. MarraC.M. ThomsonN.R. Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages.Nat. Commun.2019101325510.1038/s41467‑019‑11216‑7 31332179
    [Google Scholar]
  82. GrillováL. PĕtrošováH. MikalováL. StrnadelR. DastychováE. KuklováI. KojanováM. KreidlováM. VaňousováD. HercogováJ. ProcházkaP. ZákouckáH. KrchňákováA. VaškůV. ŠmajsD. Molecular typing of Treponema pallidum in the Czech Republic during 2011 to 2013: Increased prevalence of identified genotypes and of isolates with macrolide resistance.J. Clin. Microbiol.201452103693370010.1128/JCM.01292‑14 25100820
    [Google Scholar]
  83. HoltK.E. BakerS. WeillF.X. HolmesE.C. KitchenA. YuJ. SangalV. BrownD.J. CoiaJ.E. KimD.W. ChoiS.Y. KimS.H. da SilveiraW.D. PickardD.J. FarrarJ.J. ParkhillJ. DouganG. ThomsonN.R. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe.Nat. Genet.20124491056105910.1038/ng.2369 22863732
    [Google Scholar]
  84. de MeloF.L. de MelloJ.C.M. FragaA.M. NunesK. EggersS. Syphilis at the crossroad of phylogenetics and paleopathology.PLoS Negl. Trop. Dis.201041e57510.1371/journal.pntd.0000575 20052268
    [Google Scholar]
  85. CuiY. YuC. YanY. LiD. LiY. JombartT. WeinertL.A. WangZ. GuoZ. XuL. ZhangY. ZhengH. QinN. XiaoX. WuM. WangX. ZhouD. QiZ. DuZ. WuH. YangX. CaoH. WangH. WangJ. YaoS. RakinA. LiY. FalushD. BallouxF. AchtmanM. SongY. WangJ. YangR. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis.Proc. Natl. Acad. Sci. USA2013110257758210.1073/pnas.1205750110 23271803
    [Google Scholar]
  86. BosK.I. SchuenemannV.J. GoldingG.B. BurbanoH.A. WaglechnerN. CoombesB.K. McPheeJ.B. DeWitteS.N. MeyerM. SchmedesS. WoodJ. EarnD.J.D. HerringD.A. BauerP. PoinarH.N. KrauseJ. A draft genome of Yersinia pestis from victims of the Black Death.Nature2011478737050651010.1038/nature10549 21993626
    [Google Scholar]
  87. FraserC.M. NorrisS.J. WeinstockG.M. WhiteO. SuttonG.G. DodsonR. GwinnM. HickeyE.K. ClaytonR. KetchumK.A. SodergrenE. HardhamJ.M. McLeodM.P. SalzbergS. PetersonJ. KhalakH. RichardsonD. HowellJ.K. ChidambaramM. UtterbackT. McDonaldL. ArtiachP. BowmanC. CottonM.D. FujiiC. GarlandS. HatchB. HorstK. RobertsK. SanduskyM. WeidmanJ. SmithH.O. VenterJ.C. Complete genome sequence of Treponema pallidum, the syphilis spirochete.Science1998281537537538810.1126/science.281.5375.375 9665876
    [Google Scholar]
  88. von HunniusT.E. YangD. EngB. WayeJ.S. SaundersS.R. Digging deeper into the limits of ancient DNA research on syphilis.J. Archaeol. Sci.200734122091210010.1016/j.jas.2007.02.007
    [Google Scholar]
  89. HofreiterM. PaijmansJ.L.A. GoodchildH. SpellerC.F. BarlowA. FortesG.G. ThomasJ.A. LudwigA. CollinsM.J. The future of ancient DNA: Technical advances and conceptual shifts.BioEssays201537328429310.1002/bies.201400160 25413709
    [Google Scholar]
  90. SchuenemannV.J. Kumar LankapalliA. BarqueraR. NelsonE.A. Iraíz HernándezD. Acuña AlonzoV. BosK.I. Márquez MorfínL. HerbigA. KrauseJ. Historic Treponema pallidum genomes from Colonial Mexico retrieved from archaeological remains.PLoS Negl. Trop. Dis.2018126e000644710.1371/journal.pntd.0006447 29927932
    [Google Scholar]
  91. AimanS. AlhamhoomY. AliF. RahmanN. RastrelliL. KhanA. Multi-epitope chimeric vaccine design against emerging Monkeypox virus via reverse vaccinology techniques- a bioinformatics and immunoinformatics approach.Front. Immunol.202213985450
    [Google Scholar]
  92. SlatkoB.E. GardnerA.F. AusubelF.M. Overview of next‐generation sequencing technologies.Curr. Protoc. Mol. Biol.20181221e5910.1002/cpmb.59 29851291
    [Google Scholar]
  93. GuellilM. van DorpL. InskipS.A. DittmarJ.M. SaagL. TambetsK. HuiR. RoseA. D’AtanasioE. KriiskaA. VarulL. KoekkelkorenA.M.H.C. GoldinaR.D. CessfordC. SolnikA. MetspaluM. KrauseJ. HerbigA. RobbJ.E. HouldcroftC.J. ScheibC.L. Ancient herpes simplex 1 genomes reveal recent viral structure in Eurasia.Sci. Adv.2022830eabo443510.1126/sciadv.abo4435 35895820
    [Google Scholar]
  94. LansiauxE. JainN. LaivacumaS. ReinisA. The virology of human monkeypox virus (hMPXV): A brief overview.Virus Res.202232219893210.1016/j.virusres.2022.198932 36165924
    [Google Scholar]
  95. ThaljehL.F. RothschildJ.A. NaderiM. CoghillL.M. BrownJ.M. BrylinskiM. Hinge region in DNA packaging terminase pUL15 of herpes simplex virus: A potential allosteric target for antiviral drugs.Biomolecules201991060310.3390/biom9100603 31614784
    [Google Scholar]
  96. KaramitrosT. HarrisonI. PiorkowskaR. KatzourakisA. MagiorkinisG. MbisaJ.L. De novo assembly of human herpes virus type 1 (HHV-1) genome, mining of non-canonical structures and detection of novel drug-resistance mutations using short- and long-read next generation sequencing technologies.PLoS One2016116e015760010.1371/journal.pone.0157600 27309375
    [Google Scholar]
  97. GruffatH. MarchioneR. ManetE. Herpesvirus late gene expression: A viral-specific pre-initiation complex is key.Front. Microbiol.2016786910.3389/fmicb.2016.00869 27375590
    [Google Scholar]
  98. DotyJ. MalekaniJ. KalembaL. StanleyW. MonroeB. NakazawaY. MauldinM. BakambanaT. Liyandja Dja LiyandjaT. BradenZ. WallaceR. MalekaniD. McCollumA. Gallardo-RomeroN. KondasA. PetersonA. OsorioJ. RockeT. KaremK. EmersonG. CarrollD. Assessing monkeypox virus prevalence in small mammals at the human–animal interface in the democratic republic of the congo.Viruses201791028310.3390/v9100283 28972544
    [Google Scholar]
  99. ChenN. LiG. LiszewskiM.K. AtkinsonJ.P. JahrlingP.B. FengZ. SchriewerJ. BuckC. WangC. LefkowitzE.J. EspositoJ.J. HarmsT. DamonI.K. RoperR.L. UptonC. BullerR.M.L. Virulence differences between monkeypox virus isolates from West Africa and the Congo basin.Virology20053401466310.1016/j.virol.2005.05.030 16023693
    [Google Scholar]
  100. LikosA.M. SammonsS.A. OlsonV.A. FraceA.M. LiY. Olsen-RasmussenM. DavidsonW. GallowayR. KhristovaM.L. ReynoldsM.G. ZhaoH. CarrollD.S. CurnsA. FormentyP. EspositoJ.J. RegneryR.L. DamonI.K. A tale of two clades: Monkeypox viruses.J. Gen. Virol.200586102661267210.1099/vir.0.81215‑0 16186219
    [Google Scholar]
  101. EstepR.D. MessaoudiI. O’ConnorM.A. LiH. SpragueJ. BarronA. EngelmannF. YenB. PowersM.F. JonesJ.M. RobinsonB.A. OrzechowskaB.U. ManoharanM. LegasseA. PlanerS. WilkJ. AxthelmM.K. WongS.W. Deletion of the monkeypox virus inhibitor of complement enzymes locus impacts the adaptive immune response to monkeypox virus in a nonhuman primate model of infection.J. Virol.201185189527954210.1128/JVI.00199‑11 21752919
    [Google Scholar]
  102. HutsonC.L. AbelJ.A. CarrollD.S. OlsonV.A. BradenZ.H. HughesC.M. DillonM. HopkinsC. KaremK.L. DamonI.K. OsorioJ.E. Comparison of west african and congo basin monkeypox viruses in BALB/c and C57BL/6 mice.PLoS One201051e891210.1371/journal.pone.0008912 20111702
    [Google Scholar]
  103. SilvaN.I.O. de OliveiraJ.S. KroonE.G. TrindadeG.S. DrumondB.P. Here, there, and everywhere: The wide host range and geographic distribution of zoonotic orthopoxviruses.Viruses20201314310.3390/v13010043 33396609
    [Google Scholar]
  104. TitanjiB.K. TegomohB. NematollahiS. KonomosM. KulkarniP.A. Monkeypox: A contemporary review for healthcare professionals.Open Forum Infect. Dis.202297ofac31010.1093/ofid/ofac310 35891689
    [Google Scholar]
  105. MuUNGMUNPUNTIPANTIPR. WiwanitkitV. Syphilis and monkeypox: An issue in sexual medicine.Medeniyet Medical Journal202237329829910.4274/MMJ.galenos.2022.46835 36128878
    [Google Scholar]
  106. GhaffarR.A. ShahnoorS. FarooqM. Increased prevalence of HIV among Monkeypox patients – An alarming update.New Microbes New Infect.202249-5010103910.1016/j.nmni.2022.101039 36284774
    [Google Scholar]
  107. TobianA.A.R. QuinnT.C. Herpes simplex virus type 2 and syphilis infections with HIV: An evolving synergy in transmission and prevention.Curr. Opin. HIV AIDS20094429429910.1097/COH.0b013e32832c1881 19532067
    [Google Scholar]
  108. LeichliterJ.S. LewisD.A. Paz-BaileyG. Correlates of bacterial ulcers and acute HSV-2 infection among men with genital ulcer disease in south africa: Age, recent sexual behaviors, and HIV.S. Afr. J. Infect. Dis.20163126165 28217702
    [Google Scholar]
  109. ReimandJ. IsserlinR. VoisinV. KuceraM. Tannus-LopesC. RostamianfarA. WadiL. MeyerM. WongJ. XuC. MericoD. BaderG.D. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap.Nat. Protoc.201914248251710.1038/s41596‑018‑0103‑9 30664679
    [Google Scholar]
  110. AlkhalilA. HammamiehR. HardickJ. IchouM.A. JettM. IbrahimS. Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions.Virol. J.20107117310.1186/1743‑422X‑7‑173 20667104
    [Google Scholar]
  111. EarlP.L. AmericoJ.L. MossB. Natural killer cells expanded in vivo or ex vivo with IL-15 overcomes the inherent susceptibility of CAST mice to lethal infection with orthopoxviruses.PLoS Pathog.2020164e100850510.1371/journal.ppat.1008505 32320436
    [Google Scholar]
  112. MukherjeeA.G. WanjariU.R. KannampuzhaS. DasS. MuraliR. NamachivayamA. RenuK. RamanathanG. DossC. G.P.; Vellingiri, B.; Dey, A.; Valsala Gopalakrishnan, A. Expression of Concern: The pathophysiological and immunological background of the monkeypox virus infection: An update.J. Med. Virol.2023951e2820610.1002/jmv.28206 36217803
    [Google Scholar]
  113. DinarelloC.A. SimonA. van der MeerJ.W.M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases.Nat. Rev. Drug Discov.201211863365210.1038/nrd3800 22850787
    [Google Scholar]
  114. XuanD.T.M. YehI.J. WuC.C. SuC.Y. LiuH.L. ChiaoC.C. KuS.C. JiangJ.Z. SunZ. TaH.D.K. AnuragaG. WangC.Y. YenM.C. Comparison of transcriptomic signatures between monkeypox-infected monkey and human cell lines.J. Immunol. Res.2022202211710.1155/2022/3883822 36093436
    [Google Scholar]
  115. SaiedA.A. DhawanM. MetwallyA.A. FahrniM.L. ChoudharyP. ChoudharyO.P. Disease history, pathogenesis, diagnostics, and therapeutics for human monkeypox disease: A comprehensive review.Vaccines20221012209110.3390/vaccines10122091 36560502
    [Google Scholar]
  116. WeinsteinR.A. NalcaA. RimoinA.W. BavariS. WhitehouseC.A. Reemergence of monkeypox: Prevalence, diagnostics, and countermeasures.Clin. Infect. Dis.200541121765177110.1086/498155 16288402
    [Google Scholar]
  117. de SousaD. PatrocínioJ. FradeJ. BrazãoC. ManchaD. CorreiaC. Borges-CostaJ. FilipeP. Monkeypox diagnosis by cutaneous and mucosal findings.Infect. Dis. Rep.202214575976410.3390/idr14050077 36286198
    [Google Scholar]
  118. Al-TammemiA.a.B. AlbakriR. AlabsiS. The outbreak of human monkeypox in 2022: A changing epidemiology or an impending aftereffect of smallpox eradication?Front. Trop.20223
    [Google Scholar]
  119. KandiV. PalM. MengstieF. Epidemiology, diagnosis, and control of monkeypox disease: A comprehensive review.Am. J. Infect. Dis.201759499
    [Google Scholar]
  120. AltindisM. PucaE. ShapoL. Diagnosis of monkeypox virus – An overview.Travel Med. Infect. Dis.20225010245910.1016/j.tmaid.2022.102459 36109000
    [Google Scholar]
  121. ArshadZ. AlturkistaniA. BrindleyD. LamC. FoleyK. MeinertE. Tools for the diagnosis of herpes simplex virus 1/2: Systematic review of studies published between 2012 and 2018.JMIR Public Health Surveill.201952e1421610.2196/14216 31124465
    [Google Scholar]
  122. MorshedM.G. SinghA.E. Recent trends in the serologic diagnosis of syphilis.Clin. Vaccine Immunol.201522213714710.1128/CVI.00681‑14 25428245
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010293479240709074020
Loading
/content/journals/cpb/10.2174/0113892010293479240709074020
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): comparative studies; computational; herpes; MPXV; MPXV virus; syphilis; transmission mode
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test