Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Melanocytes are highly specialized dendritic cells that deliver melanin to keratinocytes in melanosomes, which are subcellular organelles where melanin is produced and stored. Mammal’s skin, hair, and eyes all contain the complex pigment melanin, which gives them color and ultraviolet protection. Melanins have the potential to be free radical sinks and are strong cation chelators. Amino acid tyrosine and its metabolite, dopa, are the precursors to complex metabolic processes that end with melanin production. Melanocytes generate different types and amounts of melanin, which is defined genetically and is impacted by several extrinsic and intrinsic factors such as hormone fluctuations, inflammation, age, and ultraviolet radiation exposure, leading to the stimulation of numerous melanogenesis pathways. Melasma, a common skin pigmentation condition, is associated with the overproduction of melanin and is characterized by brown to gray-brown and black spots that mostly affect the face. The present review addresses the regulatory mechanisms and signaling pathways involved in skin pigmentation with an emphasis on the altered melanogenesis that causes melasma and hyperpigmentation. The current study also illustrates the available treatment options with cellular and molecular mechanisms for the management of melasma. Understanding the mechanism of the pigmentation process may help researchers develop new therapeutic strategies and novel drugs for the management of melasma.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010301957240424110023
2024-05-10
2025-12-10
Loading full text...

Full text loading...

References

  1. MaddalenoA.S. CamargoJ. MitjansM. VinardellM.P. Melanogenesis and melasma treatment.Cosmetics2021838210.3390/cosmetics8030082
    [Google Scholar]
  2. NordlundJ.J. The melanocyte and the epidermal melanin unit: An expanded concept.Dermatol. Clin.2007253271281vii.10.1016/j.det.2007.04.001 17662893
    [Google Scholar]
  3. MostertA.B. Melanin, the what, the why and the how: An introductory review for materials scientists interested in flexible and versatile polymers.Polymers20211310167010.3390/polym13101670 34065580
    [Google Scholar]
  4. WuX. HammerJ.A. Melanosome transfer: It is best to give and receive.Curr. Opin. Cell Biol.20142911710.1016/j.ceb.2014.02.003 24662021
    [Google Scholar]
  5. CostinG.E. HearingV.J. Human skin pigmentation: Melanocytes modulate skin color in response to stress.FASEB J.200721497699410.1096/fj.06‑6649rev 17242160
    [Google Scholar]
  6. BonaventureJ. DominguesM.J. LarueL. Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells.Pigment Cell Melanoma Res.201326331632510.1111/pcmr.12080 23433358
    [Google Scholar]
  7. BorovanskỳJ. RileyP.A. Melanins and melanosomes.Biog. Physiol. Pathol. Funct.201110.1002/9783527636150
    [Google Scholar]
  8. D’MelloS. FinlayG. BaguleyB. Askarian-AmiriM. Signaling pathways in melanogenesis.Int. J. Mol. Sci.2016177114410.3390/ijms17071144 27428965
    [Google Scholar]
  9. PasseronT. CoelhoS.G. MiyamuraY. TakahashiK. HearingV.J. Immunohistochemistry and in situ hybridization in the study of human skin melanocytes.Exp. Dermatol.200716316217010.1111/j.1600‑0625.2006.00538.x 17286807
    [Google Scholar]
  10. d’IschiaM. WakamatsuK. NapolitanoA. BrigantiS. Garcia-BorronJ.C. KovacsD. MeredithP. PezzellaA. PicardoM. SarnaT. SimonJ.D. ItoS. Melanins and melanogenesis: Methods, standards, protocols.Pigment Cell Melanoma Res.201326561663310.1111/pcmr.12121 23710556
    [Google Scholar]
  11. CaoW. ZhouX. McCallumN.C. HuZ. NiQ.Z. KapoorU. HeilC.M. CayK.S. ZandT. MantanonaA.J. JayaramanA. DhinojwalaA. DeheynD.D. ShawkeyM.D. BurkartM.D. RinehartJ.D. GianneschiN.C. Unraveling the structure and function of melanin through synthesis.J. Am. Chem. Soc.202114372622263710.1021/jacs.0c12322 33560127
    [Google Scholar]
  12. ZuccaF.A. GiaveriG. GalloriniM. AlbertiniA. ToscaniM. PezzoliG. LuciusR. WilmsH. SulzerD. ItoS. WakamatsuK. ZeccaL. The neuromelanin of human substantia nigra: Physiological and pathogenic aspects.Pigment Cell Res.200417661061710.1111/j.1600‑0749.2004.00201.x 15541018
    [Google Scholar]
  13. BushW.D. GarguiloJ. ZuccaF.A. AlbertiniA. ZeccaL. EdwardsG.S. NemanichR.J. SimonJ.D. The surface oxidation potential of human neuromelanin reveals a spherical architecture with a pheomelanin core and a eumelanin surface.Proc. Natl. Acad. Sci. USA200610340147851478910.1073/pnas.0604010103 17001010
    [Google Scholar]
  14. VideiraI.F.S. MouraD.F.L. MaginaS. Mechanisms regulating melanogenesis.An. Bras. Dermatol.2013881768310.1590/S0365‑05962013000100009 23539007
    [Google Scholar]
  15. AndersonR.R. ParrishJ.A. The optics of human skin.J. Invest. Dermatol.1981771131910.1111/1523‑1747.ep12479191 7252245
    [Google Scholar]
  16. BastianB.C. The molecular pathology of melanoma: An integrated taxonomy of melanocytic neoplasia.Annu. Rev. Pathol.20149123927110.1146/annurev‑pathol‑012513‑104658 24460190
    [Google Scholar]
  17. PlonkaP.M. PasseronT. BrennerM. TobinD.J. ShibaharaS. ThomasA. SlominskiA. KadekaroA.L. HershkovitzD. PetersE. NordlundJ.J. Abdel-MalekZ. TakedaK. PausR. OrtonneJ.P. HearingV.J. SchallreuterK.U. What are melanocytes really doing all day long…?Exp. Dermatol.200918979981910.1111/j.1600‑0625.2009.00912.x 19659579
    [Google Scholar]
  18. YamaguchiY. BrennerM. HearingV.J. The regulation of skin pigmentation.J. Biol. Chem.200728238275572756110.1074/jbc.R700026200 17635904
    [Google Scholar]
  19. ThodyA.J. HigginsE.M. WakamatsuK. ItoS. BurchillS.A. MarksJ.M. Pheomelanin as well as eumelanin is present in human epidermis.J. Invest. Dermatol.199197234034410.1111/1523‑1747.ep12480680 2071942
    [Google Scholar]
  20. LamoreuxM.L. WakamatsuK. ItoS. Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin.Pigment Cell Res.2001141233110.1034/j.1600‑0749.2001.140105.x 11277491
    [Google Scholar]
  21. GuoL. LiW. GuZ. WangL. GuoL. MaS. LiC. SunJ. HanB. ChangJ. Recent advances and progress on melanin: From source to application.Int. J. Mol. Sci.2023245436010.3390/ijms24054360 36901791
    [Google Scholar]
  22. SlominskiA. ZmijewskiM.A. PawelekJ. L‐tyrosine and L‐dihydroxyphenylalanine as hormone‐like regulators of melanocyte functions.Pigment Cell Melanoma Res.2012251142710.1111/j.1755‑148X.2011.00898.x 21834848
    [Google Scholar]
  23. AncansJ. TobinD.J. HoogduijnM.J. SmitN.P. WakamatsuK. ThodyA.J. Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells.Exp. Cell Res.20012681263510.1006/excr.2001.5251 11461115
    [Google Scholar]
  24. LinJ.Y. FisherD.E. Melanocyte biology and skin pigmentation.Nature2007445713084385010.1038/nature05660 17314970
    [Google Scholar]
  25. BasitH. GodseK.V. Al AboudA.M. Melasma.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  26. OkazakiS. FunasakaY. WakamatsuK. KawanaS. SaekiH. Effect of infrared radiation A on photoaged hairless mice harboring eumelanin and pheomelanin in the epidermis.J. Dermatol.201542438239010.1111/1346‑8138.12790 25683028
    [Google Scholar]
  27. ChedekelM.R. AginP.P. SayreR.M. Photochemistry of pheomelanin: Action spectrum for superoxide production.Photochem. Photobiol.198031655355510.1111/j.1751‑1097.1980.tb03745.x
    [Google Scholar]
  28. SlominskiA. TobinD.J. ShibaharaS. WortsmanJ. Melanin pigmentation in mammalian skin and its hormonal regulation.Physiol. Rev.20048441155122810.1152/physrev.00044.2003 15383650
    [Google Scholar]
  29. MontaudiéH. BertolottoC. BallottiR. PasseronT. Physiology of the pigment system. Melanogenesis.EMC - Dermatología201448111110.1016/S1761‑2896(14)66800‑X
    [Google Scholar]
  30. EbanksJ. WickettR. BoissyR. Mechanisms regulating skin pigmentation: The rise and fall of complexion coloration.Int. J. Mol. Sci.20091094066408710.3390/ijms10094066 19865532
    [Google Scholar]
  31. HongC. YangL. ZhangY. LiY. WuH. Epimedium brevicornum Maxim. Extract exhibits pigmentation by melanin biosynthesis and melanosome biogenesis/transfer.Front. Pharmacol.20221396316010.3389/fphar.2022.963160 36249817
    [Google Scholar]
  32. ZhangP. LiuW. YuanX. LiD. GuW. GaoT. Endothelin-1 enhances the melanogenesis via MITF-GPNMB pathway.BMB Rep.201346736436910.5483/BMBRep.2013.46.7.250 23884103
    [Google Scholar]
  33. RegazzettiC. De DonatisG.M. GhorbelH.H. Cardot-LecciaN. AmbrosettiD. BahadoranP. Chignon-SicardB. LacourJ.P. BallottiR. MahnsA. PasseronT. Endothelial cells promote pigmentation through endothelin receptor B activation.J. Invest. Dermatol.2015135123096310410.1038/jid.2015.332 26308584
    [Google Scholar]
  34. FuC. ChenJ. LuJ. YiL. TongX. KangL. PeiS. OuyangY. JiangL. DingY. ZhaoX. LiS. YangY. HuangJ. ZengQ. Roles of inflammation factors in melanogenesis (Review).Mol. Med. Rep.20202131421143010.3892/mmr.2020.10950 32016458
    [Google Scholar]
  35. ReynoldsJ.L. AkhterJ. MorrisD.L. In vitro effect of histamine and histamine H1 and H2 receptor antagonists on cellular proliferation of human malignant melanoma cell lines.Melanoma Res.1996629510010.1097/00008390‑199604000‑00003 8791266
    [Google Scholar]
  36. Bae-HarboeY.S.C. ParkH.Y. Tyrosinase: A central regulatory protein for cutaneous pigmentation.J. Invest. Dermatol.2012132122678268010.1038/jid.2012.324 23187110
    [Google Scholar]
  37. LiP.H. LiuL.H. ChangC.C. GaoR. LeungC.H. MaD.L. David WangH.M. Silencing stem cell factor gene in fibroblasts to regulate paracrine factor productions and enhance c-kit expression in melanocytes on melanogenesis.Int. J. Mol. Sci.2018195147510.3390/ijms19051475 29772675
    [Google Scholar]
  38. ParkH.Y. MITF mediates cAMP-induced protein kinase C-β expression in human melanocytes.Biochem. J.2006395Pt 357157810.1042/BJ20051388
    [Google Scholar]
  39. ImokawaG. YadaY. KimuraM. Signalling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes.Biochem. J.1996314Pt 130531210.1042/bj3140305
    [Google Scholar]
  40. LeeA.Y. NohM. The regulation of epidermal melanogenesis via cAMP and/or PKC signaling pathways: insights for the development of hypopigmenting agents.Arch. Pharm. Res.201336779280110.1007/s12272‑013‑0130‑6 23604723
    [Google Scholar]
  41. BrennerM. HearingV.J. The protective role of melanin against UV damage in human skin.Photochem. Photobiol.200884353954910.1111/j.1751‑1097.2007.00226.x 18435612
    [Google Scholar]
  42. LeiterU. GarbeC. Epidemiology of melanoma and nonmelanoma skin cancer--the role of sunlight.Adv. Exp. Med. Biol.20086248910310.1007/978‑0‑387‑77574‑6_8 18348450
    [Google Scholar]
  43. GlosterH.M.Jr NealK. Skin cancer in skin of color.J. Am. Acad. Dermatol.200655574176010.1016/j.jaad.2005.08.063 17052479
    [Google Scholar]
  44. Portillo-EsnaolaM. Rodríguez-LunaA. Nicolás-MoralaJ. Gallego-RenteroM. VillalbaM. JuarranzÁ. GonzálezS. Formation of cyclobutane pyrimidine dimers after UVA exposure (Dark-CPDs) is inhibited by an hydrophilic extract of polypodium leucotomos.Antioxidants20211012196110.3390/antiox10121961 34943064
    [Google Scholar]
  45. GilchrestB.A. ZhaiS. EllerM.S. YaroshD.B. YaarM. Treatment of human melanocytes and S91 melanoma cells with the DNA repair enzyme T4 endonuclease V enhances melanogenesis after ultraviolet irradiation.J. Invest. Dermatol.1993101566667210.1111/1523‑1747.ep12371673 8228326
    [Google Scholar]
  46. BrożynaA.A. JóźwickiW. CarlsonJ.A. SlominskiA.T. Melanogenesis affects overall and disease-free survival in patients with stage III and IV melanoma.Hum. Pathol.201344102071207410.1016/j.humpath.2013.02.022 23791398
    [Google Scholar]
  47. BrożynaA.A. JóźwickiW. RoszkowskiK. FilipiakJ. SlominskiA.T. Melanin content in melanoma metastases affects the outcome of radiotherapy.Oncotarget2016714178441785310.18632/oncotarget.7528 26910282
    [Google Scholar]
  48. LeeA.Y. An updated review of melasma pathogenesis.Zhonghua Pifuke Yixue Zazhi201432423323910.1016/j.dsi.2014.09.006
    [Google Scholar]
  49. BennettD.C. LamoreuxM.L. The color loci of mice--a genetic century.Pigment Cell Res.200316433334410.1034/j.1600‑0749.2003.00067.x 12859616
    [Google Scholar]
  50. RyterS.W. KimH.P. HoetzelA. ParkJ.W. NakahiraK. WangX. ChoiA.M.K. Mechanisms of cell death in oxidative stress.Antioxid. Redox Signal.200791498910.1089/ars.2007.9.49 17115887
    [Google Scholar]
  51. PremiS. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure.Science2015347622484284710.1126/science.1256022
    [Google Scholar]
  52. MiyamuraY. CoelhoS.G. SchlenzK. BatzerJ. SmudaC. ChoiW. BrennerM. PasseronT. ZhangG. KolbeL. WolberR. HearingV.J. The deceptive nature of UVA tanning versus the modest protective effects of UVB tanning on human skin.Pigment Cell Melanoma Res.201124113614710.1111/j.1755‑148X.2010.00764.x 20979596
    [Google Scholar]
  53. MaddodiN. JayanthyA. SetaluriV. Shining light on skin pigmentation: The darker and the brighter side of effects of UV radiation.Photochem. Photobiol.20128851075108210.1111/j.1751‑1097.2012.01138.x 22404235
    [Google Scholar]
  54. KhlgatianM.K. HadshiewI.M. AsawanondaP. YaarM. EllerM.S. GilchrestB.A. FujitaM. NorrisD.A. Tyrosinase gene expression is regulated by p53.J. Invest. Dermatol.2002118112613210.1046/j.0022‑202x.2001.01667.x 11851885
    [Google Scholar]
  55. GalibertM.D. CarreiraS. GodingC.R. The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression.EMBO J.200120175022503110.1093/emboj/20.17.5022 11532965
    [Google Scholar]
  56. WangW. DiT. WangW. JiangH. EGCG, GCG, TFDG, or TSA inhibiting melanin synthesis by downregulating MC1R expression.Int. J. Mol. Sci.202324131101710.3390/ijms241311017 37446194
    [Google Scholar]
  57. MortR.L. JacksonI.J. PattonE.E. The melanocyte lineage in development and disease.Development2015142462063210.1242/dev.106567 25670789
    [Google Scholar]
  58. LeeJ.H. FisherD.E. Melanocyte stem cells as potential therapeutics in skin disorders.Expert Opin. Biol. Ther.201414111569157910.1517/14712598.2014.935331 25104310
    [Google Scholar]
  59. GolaM. CzajkowskiR. BajekA. DuraA. DrewaT. Melanocyte stem cells: Biology and current aspects.Med. Sci. Monit.20121810RA155RA15910.12659/MSM.883475 23018363
    [Google Scholar]
  60. NishimuraE.K. JordanS.A. OshimaH. YoshidaH. OsawaM. MoriyamaM. JacksonI.J. BarrandonY. MiyachiY. NishikawaS.I. Dominant role of the niche in melanocyte stem-cell fate determination.Nature2002416688385486010.1038/416854a 11976685
    [Google Scholar]
  61. NishimuraE.K. SuzukiM. IgrasV. DuJ. LonningS. MiyachiY. RoesJ. BeermannF. FisherD.E. Key roles for transforming growth factor beta in melanocyte stem cell maintenance.Cell Stem Cell20106213014010.1016/j.stem.2009.12.010 20144786
    [Google Scholar]
  62. MarksM.S. SeabraM.C. The melanosome: Membrane dynamics in black and white.Nat. Rev. Mol. Cell Biol.200121073874810.1038/35096009 11584301
    [Google Scholar]
  63. SeibergM. Keratinocyte-melanocyte interactions during melanosome transfer.Pigment Cell Res.200114423624210.1034/j.1600‑0749.2001.140402.x 11549105
    [Google Scholar]
  64. ViradorV.M. MullerJ. WuX. Abdel-MalekZ.A. YuZ.X. FerransV.J. KobayashiN. WakamatsuK. ItoS. HammerJ.A. HearingV.J. Influence of α‐melanocyte‐stimulating hormone and of ultraviolet radiation on the transfer of melanosomes to keratinocytes.FASEB J.200216112710.1096/fj.01‑0518fje 11729101
    [Google Scholar]
  65. HyterS. ColemanD.J. Ganguli-IndraG. MerrillG.F. MaS. YanagisawaM. IndraA.K. Endothelin‐1 is a transcriptional target of p53 in epidermal keratinocytes and regulates ultraviolet‐induced melanocyte homeostasis.Pigment Cell Melanoma Res.201326224725810.1111/pcmr.12063 23279852
    [Google Scholar]
  66. LimH.S. JinS. YunS.J. Modulation of melanogenesis by heme oxygenase-1 via p53 in normal human melanocytes.Chonnam Med. J.2016521455210.4068/cmj.2016.52.1.45 26865999
    [Google Scholar]
  67. FischerM. GlanzD. UrbatzkaM. BrzoskaT. AbelsC. Keratinocytes: A source of the transmitter L ‐glutamate in the epidermis.Exp. Dermatol.200918121064106610.1111/j.1600‑0625.2009.00886.x 19397696
    [Google Scholar]
  68. HoogduijnM.J. HitchcockI.S. SmitN.P.M. GillbroJ.M. SchallreuterK.U. GeneverP.G. Glutamate receptors on human melanocytes regulate the expression of MiTF.Pigment Cell Res.2006191586710.1111/j.1600‑0749.2005.00284.x 16420247
    [Google Scholar]
  69. HolmoN.F. RamosG.B. SalomãoH. WerneckR.I. MiraM.T. MiotL.D.B. MiotH.A. Complex segregation analysis of facial melasma in Brazil: evidence for a genetic susceptibility with a dominant pattern of segregation.Arch. Dermatol. Res.20183101082783110.1007/s00403‑018‑1861‑5 30167816
    [Google Scholar]
  70. KangH.Y. SuzukiI. LeeD.J. HaJ. ReinicheP. AubertJ. DeretS. ZugajD. VoegelJ.J. OrtonneJ.P. Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma.J. Invest. Dermatol.201113181692170010.1038/jid.2011.109 21562572
    [Google Scholar]
  71. TamegaA.A. MiotH.A. MoçoN.P. SilvaM.G. MarquesM.E.A. MiotL.D.B. Gene and protein expression of oestrogen‐ β and progesterone receptors in facial melasma and adjacent healthy skin in women.Int. J. Cosmet. Sci.201537222222810.1111/ics.12186 25439299
    [Google Scholar]
  72. CarioM. How hormones may modulate human skin pigmentation in melasma: An in vitro perspective.Exp. Dermatol.201928670971810.1111/exd.13915 30883945
    [Google Scholar]
  73. LiuW. ChenQ. XiaY. New mechanistic insights of melasma.Clin. Cosmet. Investig. Dermatol.20231642944210.2147/CCID.S396272 36817641
    [Google Scholar]
  74. CohenP.R. Melasma treatment: A novel approach using a topical agent that contains an anti-estrogen and a vascular endothelial growth factor inhibitor.Med. Hypotheses20171011510.1016/j.mehy.2017.01.020 28351480
    [Google Scholar]
  75. KimN.H. CheongK.A. LeeT.R. LeeA.Y. PDZK1 upregulation in estrogen-related hyperpigmentation in melasma.J. Invest. Dermatol.2012132112622263110.1038/jid.2012.175 22696060
    [Google Scholar]
  76. HandaS. DeD. KhullarG. RadotraB.D. SachdevaN. The clinicoaetiological, hormonal and histopathological characteristics of melasma in men.Clin. Exp. Dermatol.2018431364110.1111/ced.13234 28940653
    [Google Scholar]
  77. HidaT. KamiyaT. KawakamiA. OginoJ. SohmaH. UharaH. JimbowK. Elucidation of melanogenesis cascade for identifying pathophysiology and therapeutic approach of pigmentary disorders and melanoma.Int. J. Mol. Sci.20202117612910.3390/ijms21176129 32854423
    [Google Scholar]
  78. LyonsJ. BastianB.C. McCormickF. MC1R and cAMP signaling inhibit cdc25B activity and delay cell cycle progression in melanoma cells.Proc. Natl. Acad. Sci. USA201311034138451385010.1073/pnas.1201917110 23908401
    [Google Scholar]
  79. FangD. TsujiY. SetaluriV. Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF.Nucleic Acids Res.200230143096310610.1093/nar/gkf424 12136092
    [Google Scholar]
  80. BertolottoC. AbbeP. HemesathT.J. BilleK. FisherD.E. OrtonneJ.P. BallottiR. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes.J. Cell Biol.1998142382783510.1083/jcb.142.3.827 9700169
    [Google Scholar]
  81. PasseronT. PicardoM. Melasma, a photoaging disorder.Pigment Cell Melanoma Res.201831446146510.1111/pcmr.12684 29285880
    [Google Scholar]
  82. DunnK.J. BradyM. Ochsenbauer-JamborC. SnyderS. IncaoA. PavanW.J. WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action.Pigment Cell Res.200518316718010.1111/j.1600‑0749.2005.00226.x 15892713
    [Google Scholar]
  83. JinE.J. EricksonC.A. TakadaS. BurrusL.W. Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo.Dev. Biol.20012331223710.1006/dbio.2001.0222 11319855
    [Google Scholar]
  84. SteingrímssonE. CopelandN.G. JenkinsN.A. Melanocytes and the microphthalmia transcription factor network.Annu. Rev. Genet.200438136541110.1146/annurev.genet.38.072902.092717 15568981
    [Google Scholar]
  85. TakedaK. YasumotoK. TakadaR. TakadaS. WatanabeK. UdonoT. SaitoH. TakahashiK. ShibaharaS. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a.J. Biol. Chem.200027519140131401610.1074/jbc.C000113200 10747853
    [Google Scholar]
  86. WidlundH.R. HorstmannM.A. PriceE.R. CuiJ. LessnickS.L. WuM. HeX. FisherD.E. β-Catenin–induced melanoma growth requires the downstream target Microphthalmia -associated transcription factor.J. Cell Biol.200215861079108710.1083/jcb.200202049 12235125
    [Google Scholar]
  87. KawaguchiM. SuzukiT. Melanogenesis and new signaling regulators for the treatment of melasma.Melasma Vitiligo Brown Ski.2017Jan859210.1007/978‑81‑322‑3664‑1_11
    [Google Scholar]
  88. KimJ.Y. LeeT.R. LeeA.Y. Reduced WIF-1 expression stimulates skin hyperpigmentation in patients with melasma.J. Invest. Dermatol.2013133119120010.1038/jid.2012.270 22951732
    [Google Scholar]
  89. YamaguchiY. PasseronT. WatabeH. YasumotoK. RouzaudF. HoashiT. HearingV.J. The effects of dickkopf 1 on gene expression and Wnt signaling by melanocytes: Mechanisms underlying its suppression of melanocyte function and proliferation.J. Invest. Dermatol.200712751217122510.1038/sj.jid.5700629 17159916
    [Google Scholar]
  90. YamaguchiY. PasseronT. HoashiT. WatabeH. RouzaudF. YasumotoK. HaraT. TohyamaC. KatayamaI. MikiT. HearingV.J. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/β‐catenin signaling in keratinocytes.FASEB J.20082241009102010.1096/fj.07‑9475com 17984176
    [Google Scholar]
  91. LevyC. KhaledM. FisherD.E. MITF: master regulator of melanocyte development and melanoma oncogene.Trends Mol. Med.200612940641410.1016/j.molmed.2006.07.008 16899407
    [Google Scholar]
  92. PasseronT. ValenciaJ.C. BertolottoC. HoashiT. Le PapeE. TakahashiK. BallottiR. HearingV.J. SOX9 is a key player in ultraviolet B-induced melanocyte differentiation and pigmentation.Proc. Natl. Acad. Sci. USA200710435139841398910.1073/pnas.0705117104 17702866
    [Google Scholar]
  93. LevyC. NechushtanH. RazinE. A new role for the STAT3 inhibitor, PIAS3: A repressor of microphthalmia transcription factor.J. Biol. Chem.200227731962196610.1074/jbc.M109236200 11709556
    [Google Scholar]
  94. WegnerM. All purpose Sox: The many roles of Sox proteins in gene expression.Int. J. Biochem. Cell Biol.201042338139010.1016/j.biocel.2009.07.006 19631281
    [Google Scholar]
  95. HarrisM.L. BaxterL.L. LoftusS.K. PavanW.J. Sox proteins in melanocyte development and melanoma.Pigment Cell Melanoma Res.201023449651310.1111/j.1755‑148X.2010.00711.x 20444197
    [Google Scholar]
  96. KellererS. SchreinerS. StoltC.C. ScholzS. BöslM.R. WegnerM. Replacement of the Sox10 transcription factor by Sox8 reveals incomplete functional equivalence.Development2006133152875288610.1242/dev.02477 16790476
    [Google Scholar]
  97. HouL. ArnheiterH. PavanW.J. Interspecies difference in the regulation of melanocyte development by SOX10 and MITF.Proc. Natl. Acad. Sci. USA2006103249081908510.1073/pnas.0603114103 16757562
    [Google Scholar]
  98. PotterfS.B. MollaaghababaR. HouL. Southard-SmithE.M. HornyakT.J. ArnheiterH. PavanW.J. Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase.Dev. Biol.2001237224525710.1006/dbio.2001.0372 11543611
    [Google Scholar]
  99. AokiY. Saint-GermainN. GydaM. Magner-FinkE. LeeY.H. CredidioC. Saint-JeannetJ.P. Sox10 regulates the development of neural crest-derived melanocytes in Xenopus.Dev. Biol.20032591193310.1016/S0012‑1606(03)00161‑1 12812785
    [Google Scholar]
  100. CheungM. BriscoeJ. Neural crest development is regulated by the transcription factor Sox9.Development2003130235681569310.1242/dev.00808 14522876
    [Google Scholar]
  101. DuttonK.A. PaulinyA. LopesS.S. ElworthyS. CarneyT.J. RauchJ. GeislerR. HaffterP. KelshR.N. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates.Development2001128214113412510.1242/dev.128.21.4113 11684650
    [Google Scholar]
  102. YuF. QuB. LinD. DengY. HuangR. ZhongZ. Pax3 gene regulated melanin synthesis by tyrosinase pathway in Pteria penguin.Int. J. Mol. Sci.20181912370010.3390/ijms19123700 30469474
    [Google Scholar]
  103. GershonT.R. OppenheimerO. ChinS.S. GeraldW.L. Temporally regulated neural crest transcription factors distinguish neuroectodermal tumors of varying malignancy and differentiation.Neoplasia20057657558410.1593/neo.04637 16036108
    [Google Scholar]
  104. HeS.J. StevensG. BraithwaiteA.W. EcclesM.R. Transfection of melanoma cells with antisense PAX3 oligonucleotides additively complements cisplatin-induced cytotoxicity.Mol. Cancer Ther.200546996100310.1158/1535‑7163.MCT‑04‑0252 15956257
    [Google Scholar]
  105. HeS. YoonH.S. SuhB.J. EcclesM.R. PAX3 Is extensively expressed in benign and malignant tissues of the melanocytic lineage in humans.J. Invest. Dermatol.201013051465146810.1038/jid.2009.434 20107488
    [Google Scholar]
  106. KubicJ.D. YoungK.P. PlummerR.S. LudvikA.E. LangD. Pigmentation PAX‐ways: The role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease.Pigment Cell Melanoma Res.200821662764510.1111/j.1755‑148X.2008.00514.x 18983540
    [Google Scholar]
  107. PlummerR.S. SheaC.R. NelsonM. PowellS.K. FreemanD.M. DanC.P. LangD. PAX3 expression in primary melanomas and nevi.Mod. Pathol.200821552553010.1038/modpathol.3801019 18327212
    [Google Scholar]
  108. BondurandN. PingaultV. GoerichD.E. LemortN. SockE. Le CaignecC. WegnerM. GoossensM. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome.Hum. Mol. Genet.20009131907191710.1093/hmg/9.13.1907 10942418
    [Google Scholar]
  109. MöllerJ.K.S. LinowieckaK. GagatM. BrożynaA.A. FoksińskiM. Wolnicka-GlubiszA. PyzaE. ReiterR.J. TulicM.K. SlominskiA.T. SteinbrinkK. KleszczyńskiK. Melanogenesis is directly affected by metabolites of melatonin in human melanoma cells.Int. J. Mol. Sci.202324191494710.3390/ijms241914947 37834395
    [Google Scholar]
  110. DenningM.F. Specifying protein kinase C functions in melanoma.Pigment Cell Melanoma Res.201225446647610.1111/j.1755‑148X.2012.01015.x 22578192
    [Google Scholar]
  111. BellonoN.W. OanceaE.V. Ion transport in pigmentation.Arch. Biochem. Biophys.2014563354110.1016/j.abb.2014.06.020 25034214
    [Google Scholar]
  112. SlominskiA. KleszczyńskiK. SemakI. JanjetovicZ. ŻmijewskiM. KimT.K. SlominskiR. ReiterR. FischerT. Local melatoninergic system as the protector of skin integrity.Int. J. Mol. Sci.20141510177051773210.3390/ijms151017705 25272227
    [Google Scholar]
  113. SevillaA. ChéretJ. SlominskiR.M. SlominskiA.T. PausR. Revisiting the role of melatonin in human melanocyte physiology: A skin context perspective.J. Pineal Res.2022723e1279010.1111/jpi.12790 35133682
    [Google Scholar]
  114. SmitN. VicanovaJ. PavelS. The hunt for natural skin whitening agents.Int. J. Mol. Sci.200910125326534910.3390/ijms10125326 20054473
    [Google Scholar]
  115. ParvezS. KangM. ChungH.S. ChoC. HongM.C. ShinM.K. BaeH. Survey and mechanism of skin depigmenting and lightening agents.Phytother. Res.2006201192193410.1002/ptr.1954 16841367
    [Google Scholar]
  116. WrześniokD. BeberokA. OtrębaM. BuszmanE. Modulation of melanogenesis and antioxidant defense system in melanocytes by amikacin.Toxicol. In Vitro20132731102110810.1016/j.tiv.2013.02.002 23416261
    [Google Scholar]
  117. Gil-AdI. ShtaifB. LevkovitzY. DayagM. ZeldichE. WeizmanA. Characterization of phenothiazine-induced apoptosis in neuroblastoma and glioma cell lines: Clinical relevance and possible application for brain-derived tumors.J. Mol. Neurosci.200422318919810.1385/JMN:22:3:189 14997012
    [Google Scholar]
  118. OtrębaM. BeberokA. WrześniokD. RokJ. BuszmanE. Effect of thioridazine on antioxidant status of HEMn-DP melanocytes.Naunyn Schmiedebergs Arch. Pharmacol.2015388101097110410.1007/s00210‑015‑1144‑z 26105001
    [Google Scholar]
  119. PillaiyarT. ManickamM. NamasivayamV. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors.J. Enzyme Inhib. Med. Chem.201732140342510.1080/14756366.2016.1256882 28097901
    [Google Scholar]
  120. SarkarR. GokhaleN. GodseK. AilawadiP. AryaL. SarmaN. TorsekarR.G. SomaniV.K. AroraP. MajidI. RavichandranG. SinghM. AurangabadkarS. ArsiwalaS. SonthaliaS. SalimT. ShahS. Medical management of melasma: A review with consensus recommendations by Indian pigmentary expert group.Indian J. Dermatol.201762645010.4103/ijd.IJD_489_17 29263529
    [Google Scholar]
  121. DamevskaK. New aspects of melasma/novi aspekti melazme.Serb. J. Dermatol. Venerol.20146151810.2478/sjdv‑2014‑0001
    [Google Scholar]
  122. BandyopadhyayD. Topical treatment of melasma.Indian J. Dermatol.200954430330910.4103/0019‑5154.57602 20101327
    [Google Scholar]
  123. BaranskaA. ShawketA. JouveM. BaratinM. MalosseC. VoluzanO. Vu ManhT.P. FioreF. BajénoffM. BenarochP. DalodM. MalissenM. HenriS. MalissenB. Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal.J. Exp. Med.201821541115113310.1084/jem.20171608 29511065
    [Google Scholar]
  124. JimbowK. ObataH. PathakM.A. FitzpatrickT.B. Mechanism of depigmentation by hydroquinone.J. Invest. Dermatol.197462443644910.1111/1523‑1747.ep12701679 4206837
    [Google Scholar]
  125. MazurekK. PierzchałaE. Comparison of efficacy of products containing azelaic acid in melasma treatment.J. Cosmet. Dermatol.201615326928210.1111/jocd.12217 27028014
    [Google Scholar]
  126. ErtamI. MutluB. UnalI. AlperS. KivçakB. OzerO. Efficiency of ellagic acid and arbutin in melasma: A randomized, prospective, open‐label study.J. Dermatol.200835957057410.1111/j.1346‑8138.2008.00522.x 18837701
    [Google Scholar]
  127. BooY.C. Arbutin as a skin depigmenting agent with antimelanogenic and antioxidant properties.Antioxidants2021107112910.3390/antiox10071129 34356362
    [Google Scholar]
  128. LiuF. Advances in biomedical functions of natural whitening substances in the treatment of skin pigmentation diseases.Pharm20221411230810.3390/pharmaceutics14112308
    [Google Scholar]
  129. DeoK. DashK. SharmaY. VirmaniN. OberaiC. Kojic acid vis-a-vis its combinations with hydroquinone and betamethasone valerate in melasma: A randomized, single blind, comparative study of efficacy and safety.Indian J. Dermatol.201358428128510.4103/0019‑5154.113940 23918998
    [Google Scholar]
  130. KucukO.S. Current treatment approaches for melasma.Bezmialem Sci.201861546210.14235/bs.2018.1155
    [Google Scholar]
  131. SearleT. Al-NiaimiF. AliF.R. The top 10 cosmeceuticals for facial hyperpigmentation.Dermatol. Ther.2020336e1409510.1111/dth.14095 32720446
    [Google Scholar]
  132. MonteiroR. KishoreB.N. BhatR. SukumarD. MartisJ. GaneshH.K. A comparative study of the efficacy of 4% hydroquinone vs 0.75% Kojic acid cream in the treatment of facial melasma.Indian J. Dermatol.201358215710.4103/0019‑5154.108070 23716817
    [Google Scholar]
  133. BerardescaE. RigoniC. CantùA. CameliN. TedeschiA. LauretiT. Effectiveness of a new cosmetic treatment for melasma.J. Cosmet. Dermatol.20201971684169010.1111/jocd.13203 31746537
    [Google Scholar]
  134. ZolghadriS. BahramiA. Hassan KhanM.T. Munoz-MunozJ. Garcia-MolinaF. Garcia-CanovasF. SabouryA.A. A comprehensive review on tyrosinase inhibitors.J. Enzyme Inhib. Med. Chem.201934127930910.1080/14756366.2018.1545767 30734608
    [Google Scholar]
  135. LuY. TonissenK.F. Di TrapaniG. Modulating skin colour: Role of the thioredoxin and glutathione systems in regulating melanogenesis.Biosci. Rep.2021415BSR2021042710.1042/BSR20210427 33871027
    [Google Scholar]
  136. MiaoF. SuM.Y. JiangS. LuoL.F. ShiY. LeiT.C. Intramelanocytic acidification plays a role in the antimelanogenic and antioxidative properties of vitamin C and its derivatives.Oxid. Med. Cell. Longev.2019201911410.1155/2019/2084805 31214276
    [Google Scholar]
  137. HuhC.H. SeoK.I. ParkJ.Y. LimJ.G. EunH.C. ParkK.C. A randomized, double-blind, placebo-controlled trial of vitamin C iontophoresis in melasma.Dermatology2003206431632010.1159/000069943 12771472
    [Google Scholar]
  138. Espinal-PerezL.E. MoncadaB. Castanedo-CazaresJ.P. A double‐blind randomized trial of 5% ascorbic acid vs. 4% hydroquinone in melasma.Int. J. Dermatol.200443860460710.1111/j.1365‑4632.2004.02134.x 15304189
    [Google Scholar]
  139. FuB. LiH. WangX. LeeF.S.C. CuiS. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase.J. Agric. Food Chem.200553197408741410.1021/jf051258h 16159166
    [Google Scholar]
  140. ChoiY.K. RhoY.K. YooK.H. LimY.Y. LiK. KimB.J. SeoS.J. KimM.N. HongC.K. KimD.S. Effects of vitamin C vs. multivitamin on melanogenesis: Comparative study in vitro and in vivo.Int. J. Dermatol.201049221822610.1111/j.1365‑4632.2009.04336.x 20465650
    [Google Scholar]
  141. AmerM. MetwalliM. Topical liquiritin improves melasma.Int. J. Dermatol.200039429930110.1046/j.1365‑4362.2000.00943.x 10809983
    [Google Scholar]
  142. GoenkaS. NagabhushanamK. MajeedM. SimonS.R. Calebin-A, a curcuminoid analog inhibits α-MSH-induced melanogenesis in B16F10 mouse melanoma cells.Cosmetics201963516210.3390/cosmetics6030051
    [Google Scholar]
  143. González-MolinaV. Martí-PinedaA. GonzálezN. Topical treatments for melasma and their mechanism of action.J. Clin. Aesthet. Dermatol.20221551928
    [Google Scholar]
  144. SarkarR. GargV. BansalS. SethiS. GuptaC. Comparative evaluation of efficacy and tolerability of glycolic acid, salicylic mandelic acid, and phytic acid combination peels in melasma.Dermatol. Surg.201642338439110.1097/DSS.0000000000000642 26859648
    [Google Scholar]
  145. Del RosarioE. Florez-PollackS. ZapataL.Jr HernandezK. Tovar-GarzaA. RodriguesM. HynanL.S. PandyaA.G. Randomized, placebo-controlled, double-blind study of oral tranexamic acid in the treatment of moderate-to-severe melasma.J. Am. Acad. Dermatol.201878236336910.1016/j.jaad.2017.09.053 28987494
    [Google Scholar]
  146. ChoH.H. ChoiM. ChoS. LeeJ.H. Role of oral tranexamic acid in melasma patients treated with IPL and low fluence QS Nd:YAG laser.J. Dermatolog. Treat.201324429229610.3109/09546634.2011.643220 22103770
    [Google Scholar]
  147. FossM. NethersK. BhukhanA. NathooR. Oral tranexamic acid for the treatment of melasma: A case series and novel dosing regimen.J. Drugs Dermatol.202221439339810.36849/JDD.6663 35389597
    [Google Scholar]
  148. PekmezciE. A novel triple combination in treatment of melasma: Significant outcome with far less actives.J. Cosmet. Dermatol.20191861700170410.1111/jocd.12904 30920111
    [Google Scholar]
  149. Banavase ChannakeshavaiahR. Andanooru ChandrappaN.K. Topical metformin in the treatment of melasma: A preliminary clinical trial.J. Cosmet. Dermatol.20201951161116410.1111/jocd.13145 31502392
    [Google Scholar]
  150. McKeseyJ. Tovar-GarzaA. PandyaA.G. Melasma treatment: An evidence-based review.Am. J. Clin. Dermatol.202021217322510.1007/s40257‑019‑00488‑w 31802394
    [Google Scholar]
  151. ShahS. AurangabadkarS. Laser toning in melasma.J. Cutan. Aesthet. Surg.2019122768410.4103/JCAS.JCAS_179_18 31413475
    [Google Scholar]
  152. OrtonneJ.P. Retinoid therapy of pigmentary disorders.Dermatol. Ther.200619528028810.1111/j.1529‑8019.2006.00085.x 17014483
    [Google Scholar]
  153. WangJ.V. SchoenbergE. SaediN. Bakuchiol as a trendy ingredient in skincare: Recent evidence.Skinmed2019173188189 31496474
    [Google Scholar]
  154. YousefiA. KhoozaniZ.K. ForooshaniS.Z. OmraniN. MoiniA.M. EskandariY. Is topical zinc effective in the treatment of melasma? A double-blind randomized comparative study.Dermatol. Surg.2014401333710.1111/dsu.12296 24237751
    [Google Scholar]
  155. DraelosZ.D. Skin lightening preparations and the hydroquinone controversy.Dermatol. Ther.200720530831310.1111/j.1529‑8019.2007.00144.x 18045355
    [Google Scholar]
  156. ZhouL.L. BaibergenovaA. Melasma: Systematic review of the systemic treatments.Int. J. Dermatol.201756990290810.1111/ijd.13578 28239840
    [Google Scholar]
  157. SarkarR. BansalA. AilawadiP. Future therapies in melasma: What lies ahead?Indian J. Dermatol. Venereol. Leprol.202086181710.4103/ijdvl.IJDVL_633_18 31793496
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010301957240424110023
Loading
/content/journals/cpb/10.2174/0113892010301957240424110023
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): hyperpigmentation; melanins; Melanocytes; melasma; tyrosinase; ultraviolet radiation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test