Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Clustered Regions of Interspersed Palindromic Repeat (CRISPR)-based techniques have been utilized in various research areas, including agriculture, biotechnology, and medicine. With the use of a short sequence guide RNA and CRISPR-associated (Cas) protein, this technique allows for robust, site-specific manipulation of the genome, aiding researchers in making important biomedical discoveries and scientific advancements. In this review, we explored the applications of CRISPR/Cas systems in the field of parasitology for the identification and validation of novel functional genes, diagnosis of parasitic infections, reduction of parasite virulence, and the disruption of disease transmission. We also discussed how CRISPR can be used for the development of therapeutics, vaccines, and drug discovery. Furthermore, the challenges and future perspectives of this technology are also highlighted.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010316710240626042205
2024-07-12
2025-09-13
Loading full text...

Full text loading...

References

  1. MalariaAvailable from: https://www.who.int/news-room/fact-sheets/detail/malaria (Accessed June 16, 2023).
  2. LopesL.B. NicolinoR. CapanemaR.O. OliveiraC.S.F. HaddadJ.P.A. EcksteinC. Economic impacts of parasitic diseases in cattle. CABI Rev: Perspect. Agric., Vet Sci.Nutr. & Nat. Res.201510051110
    [Google Scholar]
  3. MohsinM. LiY. ZhangX. WangY. HuangZ. YinG. ZhangZ. Development of CRISPR-CAS9 based RNA drugs against Eimeria tenella infection.Genomics202111364126413510.1016/j.ygeno.2021.10.019 34740777
    [Google Scholar]
  4. SerajianS. AhmadpourE. OliveiraS.M.R. PereiraM.L. HeidarzadehS. CRISPR-Cas technology: Emerging applications in clinical microbiology and infectious diseases.Pharmaceuticals20211411117110.3390/ph14111171 34832953
    [Google Scholar]
  5. DuX. McManusD.P. FrenchJ.D. JonesM.K. YouH. CRISPR/Cas9: A new tool for the study and control of helminth parasites.BioEssays2021431200018510.1002/bies.202000185 33145822
    [Google Scholar]
  6. MunawarN. AhmadA. CRISPR/Cas System: An Introduction.CRISPR Crops2021135
    [Google Scholar]
  7. ZhangC. XiaoB. JiangY. ZhaoY. LiZ. GaoH. LingY. WeiJ. LiS. LuM. SuX. CuiH. YuanJ. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system.MBio201454e014141410.1128/mBio.01414‑14 24987097
    [Google Scholar]
  8. GrzybekM. GolonkoA. GórskaA. SzczepaniakK. StracheckaA. LassA. LisowskiP. The CRISPR/Cas9 system sheds new lights on the biology of protozoan parasites.Appl. Microbiol. Biotechnol.2018102114629464010.1007/s00253‑018‑8927‑3 29626235
    [Google Scholar]
  9. YouH. GordonC.A. MacGregorS.R. CaiP. McManusD.P. Potential of the CRISPR‐Cas system for improved parasite diagnosis.BioEssays2022444210028610.1002/bies.202100286 35142378
    [Google Scholar]
  10. NacerA. ClaesA. RobertsA. Scheidig-BenatarC. SakamotoH. Discovery of a novel and conserved plasmodium falciparum exported protein that is important for adhesion of pfemp 1 at the surface of infected erythrocytes.Cell. Microbiol.201517812051216
    [Google Scholar]
  11. KanjeeU. GrüringC. ChaandM. LinK.M. EganE. ManzoJ. JonesP.L. YuT. BarkerR.Jr WeekesM.P. DuraisinghM.T. CRISPR/Cas9 knockouts reveal genetic interaction between strain-transcendent erythrocyte determinants of Plasmodium falciparum invasion.Proc. Natl. Acad. Sci. USA201711444E9356936510.1073/pnas.1711310114 29078358
    [Google Scholar]
  12. DongY. SimõesM.L. MaroisE. DimopoulosG. CRISPR/Cas9 -mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection.PLoS Pathog.2018143e100689810.1371/journal.ppat.1006898 29518156
    [Google Scholar]
  13. ZhangG. NiuG. FrancaC.M. DongY. WangX. ButlerN.S. DimopoulosG. LiJ. Anopheles Midgut FREP1 Mediates Plasmodium Invasion.J. Biol. Chem.201529027164901650110.1074/jbc.M114.623165 25991725
    [Google Scholar]
  14. LuckyA.B. WangC. LiX. LiangX. MuneerA. MiaoJ. Transforming the CRISPR/dCas9-based gene regulation technique into a forward screening tool in Plasmodium falciparum.iScience202427410960210.1016/j.isci.2024.109602 38617559
    [Google Scholar]
  15. ZhangC. YangS. QuansahE. ZhangZ. DaW. WangB. The dCas9-based genome editing in Plasmodium yoelii.MSphere202493e000952410.1128/msphere.00095‑24 38411120
    [Google Scholar]
  16. SidikS.M. HuetD. LouridoS. CRISPR-Cas9-based genome-wide screening of Toxoplasma gondii.Nat. Protoc.201813230732310.1038/nprot.2017.131 29323662
    [Google Scholar]
  17. KrishnamurthyS. MaruP. WangY. BitewM.A. MukhopadhyayD. Yamaryo-BottéY. Paredes-SantosT.C. SangaréL.O. SwaleC. BottéC.Y. SaeijJ.P.J. CRISPR screens identify Toxoplasma genes that determine parasite fitness in interferon gamma-stimulated human cells.MBio2023142e000602310.1128/mbio.00060‑23 36916910
    [Google Scholar]
  18. WangY. SangaréL.O. Paredes-SantosT.C. HassanM.A. KrishnamurthyS. FurutaA.M. MarkusB.M. LouridoS. SaeijJ.P.J. Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages.Nat. Commun.2020111525810.1038/s41467‑020‑18991‑8
    [Google Scholar]
  19. ChenY. LiuQ. XueJ.X. ZhangM.Y. GengX.L. WangQ. JiangW. Genome-wide CRISPR/Cas9 screen identifies new genes critical for defense against oxidant stress in Toxoplasma gondii.Front. Microbiol.20211267070510.3389/fmicb.2021.670705 34163449
    [Google Scholar]
  20. LeeR.A. PuigH.D. NguyenP.Q. Angenent-MariN.M. DonghiaN.M. McGeeJ.P. DvorinJ.D. KlapperichC.M. PollockN.R. CollinsJ.J. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria.Proc. Natl. Acad. Sci. USA202011741257222573110.1073/pnas.2010196117 32958655
    [Google Scholar]
  21. CunninghamC.H. HennellyC.M. LinJ.T. UbaleeR. BoyceR.M. MulogoE.M. HathawayN. ThwaiK.L. PhanzuF. KalonjiA. MwandagalirwaK. TshefuA. JulianoJ.J. ParrJ.B. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping.EBioMedicine20216810341510.1016/j.ebiom.2021.103415 34139428
    [Google Scholar]
  22. ZhengM. ZhangM. LiH. WuS. ZhaoY. ZhangJ. ZhouY. JallohM.B. ZhangK. ChenL. MiZ. CuiY. HouL. Rapid, sensitive, and convenient detection of Plasmodium falciparum infection based on CRISPR and its application in detection of asymptomatic infection.Acta Trop.202424910706210.1016/j.actatropica.2023.107062 37923286
    [Google Scholar]
  23. MacGregorS. McManusD.P. Development of a novel CRISPR/Cas13-based assay for diagnosis of Schistosoma Japonicum infection.medRxiv2022
    [Google Scholar]
  24. YangZ. WangJ. QiY. ShiY. LiF. WangW. TianX. MeiX. ZhangZ. WangS. A novel detection method based on MIRA-CRISPR/Cas13a-LFD targeting the repeated DNA sequence of Trichomonas vaginalis.Parasit. Vectors20241711410.1186/s13071‑023‑06106‑3 38191422
    [Google Scholar]
  25. CherkaouiD. MesquitaS.G. HuangD. LugliE.B. WebsterB.L. McKendryR.A. CRISPR-assisted test for Schistosoma haematobium.Sci. Rep.2023131499010.1038/s41598‑023‑31238‑y 36973334
    [Google Scholar]
  26. SimaN. Dujeancourt-HenryA. PerlazaB.L. UngeheuerM.N. RotureauB. GloverL. SHERLOCK4HAT: A CRISPR-based tool kit for diagnosis of human african trypanosomiasis.EBioMedicine20228510430810430810.1016/j.ebiom.2022.104308 36374773
    [Google Scholar]
  27. YuF. ZhangK. WangY. LiD. CuiZ. HuangJ. ZhangS. LiX. ZhangL. CRISPR/Cas12a-based on-site diagnostics of Cryptosporidium parvum IId-subtype-family from human and cattle fecal samples.Parasit. Vectors202114120810.1186/s13071‑021‑04709‑2 33879230
    [Google Scholar]
  28. SutipatanasomboonA. WongsantichonJ. SakdeeS. NaksithP. WatthanadirekA. AnuracpreedaP. BlacksellS.D. SaisawangC. RPA-CRISPR/Cas12a assay for the diagnosis of bovine Anaplasma marginale infection.Sci. Rep.2024141782010.1038/s41598‑024‑58169‑6 38570576
    [Google Scholar]
  29. WuM. WuH. ChenX. WuF. MaG. DuA. YangY. RPA-CRISPR/Cas9-based method for the detection of Toxoplasma gondii: A proof of concept.Vet. Parasitol.202432711011510.1016/j.vetpar.2024.110115 38232511
    [Google Scholar]
  30. ZhangC. GaoH. YangZ. JiangY. LiZ. WangX. XiaoB. SuX. CuiH. YuanJ. CRISPR/Cas9 mediated sequential editing of genes critical for ookinete motility in Plasmodium yoelii.Mol. Biochem. Parasitol.20172121810.1016/j.molbiopara.2016.12.010 28034675
    [Google Scholar]
  31. Marin-MogollonC. Chimeric Plasmodium Falciparum Parasites Expressing Plasmodium Vivax circumsporozoite protein fail to produce salivary gland sporozoites.Malar. J.2018171116 29291736
    [Google Scholar]
  32. IttiprasertW. MannV.H. KarinshakS.E. CoghlanA. RinaldiG. SankaranarayananG. ChaideeA. TannoT. KumkhaekC. PrangtawornP. Mentink-KaneM.M. CochranC.J. DriguezP. HolroydN. TraceyA. RodpaiR. EvertsB. HokkeC.H. HoffmannK.F. BerrimanM. BrindleyP.J. Programmed genome editing of the omega-1 ribonuclease of the blood fluke, Schistosoma mansoni.eLife20198e4133710.7554/eLife.41337 30644357
    [Google Scholar]
  33. YouH. MayerJ.U. JohnstonR.L. SivakumaranH. RanasingheS. RiveraV. KondrashovaO. KoufariotisL.T. DuX. DriguezP. FrenchJ.D. WaddellN. DukeM.G. IttiprasertW. MannV.H. BrindleyP.J. JonesM.K. McManusD.P. CRISPR/Cas9‐mediated genome editing of Schistosoma mansoni acetylcholinesterase.FASEB J.2021351e2120510.1096/fj.202001745RR 33337558
    [Google Scholar]
  34. ChaiyadetS. TangkawattanaS. SmoutM.J. IttiprasertW. MannV.H. DeenonpoeR. ArunsanP. LoukasA. BrindleyP.J. LahaT. Knockout of liver fluke granulin, Ov-grn-1, impedes malignant transformation during chronic infection with Opisthorchis viverrini.PLoS Pathog.2022189e1010839101083910.1371/journal.ppat.1010839 36137145
    [Google Scholar]
  35. ArunsanP. IttiprasertW. SmoutM.J. CochranC.J. MannV.H. ChaiyadetS. KarinshakS.E. SripaB. YoungN.D. SotilloJ. LoukasA. BrindleyP.J. LahaT. Programmed knockout mutation of liver fluke granulin attenuates virulence of infection-induced hepatobiliary morbidity.eLife20198e4146310.7554/eLife.41463 30644359
    [Google Scholar]
  36. GangS.S. CastellettoM.L. BryantA.S. YangE. MancusoN. LopezJ.B. PellegriniM. HallemE.A. Targeted mutagenesis in a human-parasitic nematode.PLoS Pathog.20171310e100667510.1371/journal.ppat.1006675 29016680
    [Google Scholar]
  37. LanderN. LiZ.H. NiyogiS. DocampoR. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment.MBio201564e010121510.1128/mBio.01012‑15 26199333
    [Google Scholar]
  38. SharmaR. Avendaño RangelF. Reis-CunhaJ.L. MarquesL.P. FigueiraC.P. BorbaP.B. VianaS.M. BenekeT. BartholomeuD.C. de OliveiraC.I. Targeted deletion of centrin in Leishmania braziliensis using CRISPR-cas9-based editing.Front. Cell. Infect. Microbiol.20221179041810.3389/fcimb.2021.790418 35252020
    [Google Scholar]
  39. ZhangZ.W. WangM. SunL.X. ElsheikhaH.M. LeiC.L. WangJ.L. FuB.Q. LuoJ.X. ZhuX.Q. LiT.T. Trx4, a novel thioredoxin protein, is important for Toxoplasma gondii fitness.Parasit. Vectors202417117810.1186/s13071‑024‑06259‑9 38576040
    [Google Scholar]
  40. CurtisC.F. Possible use of translocations to fix desirable genes in insect pest populations.Nature1968218513936836910.1038/218368a0 5649682
    [Google Scholar]
  41. GantzV.M. JasinskieneN. TatarenkovaO. FazekasA. MaciasV.M. BierE. JamesA.A. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.Proc. Natl. Acad. Sci. USA201511249E6736674310.1073/pnas.1521077112 26598698
    [Google Scholar]
  42. MaciasV.M. McKeandS. Chaverra-RodriguezD. HughesG.L. FazekasA. PujhariS. JasinskieneN. JamesA.A. RasgonJ.L. Cas9-mediated gene-editing in the malaria mosquito Anopheles stephensi by ReMOT control.G320201041353136010.1534/g3.120.401133 32122959
    [Google Scholar]
  43. Carballar-LejarazúR. OgaugwuC. TusharT. KelseyA. PhamT.B. MurphyJ. SchmidtH. LeeY. LanzaroG.C. JamesA.A. Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae.Proc. Natl. Acad. Sci. USA202011737228052281410.1073/pnas.2010214117 32839345
    [Google Scholar]
  44. InbarE. EappenA.G. AlfordR.T. ReidW. HarrellR.A. HosseiniM. ChakravartyS. LiT. SimB.K.L. BillingsleyP.F. HoffmanS.L. Knockout of Anopheles stephensi immune gene LRIM1 by CRISPR-Cas9 reveals its unexpected role in reproduction and vector competence.PLoS Pathog.20211711e100977010.1371/journal.ppat.1009770 34784388
    [Google Scholar]
  45. HammondA. GaliziR. KyrouK. SimoniA. SiniscalchiC. KatsanosD. GribbleM. BakerD. MaroisE. RussellS. BurtA. WindbichlerN. CrisantiA. NolanT.A. CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.Nat. Biotechnol.2016341788310.1038/nbt.3439 26641531
    [Google Scholar]
  46. YangJ. SchleicherT.R. DongY. ParkH.B. LanJ. CresswellP. CrawfordJ. DimopoulosG. FikrigE. Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection.J. Exp. Med.20202171e2019068210.1084/jem.20190682 31658986
    [Google Scholar]
  47. KyrouK. HammondA.M. GaliziR. KranjcN. BurtA. BeaghtonA.K. NolanT. CrisantiA.A. CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes.Nat. Biotechnol.201836111062106610.1038/nbt.4245 30247490
    [Google Scholar]
  48. CoelhoF.M. Diminished adherence of Biomphalaria Glabrata embryonic cell line to sporocysts of Schistosoma Mansoni following programmed knockout of the allograft inflammatory factor.Parasit. Vectors202013511
    [Google Scholar]
  49. GrewelleR.E. Perez-SaezJ. TyckoJ. NamigaiE.K.O. RickardsC.G. De LeoG.A. Modeling the efficacy of CRISPR gene drive for snail immunity on schistosomiasis control.PLoS Negl. Trop. Dis.20221610e001089410.1371/journal.pntd.0010894 36315503
    [Google Scholar]
  50. SokolowS.H. WoodC.L. JonesI.J. SwartzS.J. LopezM. HsiehM.H. LaffertyK.D. KurisA.M. RickardsC. De LeoG.A. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best.PLoS Negl. Trop. Dis.2016107e000479410.1371/journal.pntd.0004794 27441556
    [Google Scholar]
  51. PaloqueL. CoppéeR. StokesB.H. GnädigN.F. NiaréK. AugereauJ.M. FidockD.A. ClainJ. Benoit-VicalF. Mutation in the Plasmodium falciparum BTB/POZ domain of K13 protein confers artemisinin resistance.Antimicrob. Agents Chemother.2022661e013202110.1128/AAC.01320‑21 34606334
    [Google Scholar]
  52. SimwelaN.V. HughesK.R. RobertsA.B. RennieM.T. BarrettM.P. WatersA.P. Experimentally engineered mutations in a ubiquitin hydrolase, UBP-1, modulate in vivo susceptibility to artemisinin and chloroquine in plasmodium berghei.Antimicrob. Agents Chemother.2020647e024841910.1128/AAC.02484‑19 32340987
    [Google Scholar]
  53. BreglioK.F. AmatoR. EastmanR. LimP. SaJ.M. GuhaR. GanesanS. DorwardD.W. Klumpp-ThomasC. McKnightC. FairhurstR.M. RobertsD. ThomasC. SimonA.K. A single nucleotide polymorphism in the Plasmodium falciparum atg18 gene associates with artemisinin resistance and confers enhanced parasite survival under nutrient deprivation.Malar. J.201817139110.1186/s12936‑018‑2532‑x 30367653
    [Google Scholar]
  54. DansM.G. PiirainenH. NguyenW. KhuranaS. MehraS. RazookZ. GeogheganN.D. DawsonA.T. DasS. Parkyn SchneiderM. JonsdottirT.K. GabrielaM. GanchevaM.R. TonkinC.J. MollardV. GoodmanC.D. McFaddenG.I. WilsonD.W. RogersK.L. BarryA.E. CrabbB.S. de Koning-WardT.F. SleebsB.E. KursulaI. GilsonP.R. Sulfonylpiperazine compounds prevent Plasmodium falciparum invasion of red blood cells through interference with actin-1/profilin dynamics.PLoS Biol.2023214e3002066e300206610.1371/journal.pbio.3002066 37053271
    [Google Scholar]
  55. LiraR. SundarS. MakhariaA. KenneyR. GamA. SaraivaE. SacksD. Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani.J. Infect. Dis.1999180256456710.1086/314896 10395884
    [Google Scholar]
  56. Kazemi-RadE. MohebaliM. Khadem-ErfanM.B. SaffariM. RaoofianR. HajjaranH. HadighiR. KhamesipourA. RezaieS. AbedkhojastehH. HeidariM. Identification of antimony resistance markers in Leishmania tropica field isolates through a cDNA-AFLP approach.Exp. Parasitol.2013135234434910.1016/j.exppara.2013.07.018 23928349
    [Google Scholar]
  57. SrivastavaS. MishraJ. GuptaA.K. SinghA. ShankarP. SinghS. Laboratory confirmed miltefosine resistant cases of visceral leishmaniasis from India.Parasit. Vectors20171014910.1186/s13071‑017‑1969‑z 28137296
    [Google Scholar]
  58. DorloT.P.C. van ThielP.P.A.M. HuitemaA.D.R. KeizerR.J. de VriesH.J.C. BeijnenJ.H. de VriesP.J. Pharmacokinetics of miltefosine in Old World cutaneous leishmaniasis patients.Antimicrob. Agents Chemother.20085282855286010.1128/AAC.00014‑08 18519729
    [Google Scholar]
  59. WildeM.L. TrigliaT. MarapanaD. ThompsonJ.K. KouzmitchevA.A. BullenH.E. GilsonP.R. CowmanA.F. TonkinC.J. Protein kinase a is essential for invasion of Plasmodium falciparum into human erythrocytes.MBio2019105e019721910.1128/mBio.01972‑19 31594816
    [Google Scholar]
  60. BansalA. Molina-CruzA. BrzostowskiJ. MuJ. MillerL.H. Plasmodium falciparum calcium-dependent protein kinase 2 is critical for male gametocyte exflagellation but not essential for asexual proliferation.MBio201785e016561710.1128/mBio.01656‑17 29042501
    [Google Scholar]
  61. SchalkwijkJ. AllmanE.L. JansenP.A.M. de VriesL.E. VerhoefJ.M.J. JackowskiS. BotmanP.N.M. Beuckens-SchortinghuisC.A. KoolenK.M.J. BolscherJ.M. VosM.W. MillerK. ReevesS.A. PettH. TrevittG. WittlinS. ScheurerC. SaxS. FischliC. Angulo-BarturenI. Jiménez-DiazM.B. JoslingG. KooijT.W.A. BonnertR. CampoB. BlaauwR.H. RutjesF.P.J.T. SauerweinR.W. LlinásM. HermkensP.H.H. DecheringK.J. Antimalarial pantothenamide metabolites target acetyl–coenzyme A biosynthesis in Plasmodium falciparum.Sci. Transl. Med.201911510eaas991710.1126/scitranslmed.aas9917 31534021
    [Google Scholar]
  62. SummersR.L. PasajeC.F.A. PiscoJ.P. StriepenJ. LuthM.R. KumpornsinK. CarpenterE.F. MunroJ.T. LinD. PlaterA. PunekarA.S. ShepherdA.M. ShepherdS.M. VanaerschotM. MurithiJ.M. RubianoK. AkidilA. OttilieS. MittalN. DilmoreA.H. Chemogenomics identifies acetyl-coenzyme a synthetase as a target for malaria treatment and prevention.Cell Chem. Biol.2021292191201 34348113
    [Google Scholar]
  63. GisselbergJ.E. HerreraZ. OrchardL.M. LlinásM. YehE. Specific inhibition of the bifunctional farnesyl/geranylgeranyl diphosphate synthase in malaria parasites via a new small-molecule binding site.Cell Chem. Biol.2018252185193.e510.1016/j.chembiol.2017.11.010 29276048
    [Google Scholar]
  64. BergquistR. UtzingerJ. KeiserJ. Controlling schistosomiasis with praziquantel: How much longer without a viable alternative?Infect. Dis. Poverty2017617410.1186/s40249‑017‑0286‑2 28351414
    [Google Scholar]
  65. LoN.C. GurarieD. YoonN. CoulibalyJ.T. BendavidE. AndrewsJ.R. KingC.H. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis.Proc. Natl. Acad. Sci. USA20181154E58459110.1073/pnas.1708729114 29301964
    [Google Scholar]
  66. StroehleinA.J. GasserR.B. HallR.S. YoungN.D. Interactive online application for the prediction, ranking and prioritisation of drug targets in Schistosoma haematobium.Parasit. Vectors201811160510.1186/s13071‑018‑3197‑6 30482220
    [Google Scholar]
  67. DuP. GiriB.R. LiuJ. XiaT. GreveldingC.G. ChengG. Proteomic and deep sequencing analysis of extracellular vesicles isolated from adult male and female Schistosoma japonicum.PLoS Negl. Trop. Dis.2020149e000861810.1371/journal.pntd.0008618 32986706
    [Google Scholar]
  68. KenneyE. MannV. H. Differential excretory/secretory proteome of the adult female and male stages of the human blood flukeSchistosoma Mansoni. Front. Parasitol.20221
    [Google Scholar]
  69. BrunR. BlumJ. ChappuisF. BurriC. Human African trypanosomiasis.Lancet2010375970914815910.1016/S0140‑6736(09)60829‑1 19833383
    [Google Scholar]
  70. CastroJ.A. deMeccaM.M. BartelL.C. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis).Hum. Exp. Toxicol.200625847147910.1191/0960327106het653oa 16937919
    [Google Scholar]
  71. JensenB.C. BoosterN. VidadalaR.S.R. MalyD.J. ParsonsM. A novel protein kinase is essential in bloodstream Trypanosoma brucei.Int. J. Parasitol.201646847948310.1016/j.ijpara.2016.03.001 27018127
    [Google Scholar]
  72. ChiurilloM.A. JensenB.C. DocampoR. Drug target validation of the protein kinase AEK1, essential for proliferation, host cell invasion, and intracellular replication of the human pathogen trypanosoma cruzi.Microbiol. Spectr.202192e007382110.1128/Spectrum.00738‑21 34585973
    [Google Scholar]
  73. CordeiroA.T. CáceresA.J. VertommenD. ConcepciónJ.L. MichelsP.A.M. VerséesW. The crystal structure of Trypanosoma cruzi glucokinase reveals features determining oligomerization and anomer specificity of hexose-phosphorylating enzymes.J. Mol. Biol.200737251215122610.1016/j.jmb.2007.07.021 17761195
    [Google Scholar]
  74. MercaldiG.F. D’AntonioE.L. AguessiA. RodriguezA. CordeiroA.T. Discovery of antichagasic inhibitors by high-throughput screening with Trypanosoma cruzi glucokinase.Bioorg. Med. Chem. Lett.201929151948195310.1016/j.bmcl.2019.05.037 31133533
    [Google Scholar]
  75. OmolabiK.F. OdeniranP.O. OlotuF.A. SolimanM.E.S. A mechanistic probe into the dual inhibition of T. cruzi glucokinase and hexokinase in chagas disease treatment – a stone killing two birds?Chem. Biodivers.2021182e200086310.1002/cbdv.202000863 33411971
    [Google Scholar]
  76. LimaM.L. TullochL.B. Corpas-LopezV. CarvalhoS. WallR.J. MilneR. RicoE. PattersonS. GilbertI.H. MonizS. MacLeanL. TorrieL.S. MorgilloC. HornD. ZuccottoF. WyllieS. Identification of a proteasome-targeting arylsulfonamide with potential for the treatment of chagas’ disease.Antimicrob. Agents Chemother.2022661e015352110.1128/AAC.01535‑21 34606338
    [Google Scholar]
  77. AldayH. DoggettJ. Drugs in development for toxoplasmosis: Advances, challenges, and current status.Drug Des. Devel. Ther.20171127329310.2147/DDDT.S60973 28182168
    [Google Scholar]
  78. PalenciaA. BougdourA. Brenier-PinchartM.P. TouquetB. BertiniR.L. SensiC. GayG. VollaireJ. JosserandV. EasomE. FreundY.R. PellouxH. RosenthalP.J. CusackS. HakimiM.A. Targeting Toxoplasma gondiiCPSF 3 as a new approach to control toxoplasmosis.EMBO Mol. Med.20179338539410.15252/emmm.201607370 28148555
    [Google Scholar]
  79. BowdenG.D. ReisP.M. RogersM.B. Bone RelatR.M. BraytonK.A. WilsonS.K. Di GenovaB.M. KnollL.J. NepveuxV. F.J.; Tai, A.K.; Ramadhar, T.R.; Clardy, J.; O’Connor, R.M. A conserved coccidian gene is involved in Toxoplasma sensitivity to the anti-apicomplexan compound, tartrolon E.Int. J. Parasitol. Drugs Drug Resist.2020141710.1016/j.ijpddr.2020.07.003 32738587
    [Google Scholar]
  80. ZhengJ. JiaH. ZhengY. Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9.Int. J. Parasitol.2015452-314114810.1016/j.ijpara.2014.09.003 25444863
    [Google Scholar]
  81. LiJ. GuoH. GalonE.M. GaoY. LeeS.H. LiuM. LiY. JiS. JiaH. XuanX. Hydroxylamine and carboxymethoxylamine can inhibit Toxoplasma gondii growth through an aspartate aminotransferase-independent pathway.Antimicrob. Agents Chemother.2020643e018891910.1128/AAC.01889‑19 31907178
    [Google Scholar]
  82. BigotS. LeprohonP. VasquezA. BhadoriaR. SkoutaR. OuelletteM. Thiophene derivatives activity against the protozoan parasite Leishmania infantum.Int. J. Parasitol. Drugs Drug Resist.202321132010.1016/j.ijpddr.2022.11.004 36525934
    [Google Scholar]
  83. DasS. BanerjeeA. KamranM. EjaziS.A. AsadM. AliN. ChakrabartiS. A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate.J. Biol. Chem.2020295299934994710.1074/jbc.RA120.014587 32471865
    [Google Scholar]
  84. EscrivaniD.O. CharltonR.L. CarusoM.B. Burle-CaldasG.A. BorsodiM.P.G. ZingaliR.B. Arruda-CostaN. Palmeira-MelloM.V. de JesusJ.B. SouzaA.M.T. Abrahim-VieiraB. Freitag-PohlS. PohlE. DennyP.W. Rossi-BergmannB. SteelP.G. Chalcones identify cTXNPx as a potential antileishmanial drug target.PLoS Negl. Trop. Dis.20211511e0009951000995110.1371/journal.pntd.0009951 34780470
    [Google Scholar]
  85. GiriS. ShahaC. Leishmania donovani parasite requires Atg8 protein for infectivity and survival under stress.Cell Death Dis.2019101180810.1038/s41419‑019‑2038‑7 31649242
    [Google Scholar]
  86. WangX. ZhouY. ZhangY. SongX. ShiC. FuY. LiuL. MuC. YinF. SongW. WangC. Establishment of CRISPR-Cas-based antiparasitic agents for the swimming crab parasite Mesanophrys sp.Aquaculture202457974022810.1016/j.aquaculture.2023.740228
    [Google Scholar]
  87. Burle-CaldasG.A. dos SantosN.S.A. de CastroJ.T. MuggeF.L.B. Grazielle-SilvaV. OliveiraA.E.R. PereiraM.C.A. Reis-CunhaJ.L. dos SantosA.C. GomesD.A. BartholomeuD.C. MorettiN.S. SchenkmanS. GazzinelliR.T. TeixeiraS.M.R. Disruption of active trans-sialidase genes impairs egress from mammalian host cells and generates highly attenuated trypanosoma cruzi parasites.MBio2022131e034782110.1128/mbio.03478‑21 35073735
    [Google Scholar]
  88. JhaB.K. VarikutiS. VermaC. ShivahareR. BishopN. Dos SantosG.P. McDonaldJ. SurA. MylerP.J. SchenkmanS. SatoskarA.R. McGwireB.S. Immunization with a Trypanosoma Cruzi cyclophilin-19 deletion mutant protects against acute chagas disease in mice. npj.Vaccines202381115 38276660
    [Google Scholar]
  89. RamakrishnanC. MaierS. WalkerR.A. RehrauerH. JoekelD.E. WinigerR.R. BassoW.U. GriggM.E. HehlA.B. DeplazesP. SmithN.C. An experimental genetically attenuated live vaccine to prevent transmission of Toxoplasma gondii by cats.Sci. Rep.201991147410.1038/s41598‑018‑37671‑8 30728393
    [Google Scholar]
  90. ZhangW.W. KarmakarS. GannavaramS. DeyR. LypaczewskiP. IsmailN. SiddiquiA. SimonyanV. OliveiraF. Coutinho-AbreuI.V. DeSouza-VieiraT. MenesesC. OristianJ. SerafimT.D. MusaA. NakamuraR. SaljoughianN. VolpedoG. SatoskarM. SatoskarS. DagurP.K. McCoyJ.P. KamhawiS. ValenzuelaJ.G. HamanoS. SatoskarA.R. MatlashewskiG. NakhasiH.L. A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing.Nat. Commun.2020111346110.1038/s41467‑020‑17154‑z 32651371
    [Google Scholar]
  91. AyanoğluF.B. Elçi̇nA.E. Elçi̇nY.M. Bioethical issues in genome editing by CRISPR-Cas9 technology.Turk. J. Biol.202044211012010.3906/biy‑1912‑52 32256147
    [Google Scholar]
  92. LiT. YangY. QiH. CuiW. ZhangL. FuX. HeX. LiuM. LiP. YuT. CRISPR/Cas9 therapeutics: Progress and prospects.Signal Transduct. Target. Ther.2023813610.1038/s41392‑023‑01309‑7 36646687
    [Google Scholar]
  93. SankaranarayananG. CoghlanA. DriguezP. LotkowskaM.E. SandersM. HolroydN. TraceyA. BerrimanM. RinaldiG. Large CRISPR-Cas-induced deletions in the oxamniquine resistance locus of the human parasite Schistosoma mansoni.Wellcome Open Res.2020517810.12688/wellcomeopenres.16031.2 32789192
    [Google Scholar]
  94. ArribereJ.A. BellR.T. FuB.X.H. ArtilesK.L. HartmanP.S. FireA.Z. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans.Genetics2014198383784610.1534/genetics.114.169730 25161212
    [Google Scholar]
  95. HamiltonW.L. ClaessensA. OttoT.D. KekreM. FairhurstR.M. RaynerJ.C. KwiatkowskiD. Extreme mutation bias and high AT content in Plasmodium falciparum.Nucleic Acids Res.201745418891901 27994033
    [Google Scholar]
  96. BryantJ.M. BaumgartenS. GloverL. HutchinsonS. RachidiN. CRISPR in parasitology: Not exactly cut and dried!Trends Parasitol.201935640942210.1016/j.pt.2019.03.004 31006600
    [Google Scholar]
  97. IshizakiT. HernandezS. PaolettaM.S. SandersonT. BushellE.S.C. CRISPR/Cas9 and genetic screens in malaria parasites: Small genomes, big impact.Biochem. Soc. Trans.20225031069107910.1042/BST20210281 35621119
    [Google Scholar]
  98. SiaoM.C. BornerJ. PerkinsS.L. DeitschK.W. KirkmanL.A. Evolution of host specificity by malaria parasites through altered mechanisms controlling genome maintenance.MBio2020112e032721910.1128/mBio.03272‑19 32184256
    [Google Scholar]
  99. KirkmanL.A. LawrenceE.A. DeitschK.W. Malaria parasites utilize both homologous recombination and alternative end joining pathways to maintain genome integrity.Nucleic Acids Res.201442137037910.1093/nar/gkt881 24089143
    [Google Scholar]
  100. BryantJ.M. RegnaultC. Scheidig-BenatarC. BaumgartenS. GuizettiJ. ScherfA. CRISPR/Cas9 genome editing reveals that the intron is not essential for var2csa gene activation or silencing in Plasmodium falciparum.MBio201784e007291710.1128/mBio.00729‑17 28698275
    [Google Scholar]
  101. ZhangJ.H. AdikaramP. PandeyM. GenisA. SimondsW.F. Optimization of genome editing through CRISPR-Cas9 engineering.Bioengineered20167316617410.1080/21655979.2016.1189039 27340770
    [Google Scholar]
  102. HammondA.M. KyrouK. BruttiniM. NorthA. GaliziR. KarlssonX. KranjcN. CarpiF.M. D’AurizioR. CrisantiA. NolanT. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito.PLoS Genet.20171310e100703910.1371/journal.pgen.1007039 28976972
    [Google Scholar]
  103. CongL. RanF.A. CoxD. LinS. BarrettoR. HabibN. HsuP.D. WuX. JiangW. MarraffiniL.A. ZhangF. Multiplex genome engineering using CRISPR/Cas systems.Science2013339612181982310.1126/science.1231143 23287718
    [Google Scholar]
  104. Genetic diversity of the African malaria vector Anopheles gambiae.Nature201755276839610010.1038/nature24995 29186111
    [Google Scholar]
  105. LinkB.G. PhelanJ. Social conditions as fundamental causes of disease.J. Health Soc. Behav.199535Spec No809410.2307/2626958 7560851
    [Google Scholar]
  106. PhelanJ.C. LinkB.G. TehranifarP. Social conditions as fundamental causes of health inequalities: Theory, evidence, and policy implications.J. Health Soc. Behav.2010511_suppl)(Suppl.S28S4010.1177/0022146510383498 20943581
    [Google Scholar]
  107. ErnstD. FDA Approves Gene Therapies Casgevy, Lyfgenia for Sickle Cell Disease.MPR Monthly Prescribing Reference2023
    [Google Scholar]
  108. FriscoM.L. Van HookJ. ThomasK.J.A. Racial/ethnic and nativity disparities in U.S. Covid-19 vaccination hesitancy during vaccine rollout and factors that explain them.Soc. Sci. Med.202230711518310.1016/j.socscimed.2022.115183 35843179
    [Google Scholar]
  109. CuiY. YuL. Application of the CRISPR/Cas9 gene editing technique to research on functional genomes of parasites.Parasitol. Int.201665664164410.1016/j.parint.2016.08.011 27586395
    [Google Scholar]
  110. ChenS. ChenD. LiuB. HaismaH.J. Modulating CRISPR/Cas9 genome-editing activity by small molecules.Drug Discov. Today202227495196610.1016/j.drudis.2021.11.018 34823004
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010316710240626042205
Loading
/content/journals/cpb/10.2174/0113892010316710240626042205
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): CRISPR; diagnosis; drug discovery; gene-editing; parasites; transmission; vaccines
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test