Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Skin cancer, a global burden for particularly white people, is classified as various histopathological types, including malignant melanoma, basal and squamous cell carcinoma, on the basis of affected different skin layers. Clinical adjuvant therapy (electro-chemotherapy, radio-and immuno therapy), surgical techniques (Cryosurgery, laser treatment, dermabrasion, Moh's micrographic surgery), photodynamic treatment and theranostic approaches are confined only for the treatment of serious health issues. Therefore, nanotechnology based approaches, especially nanoemulsion, a non-spontaneous, transparent or translucent, kinetically stable nano-structured (1-1000nm) colloidal dispersion (comprised of oil, water and surfactant/co-surfactant), are being popularised as a potential topical nanocarrier to deliver BCS class II and IV anti-neoplastic drugs attributing to its capacity for both active and passive tumor targeting in controlled or sustained manner and improving bioavailability enhancing permeability-retention effect with minimal adverse effects. Numerous research on nanoemulsion for the treatment of both melanoma and non-melanoma skin cancer is only limited to preclinical stages as several physiological variables reduce the effectiveness of nanoemulsion restricting topical penetration.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010302313240610111842
2024-07-22
2025-09-13
Loading full text...

Full text loading...

References

  1. D’OrazioJ. JarrettS. Amaro-OrtizA. ScottT. UV radiation and the skin.Int. J. Mol. Sci.2013146122221224810.3390/ijms140612222 23749111
    [Google Scholar]
  2. EngelmanD. FullerL.C. SolomonA.W. McCarthyJ.S. HayR.J. LammieP.J. SteerA.C. Opportunities for integrated control of neglected tropical diseases that affect the skin.Trends Parasitol.2016321184385410.1016/j.pt.2016.08.005 27638231
    [Google Scholar]
  3. LalS.T. BanipalR.P.S. BhattiD.J. YadavH.P. Changing trends of skin cancer: A tertiary care hospital study in Malwa region of Punjab.J. Clin. Diagn. Res.2016106PC12PC1510.7860/JCDR/2016/18487.8051 27504344
    [Google Scholar]
  4. LosquadroW.D. Anatomy of the skin and the pathogenesis of nonmelanoma skin cancer.Facial Plast. Surg. Clin. North Am.201725328328910.1016/j.fsc.2017.03.001 28676156
    [Google Scholar]
  5. UrbanK. MehrmalS. UppalP. GieseyRL DelostGR The global burden of skin cancer: A longitudinal analysis from the global burden of disease study.JAAD Int.2021298108
    [Google Scholar]
  6. ChittasuphoC. DitsriS. SinghS. KanlayavattanakulM. DuangninN. RuksiriwanichW. AthikomkulchaiS. Ultraviolet radiation protective and anti-inflammatory effects of Kaempferia galanga L. rhizome oil and microemulsion: Formulation, characterization, and hydrogel preparation.Gels202281063910.3390/gels8100639 36286140
    [Google Scholar]
  7. AlotaibiG. AlharthiS. BasuB. AshD. DuttaS. SinghS. PrajapatiB.G. BhattacharyaS. ChidrawarV.R. ChitmeH. Nano-Gels: Recent advancement in fabrication methods for mitigation of skin cancer.Gels20239433110.3390/gels9040331 37102943
    [Google Scholar]
  8. RogersH.W. WeinstockM.A. FeldmanS.R. ColdironB.M. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012.JAMA Dermatol.2015151101081108610.1001/jamadermatol.2015.1187 25928283
    [Google Scholar]
  9. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  10. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  11. Incidence and trends of basal cell carcinoma and cutaneous squamous cell carcinoma: A population-based study in Olmsted County, Minnesota, 2000 to 2010. MuzicJ.G. SchmittA.R. WrightA.C. AlniemiD.T. ZubairA.S. LouridoJ.M.O. Eds.Mayo Clin Proc2000926890898
    [Google Scholar]
  12. ChenB.H. Stephen InbarajB. Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability.Nutrients2019115105210.3390/nu11051052 31083417
    [Google Scholar]
  13. SaindaneD. BhattacharyaS. ShahR. PrajapatiB.G. The recent development of topical nanoparticles for annihilating skin cancer.All Life202215184386910.1080/26895293.2022.2103592
    [Google Scholar]
  14. LalanM. ShahP. BarveK. ParekhK. Mehta, T Skin cancer therapeutics: Nano-drug delivery vectors—present and beyond.Future J. Pharm. Sci.20217179
    [Google Scholar]
  15. GantaS. TalekarM. SinghA. ColemanT.P. AmijiM.M. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy.AAPS PharmSciTech201415369470810.1208/s12249‑014‑0088‑9 24510526
    [Google Scholar]
  16. LeongS.P.L. MihmM.C.Jr MurphyG.F. HoonD.S.B. Kashani-SabetM. AgarwalaS.S. ZagerJ.S. HauschildA. SondakV.K. GuildV. KirkwoodJ.M. Progression of cutaneous melanoma: Implications for treatment.Clin. Exp. Metastasis201229777579610.1007/s10585‑012‑9521‑1 22892755
    [Google Scholar]
  17. KosmidisC. BakaS. SapalidisK. MixalopoulosN. AtmatzidisS. KoulourisH. AnthimidisG. VarsamisN. ZarogoulidisP. ManY-G. GeorgakoudiE. MantalovasS. KoimtzisG. TsakalidisA. KesisoglouI. Melanoma from molecular pathways to clinical treatment: An up to date review.J. Biomed.201729410010.7150/jbm.19834
    [Google Scholar]
  18. Lugović-MihićL. ĆesićD. VukovićP. Novak BilićG. ŠitumM. ŠpoljarS. Melanoma development: Current knowledge on melanoma pathogenesis.Acta Dermatovenerol. Croat.2019273163168 31542060
    [Google Scholar]
  19. WuX. HammerJ.A. Melanosome transfer: It is best to give and receive.Curr. Opin. Cell Biol.2014291710.1016/j.ceb.2014.02.003 24662021
    [Google Scholar]
  20. CoricovacD. DeheleanC. MoacaE.A. PinzaruI. BratuT. NavolanD. BorugaO. Cutaneous melanoma—a long road from experimental models to clinical outcome: A review.Int. J. Mol. Sci.2018196156610.3390/ijms19061566 29795011
    [Google Scholar]
  21. TowR. HanounS. AndresenB. ShahidA. WangJ. KellyK.M. MeyskensF.L.Jr HuangY. Recent advances in clinical research for skin cancer chemoprevention.Cancers20231515381910.3390/cancers15153819 37568635
    [Google Scholar]
  22. JeppsO.G. DancikY. AnissimovY.G. RobertsM.S. Modeling the human skin barrier — Towards a better understanding of dermal absorption.Adv. Drug Deliv. Rev.201365215216810.1016/j.addr.2012.04.003 22525516
    [Google Scholar]
  23. GoyalN. ThataiP. SapraB. Skin cancer: Symptoms, mechanistic pathways and treatment rationale for therapeutic delivery.Ther. Deliv.20178526528710.4155/tde‑2016‑0093 28361609
    [Google Scholar]
  24. RastrelliM. TropeaS. RossiC.R. AlaibacM. Melanoma: Epidemiology, risk factors, pathogenesis, diagnosis and classification.In Vivo201428610051011 25398793
    [Google Scholar]
  25. CarrS. SmithC. WernbergJ. Epidemiology and risk factors of melanoma.Surg. Clin. North Am.2020100111210.1016/j.suc.2019.09.005 31753105
    [Google Scholar]
  26. WuS. ChoE. LiW.Q. WeinstockM.A. HanJ. QureshiA.A. History of severe sunburn and risk of skin cancer among women and men in 2 prospective cohort studies.Am. J. Epidemiol.2016183982483310.1093/aje/kwv282 27045074
    [Google Scholar]
  27. KhanN.H. MirM. QianL. BalochM. Ali KhanM.F. RehmanA. NgowiE.E. WuD.D. JiX.Y. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures.J. Adv. Res.20223622324710.1016/j.jare.2021.06.014 35127174
    [Google Scholar]
  28. Lova NavarroM. Vera CasañoÁ. Benito LópezC. Fernández BallesterosM.D. Godoy DíazD.J. Crespo ErchigaA. Romero BrufauS. Transient neonatal zinc deficiency due to a new autosomal dominant mutation in gene SLC30A2 (ZnT-2).Pediatr. Dermatol.201431225125210.1111/pde.12257 24456035
    [Google Scholar]
  29. LeachmanS.A. LuceroO.M. SampsonJ.E. CassidyP. BrunoW. QueiroloP. GhiorzoP. Identification, genetic testing, and management of hereditary melanoma.Cancer Metastasis Rev.2017361779010.1007/s10555‑017‑9661‑5 28283772
    [Google Scholar]
  30. ShayJ.W. Role of telomeres and telomerase in aging and cancer.Cancer Discov.20166658459310.1158/2159‑8290.CD‑16‑0062 27029895
    [Google Scholar]
  31. Boscolo-RizzoP. Da MostoM.C. RampazzoE. GiuncoS. Del MistroA. MenegaldoA. BabociL. MantovaniM. TirelliG. De RossiA. Telomeres and telomerase in head and neck squamous cell carcinoma: From pathogenesis to clinical implications.Cancer Metastasis Rev.201635345747410.1007/s10555‑016‑9633‑1 27501725
    [Google Scholar]
  32. FliesE.J. MavoaS. ZoskyG.R. MantziorisE. WilliamsC. EriR. BrookB.W. BuettelJ.C. Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward.Environ. Int.2019133(Pt A105187
    [Google Scholar]
  33. ParradoC. Mercado-SaenzS. Perez-DavoA. GilaberteY. GonzalezS. JuarranzA. Environmental stressors on skin aging. Mechanistic insights.Front. Pharmacol.20191075910.3389/fphar.2019.00759 31354480
    [Google Scholar]
  34. SchmittJ. HaufeE. TrautmannF. SchulzeH.J. ElsnerP. DrexlerH. BauerA. LetzelS. JohnS.M. FartaschM. BrüningT. SeidlerA. Dugas-BreitS. GinaM. WeistenhöferW. BachmannK. BruhnI. LangB.M. BonnessS. AllamJ.P. GrobeW. StangeT. WesterhausenS. KnuschkeP. WittlichM. DiepgenT.L. Is ultraviolet exposure acquired at work the most important risk factor for cutaneous squamous cell carcinoma? Results of the population-based case-control study FB-181.Br. J. Dermatol.2018178246247210.1111/bjd.15906 28845516
    [Google Scholar]
  35. DownsN.J. AxelsenT. SchoutenP. IgoeD.P. ParisiA.V. VanosJ. Biologically effective solar ultraviolet exposures and the potential skin cancer risk for individual gold medalists of the 2020 Tokyo Summer Olympic Games.Temperature2020718910810.1080/23328940.2019.1581427 32166106
    [Google Scholar]
  36. DidonaD. PaolinoG. BottoniU. CantisaniC. Non melanoma skin cancer pathogenesis overview.Biomedicines201861610.3390/biomedicines6010006 29301290
    [Google Scholar]
  37. MoanJ. GrigalaviciusM. BaturaiteZ. DahlbackA. JuzenieneA. The relationship between UV exposure and incidence of skin cancer.Photodermatol. Photoimmunol. Photomed.2015311263510.1111/phpp.12139 25213656
    [Google Scholar]
  38. HartP.H. NorvalM. Ultraviolet radiation-induced immunosuppression and its relevance for skin carcinogenesis.Photochem. Photobiol. Sci.201817121872188410.1039/c7pp00312a 29136080
    [Google Scholar]
  39. RuanL. ChengS.P. ZhuQ.X. Dietary fat intake and the risk of skin cancer: A systematic review and meta-analysis of observational studies.Nutr. Cancer202072339840810.1080/01635581.2019.1637910 31298947
    [Google Scholar]
  40. BlackH. RhodesL. Potential benefits of omega-3 fatty acids in non-melanoma skin cancer.J. Clin. Med.2016522310.3390/jcm5020023 26861407
    [Google Scholar]
  41. ParkW. HeoY.J. HanD.K. New opportunities for nanoparticles in cancer immunotherapy.Biomater. Res.20182212410.1186/s40824‑018‑0133‑y 30275967
    [Google Scholar]
  42. MatthewsN.H. KohM. LiW.Q. LiT. WillettW.C. StampferM.J. ChristianiD.C. MorrisJ.S. QureshiA.A. ChoE. A prospective study of toenail trace element levels and risk of skin cancer.Cancer Epidemiol. Biomarkers Prev.20192891534154310.1158/1055‑9965.EPI‑19‑0214 31217167
    [Google Scholar]
  43. NicholsA.J. GonzalezA. ClarkE.S. KhanW.N. RosenA.C. GuzmanW. RabinovitzH. BadiavasE.V. KirsnerR.S. IoannidesT. Combined systemic and intratumoral administration of human papillomavirus vaccine to treat multiple cutaneous basaloid squamous cell carcinomas.JAMA Dermatol.2018154892793010.1001/jamadermatol.2018.1748 29971321
    [Google Scholar]
  44. YeungH. BalakrishnanV. LukK.M.H. ChenS.C. Risk of skin cancers in older persons living with HIV: A systematic review.J. Assoc. Nurses AIDS Care2019301808610.1097/JNC.0000000000000001 30586085
    [Google Scholar]
  45. RollisonD.E. ViarisioD. AmorrortuR.P. GheitT. TommasinoM. An emerging issue in oncogenic virology: The role of beta human papillomavirus types in the development of cutaneous squamous cell carcinoma.J. Virol.2019937e01003e0101810.1128/JVI.01003‑18 30700603
    [Google Scholar]
  46. SidoroffA. ThalerP. Taking treatment decisions in non-melanoma skin cancer—The place for topical photodynamic therapy (PDT).Photodiagn. Photodyn. Ther.201071243210.1016/j.pdpdt.2009.12.004 20230990
    [Google Scholar]
  47. LaglerC.N.P. FreitagS.K. Management of periocular actinic keratosis: A review of practice patterns among ophthalmic plastic surgeons.Ophthal. Plast. Reconstr. Surg.201228427728110.1097/IOP.0b013e318257f5f2 22785585
    [Google Scholar]
  48. ColquhounS.D. Hepatocellular carcinoma clinical update: Current standards and therapeutic strategies.Liver Res.20204418019010.1016/j.livres.2020.11.004 33391846
    [Google Scholar]
  49. Mfouo-TyngaI.S. DiasL.D. InadaN.M. KurachiC. Features of third generation photosensitizers used in anticancer photodynamic therapy. ReviewPhotodiagn. Photodyn. Ther.20213410209110.1016/j.pdpdt.2020.102091 33453423
    [Google Scholar]
  50. ZhouY. WangD. LiuC. YanT. LiC. YangQ. ZhaoL. PeiQ. TanF. LiY. GüngörC. Nomograms predicting overall survival and cancer-specific survival for patients with appendiceal cancer after surgery.All Life202114142844010.1080/26895293.2021.1926342
    [Google Scholar]
  51. KaulS. GulatiN. VermaD. MukherjeeS. NagaichU. Role of nanotechnology in cosmeceuticals: A review of recent advances.J. Pharm.2018201811910.1155/2018/3420204 29785318
    [Google Scholar]
  52. AzizZ.A.A. Mohd-NasirH. AhmadA. Mohd SetaparS.H. PengW.L. ChuoS.C. KhatoonA. UmarK. YaqoobA.A. Mohamad IbrahimM.N. Role of nanotechnology for design and development of cosmeceutical: Application in makeup and skin care.Front Chem.2019773910.3389/fchem.2019.00739 31799232
    [Google Scholar]
  53. AshaoluT.J. Nanoemulsions for health, food, and cosmetics: A review.Environ. Chem. Lett.20211943381339510.1007/s10311‑021‑01216‑9 33746662
    [Google Scholar]
  54. PrajapatiB.G. JivaniM. PaliwalH. Formulation and optimization of topical nanoemulsion based gel of mometasone furoate using 3 2 full factorial design.Indian Drugs20216061929
    [Google Scholar]
  55. PrajapatiB.G. PatelA.G. PaliwalH. Fabrication of nanoemulsion-based in situ gel using moxifloxacin hydrochloride as model drug for the treatment of conjunctivitis.Food Hydrocolloids for Health2021110004510.1016/j.fhfh.2021.100045
    [Google Scholar]
  56. MacwanM. PrajapatiB. Development, optimization and characterization of ocular nanoemulsion of an antifungal agent using design of experiments.Res J Pharm Technol20221552273227810.52711/0974‑360X.2022.00378
    [Google Scholar]
  57. RodriquesP.B. PrajapatiB.G. Formulation and evaluation of dolutegravir sodium nanoemulsion for the treatment of HIV.Pharmacophore2022131810.51847/gnVuQuUCIf
    [Google Scholar]
  58. KhuntD. PrajapatiB.G. PrajaptiM. MisraM. SalaveS. PatelJ.K. Drug delivery by micro, nanoemulsions in tuberculosis.In: Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases.Springer202317318810.1007/978‑3‑031‑14100‑3_9
    [Google Scholar]
  59. MohiteP. RajputT. PandhareR. SangaleA. SinghS. PrajapatiB.G. Nanoemulsion in management of colorectal cancer: Challenges and future prospects.Nanomanufacturing20233213916610.3390/nanomanufacturing3020010
    [Google Scholar]
  60. BasuB. GaralaK. DuttaA. JoshiR. PrajapatiB.G. MukherjeeS. Micro and nanoemulsions in colorectal cancer.In: Colorectal Cancer.Elsevier2024259286
    [Google Scholar]
  61. PariharA PrajapatiBG Response surface methodology for an improved nanoemulsion of ivacaftor & its optimisation for solubility and stability. Pharmacophore2023145
    [Google Scholar]
  62. PrajapatiB. ModiC. PatelU. KendreP. Nanoemulsion based in-situ gel for ocular delivery of brimonidine tartrate.Curr. Drug Ther.202419333634510.2174/1574885518666230626164030
    [Google Scholar]
  63. MasonT.G. WilkingJ.N. MelesonK. ChangC.B. GravesS.M. Nanoemulsions: Formation, structure, and physical properties.J. Phys. Condens. Matter20061841R635R66610.1088/0953‑8984/18/41/R01
    [Google Scholar]
  64. AntonN. VandammeT.F. Nano-emulsions and micro-emulsions: Clarifications of the critical differences.Pharm. Res.201128597898510.1007/s11095‑010‑0309‑1 21057856
    [Google Scholar]
  65. LedetG. PamujulaS. WalkerV. SimonS. GravesR. MandalT.K. Development and in vitro evaluation of a nanoemulsion for transcutaneous delivery.Drug Dev. Ind. Pharm.201440337037910.3109/03639045.2012.763137 23600657
    [Google Scholar]
  66. PatelR.B. PatelM.R. ThakoreS.D. PatelB.G. Nanoemulsion as a valuable nanostructure platform for pharmaceutical drug delivery.Nano-and Microscale Drug Delivery Systems.Elsevier201732134110.1016/B978‑0‑323‑52727‑9.00017‑0
    [Google Scholar]
  67. KaleS.N. DeoreS.L. Emulsion micro emulsion and nano emulsion: A review.Systematic Reviews in Pharmacy201681394710.5530/srp.2017.1.8
    [Google Scholar]
  68. TalegaonkarS. AzeemA. AhmadF. KharR. PathanS. KhanZ. Microemulsions: A novel approach to enhanced drug delivery.Recent Pat. Drug Deliv. Formul.20082323825710.2174/187221108786241679 19075911
    [Google Scholar]
  69. YukuyamaM.N. GhisleniD.D.M. PintoT.J.A. Bou-ChacraN.A. Nanoemulsion: process selection and application in cosmetics: A review.Int. J. Cosmet. Sci.2016381132410.1111/ics.12260 26171789
    [Google Scholar]
  70. KorolevaM.Y. YurtovE.V. Nanoemulsions: The properties, methods of preparation and promising applications.Russ. Chem. Rev.2012811214310.1070/RC2012v081n01ABEH004219
    [Google Scholar]
  71. McClementsD.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities.Soft Matter2012861719172910.1039/C2SM06903B
    [Google Scholar]
  72. GutiérrezJ.M. GonzálezC. MaestroA. SolèI. PeyC.M. NollaJ. Nano-emulsions: New applications and optimization of their preparation.Curr. Opin. Colloid Interface Sci.200813424525110.1016/j.cocis.2008.01.005
    [Google Scholar]
  73. McClementsD.J. Enhanced delivery of lipophilic bioactives using emulsions: A review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility.Food Funct.201891224110.1039/C7FO01515A 29119979
    [Google Scholar]
  74. PatelG. PrajapatiB. HinglajiaH. Lipid-based drug delivery system: Spotlight on nanoemulsion as versatile nanocarrier.In: Lipid-Based Drug Delivery Systems.Jenny Stanford Publishing202483124
    [Google Scholar]
  75. GonçalvesA. NikmaramN. RoohinejadS. EstevinhoB.N. RochaF. GreinerR. McClementsD.J. Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries.Colloids Surf. A Physicochem. Eng. Asp.201853810812610.1016/j.colsurfa.2017.10.076
    [Google Scholar]
  76. DasguptaN. RanjanS. GandhiM. Nanoemulsion ingredients and components.Environ. Chem. Lett.201917291792810.1007/s10311‑018‑00849‑7
    [Google Scholar]
  77. QadirA. FaiyazuddinM.D. Talib HussainM.D. AlshammariT.M. ShakeelF. Critical steps and energetics involved in a successful development of a stable nanoemulsion.J. Mol. Liq.201621471810.1016/j.molliq.2015.11.050
    [Google Scholar]
  78. RaoJ. McClementsD.J. Lemon oil solubilization in mixed surfactant solutions: Rationalizing microemulsion & nanoemulsion formation.Food Hydrocoll.201226126827610.1016/j.foodhyd.2011.06.002
    [Google Scholar]
  79. KimD.S. ChoJ.H. ParkJ.H. KimJ.S. SongE.S. KwonJ. GiriB.R. JinS.G. KimK.S. ChoiH.G. KimD.W. Self-microemulsifying drug delivery system (SMEDDS) for improved oral delivery and photostability of methotrexate.Int. J. Nanomedicine2019144949496010.2147/IJN.S211014 31308665
    [Google Scholar]
  80. McClementsD.J. BaiL. ChungC. Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions.Annu. Rev. Food Sci. Technol.20178120523610.1146/annurev‑food‑030216‑030154 28125353
    [Google Scholar]
  81. KorolevaM. NagovitsinaT. YurtovE. Nanoemulsions stabilized by non-ionic surfactants: Stability and degradation mechanisms.Phys. Chem. Chem. Phys.20182015103691037710.1039/C7CP07626F 29611566
    [Google Scholar]
  82. SalemM.A. EzzatS.M. Nanoemulsions in food industry.In: Some new aspects of colloidal systems in foods2019223826710.5772/intechopen.79447
    [Google Scholar]
  83. FernandesA.R. Sanchez-LopezE. SantosT. GarciaM.L. SilvaA.M. SoutoE.B. Development and characterization of nanoemulsions for ophthalmic applications: Role of cationic surfactants.Materials20211424754110.3390/ma14247541 34947136
    [Google Scholar]
  84. LiuD. XuJ. ZhaoH. ZhangX. ZhouH. WuD. LiuY. YuP. XuZ. KangW. FanM. Nanoemulsions stabilized by anionic and non-ionic surfactants for enhanced oil recovery in ultra-low permeability reservoirs: Performance evaluation and mechanism study.Colloids Surf. A Physicochem. Eng. Asp.202263712823510.1016/j.colsurfa.2021.128235
    [Google Scholar]
  85. WilsonR.J. LiY. YangG. ZhaoC.X. Nanoemulsions for drug delivery.Particuology202264859710.1016/j.partic.2021.05.009
    [Google Scholar]
  86. HarshithaV. SwamyM.V. KumarD.P. RaniK.S. TrinathA. Nanoemulgel: A process promising in drug delivery system.Res. J. Pharm. Dos. Forms Technol.202012212513010.5958/0975‑4377.2020.00022.1
    [Google Scholar]
  87. SchreinerT.B. Santamaria-EchartA. RibeiroA. PeresA.M. DiasM.M. PinhoS.P. BarreiroM.F. Formulation and optimization of nanoemulsions using the natural surfactant saponin from Quillaja bark.Molecules2020257153810.3390/molecules25071538 32230976
    [Google Scholar]
  88. IsailovićT.M. TodosijevićM.N. ĐorđevićS.M. SavićS.D. Natural surfactants-based micro/nanoemulsion systems for NSAIDs—practical formulation approach, physicochemical and biopharmaceutical characteristics/performances.In: Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs.Elsevier2017179217
    [Google Scholar]
  89. WangX. CorinK. BaaskeP. WienkenC.J. Jerabek-WillemsenM. DuhrS. BraunD. ZhangS. Peptide surfactants for cell-free production of functional G protein-coupled receptors.Proc. Natl. Acad. Sci. USA2011108229049905410.1073/pnas.1018185108 21562213
    [Google Scholar]
  90. LamR.S.H. NickersonM.T. Food proteins: A review on their emulsifying properties using a structure–function approach.Food Chem.2013141297598410.1016/j.foodchem.2013.04.038 23790876
    [Google Scholar]
  91. MasoodF. ChenP. YasinT. FatimaN. HasanF. HameedA. Encapsulation of ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application.Mater. Sci. Eng. C20133331054106010.1016/j.msec.2012.11.025 23827542
    [Google Scholar]
  92. TagneJ.B. KakumanuS. NicolosiR.J. Nanoemulsion preparations of the anticancer drug dacarbazine significantly increase its efficacy in a xenograft mouse melanoma model.Mol. Pharm.2008561055106310.1021/mp8000556 19434855
    [Google Scholar]
  93. HuynhN.T. PassiraniC. SaulnierP. BenoitJ.P. Lipid nanocapsules: A new platform for nanomedicine.Int. J. Pharm.2009379220120910.1016/j.ijpharm.2009.04.026 19409468
    [Google Scholar]
  94. TalekarM. GantaS. SinghA. AmijiM. KendallJ. DennyW.A. GargS. Phosphatidylinositol 3-kinase inhibitor (PIK75) containing surface functionalized nanoemulsion for enhanced drug delivery, cytotoxicity and pro-apoptotic activity in ovarian cancer cells.Pharm. Res.201229102874288610.1007/s11095‑012‑0793‑6 22653667
    [Google Scholar]
  95. TawfikN.M. TeiamaM.S. IskandarS.S. OsmanA. HammadS.F. A novel nanoemulsion formula for an improved delivery of a thalidomide analogue to triple-negative breast cancer; synthesis, formulation, characterization and molecular studies.Int. J. Nanomedicine2023181219124310.2147/IJN.S385166 36937550
    [Google Scholar]
  96. FukumoriC. BrancoP.C. BarretoT. IshidaK. LopesL.B. Development and cytotoxicity evaluation of multiple nanoemulsions for oral co-delivery of 5-fluorouracil and short chain triglycerides for colorectal cancer.Eur. J. Pharm. Sci.202318710646510.1016/j.ejps.2023.106465 37178734
    [Google Scholar]
  97. AlotaibiH.F. KhafagyE.S. Abu LilaA.S. AlotaibeH.F. ElbehairiS.E. AlanaziA.S. AlfaifiM.Y. AlamoudiJ.A. AlamraniS.S. MokhtarF.A. Anticancer potentials of metformin loaded coconut oil nanoemulsion on MCF-7, HepG2 and HCT-116 cell lines.Artif. Cells Nanomed. Biotechnol.202351141942710.1080/21691401.2023.2246145 37589599
    [Google Scholar]
  98. KaurH. KaurK. SinghA. BediN. SinghB. AlturkiM.S. AldawsariM.F. AlmalkiA.H. HaqueS. LeeH.J. YadavD.K. AroraS. Frankincense oil-loaded nanoemulsion formulation of paclitaxel and erucin: A synergistic combination for ameliorating drug resistance in breast cancer: In vitro and in vivo study.Front. Pharmacol.202213102060210.3389/fphar.2022.1020602 36330087
    [Google Scholar]
  99. EninH.A.A. AlquthamiA.F. AlwagdaniA.M. YousefL.M. AlbuqamiM.S. AlharthiM.A. AlsaabH.O. Utilizing TPGS for optimizing quercetin nanoemulsion for colon cancer cells inhibition.Colloids and Interfaces2022634910.3390/colloids6030049
    [Google Scholar]
  100. Al-OtaibiW.A. AlMotwaaS.M. Oxaliplatin-loaded nanoemulsion containing Teucrium polium L. essential oil induces apoptosis in Colon cancer cell lines through ROS-mediated pathway.Drug Deliv.20222912190220510.1080/10717544.2022.2096711 35815706
    [Google Scholar]
  101. KottaS. Formulation of resveratrol nanoemulsion by phase inversion technique and evaluation of anti-cancer activity on human colon cancer cell lines.Indian J. Pharm. Sci.2021553sS623S62910.5530/ijper.55.3s.168
    [Google Scholar]
  102. AlkhatibM.H. AlghamdiR.S. BalamashK.S. KhojahS.M. Cinnamon oil nanoemulsion as a novel nanocarrier for bleomycin amplifies its apoptotic effect on SKOV-3 ovarian cancer cells.Indian J. Exp. Biol.202159697704
    [Google Scholar]
  103. AlkhatibM.H. AljadaniM.A. MahassniS.H. Carrying epirubicin on nanoemulsion containing algae and cinnamon oils augments its apoptotic and anti-invasion effects on human colon cancer cells.Am. J. Transl. Res.202012624632472 32655784
    [Google Scholar]
  104. MaraghehA.D. TabriziM.H. KarimiE. SeyediS.M.R. KhatamianN. Producing the sour cherry pit oil nanoemulsion and evaluation of its anti-cancer effects on both breast cancer murine model and MCF-7 cell line.J. Microencapsul.201936439940910.1080/02652048.2019.1638460 31250686
    [Google Scholar]
  105. Ugur KaplanA.B. CetinM. OrgulD. TaghizadehghalehjoughiA. HacımuftuogluA. HekimogluS. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein.J. Drug Deliv. Sci. Technol.20195218920310.1016/j.jddst.2019.04.027
    [Google Scholar]
  106. AshiqueS. AfzalO. HussainA. ZeyaullahM. AltamimiM.A. MishraN. AhmadM.F. DuaK. AltamimiA.S.A. AnandK. It’s all about plant derived natural phytoconstituents and phytonanomedicine to control skin cancer.J. Drug Deliv. Sci. Technol.20238410449510.1016/j.jddst.2023.104495
    [Google Scholar]
  107. PatilM.U. RajputA.P. BelgamwarV.S. ChalikwarS.S. Development and characterization of amphotericin B nanoemulsion-loaded mucoadhesive gel for treatment of vulvovaginal candidiasis.Heliyon2022811e1148910.1016/j.heliyon.2022.e11489 36411885
    [Google Scholar]
  108. ShakeelF. HaqN. Al-DhfyanA. AlanaziF.K. AlsarraI.A. Chemoprevention of skin cancer using low HLB surfactant nanoemulsion of 5-fluorouracil: A preliminary study.Drug Deliv.201522457358010.3109/10717544.2013.868557 24350612
    [Google Scholar]
  109. PatelG. YadavB.K.N. Study of 5-fluorouracil loaded chitosan nanoparticles for treatment of skin cancer.Recent Pat. Nanotechnol.202014321022410.2174/1872210513666190702165556 31267881
    [Google Scholar]
  110. TagneJ.B. KakumanuS. OrtizD. SheaT. NicolosiR.J. A nanoemulsion formulation of tamoxifen increases its efficacy in a breast cancer cell line.Mol. Pharm.20085228028610.1021/mp700091j 18171014
    [Google Scholar]
  111. AdhikariM. KaushikN. GhimireB. AdhikariB. BabootaS. Al-KhedhairyA.A. WahabR. LeeS.J. KaushikN.K. ChoiE.H. Cold atmospheric plasma and silymarin nanoemulsion synergistically inhibits human melanoma tumorigenesis via targeting HGF/c-MET downstream pathway.Cell Commun. Signal.20191715210.1186/s12964‑019‑0360‑4 31126298
    [Google Scholar]
  112. GiaconeDV DartoraV de MatosJKR PassosJS MirandaDAG de OliveiraEA Effect of nanoemulsion modification with chitosan and sodium alginate on the topical delivery and efficacy of the cytotoxic agent piplartine in 2D and 3D skin cancer models. Int. J. Biol. Macromol2020165Pt A1055106510.1016/j.ijbiomac.2020.09.167
    [Google Scholar]
  113. NagarajaS. BasavarajappaG.M. AttimaradM. PundS. Topical nanoemulgel for the treatment of skin cancer: Proof-of-technology.Pharmaceutics202113690210.3390/pharmaceutics13060902 34207014
    [Google Scholar]
  114. DalmolinL. LopezR. Nanoemulsion as a platform for iontophoretic delivery of lipophilic drugs in skin tumors.Pharmaceutics201810421410.3390/pharmaceutics10040214 30400343
    [Google Scholar]
  115. KhanH. UllahH. MartorellM. ValdesS.E. BelwalT. TejadaS. SuredaA. KamalM.A. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects.Semin. Cancer Biol.20216920021110.1016/j.semcancer.2019.07.023 31374244
    [Google Scholar]
  116. HuL. XiongC. WeiG. YuY. LiS. XiongX. ZouJ.J. TianJ. Stimuli-responsive charge-reversal MOF@polymer hybrid nanocomposites for enhanced co-delivery of chemotherapeutics towards combination therapy of multidrug-resistant cancer.J. Colloid Interface Sci.2022608Pt 21882189310.1016/j.jcis.2021.10.070 34749141
    [Google Scholar]
  117. OnaciuA. MunteanuR. MunteanuV.C. GuleiD. RadulyL. FederR.I. PirlogR. AtanasovA.G. KorbanS.S. IrimieA. Berindan-NeagoeI. Spontaneous and induced animal models for cancer research.Diagnostics202010966010.3390/diagnostics10090660 32878340
    [Google Scholar]
  118. RahimM. IramS. SyedA. AmeenF. HodhodM.S. KhanM.S. Nutratherapeutics approach against cancer: Tomato‐mediated synthesised gold nanoparticles.IET Nanobiotechnol.20181211510.1049/iet‑nbt.2017.0068
    [Google Scholar]
  119. Sangeetha VidhyaM. AmeenF. DawoudT. YuvakkumarR. RaviG. KumarP. VelauthapillaiD. Anti-cancer applications of Zr, Co, Ni-doped ZnO thin nanoplates.Mater. Lett.202128312876010.1016/j.matlet.2020.128760
    [Google Scholar]
  120. MohantaY.K. PandaS.K. SyedA. AmeenF. BastiaA.K. MohantaT.K. Bio‐inspired synthesis of silver nanoparticles from leaf extracts of Cleistanthus collinus (Roxb.): Its potential antibacterial and anticancer activities.IET Nanobiotechnol.201812334334810.1049/iet‑nbt.2017.0203
    [Google Scholar]
  121. Sánchez-LópezE. GuerraM. Dias-FerreiraJ. Lopez-MachadoA. EttchetoM. CanoA. EspinaM. CaminsA. GarciaM.L. SoutoE.B. Current applications of nanoemulsions in cancer therapeutics.Nanomaterials20199682110.3390/nano9060821 31159219
    [Google Scholar]
  122. AdnanM. AkhterM.H. AfzalO. AltamimiA.S.A. AhmadI. AlossaimiM.A. JaremkoM. EmwasA.H. HaiderT. HaiderM.F. Exploring nanocarriers as treatment modalities for skin cancer.Molecules20232815590510.3390/molecules28155905 37570875
    [Google Scholar]
  123. NatesanS SugumaranA PonnusamyC ThiagarajanV PalanichamyR KandasamyR Chitosan stabilized camptothecin nanoemulsions: Development, evaluation and biodistribution in preclinical breast cancer animal mode. Int J Biol Macromol2017104Pt B1846185210.1016/j.ijbiomac.2017.05.127
    [Google Scholar]
  124. FaveroG.M. PazJ.L. OtakeA.H. MariaD.A. CaldiniE.G. de MedeirosR.S.S. DeusD.F. ChammasR. MaranhãoR.C. BydlowskiS.P. Cell internalization of 7-ketocholesterol-containing nanoemulsion through LDL receptor reduces melanoma growth in vitro and in vivo: A preliminary report.Oncotarget2018918141601417410.18632/oncotarget.24389 29581835
    [Google Scholar]
  125. ChenG. WangK. WuP. WangY. ZhouZ. YinL. SunM. OupickýD. Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy.Nano Res.20181173746376110.1007/s12274‑017‑1946‑z
    [Google Scholar]
  126. PundS. PawarS. GangurdeS. DivateD. Transcutaneous delivery of leflunomide nanoemulgel: Mechanistic investigation into physicomechanical characteristics, in vitro anti-psoriatic and anti-melanoma activity.Int. J. Pharm.20154871-214815610.1016/j.ijpharm.2015.04.015 25869452
    [Google Scholar]
  127. PrimoF.L. RodriguesM.M.A. SimioniA.R. BentleyM.V.L.B. MoraisP.C. TedescoA.C. In vitro studies of cutaneous retention of magnetic nanoemulsion loaded with zinc phthalocyanine for synergic use in skin cancer treatment.J. Magn. Magn. Mater.200832014e211e21410.1016/j.jmmm.2008.02.050
    [Google Scholar]
  128. AsasutjaritR. SooksaiN. FristiohadyA. LairungruangK. NgS.F. FuongfuchatA. Optimization of production parameters for andrographolide-loaded nanoemulsion preparation by microfluidization and evaluations of its bioactivities in skin cancer cells and UVB radiation-exposed skin.Pharmaceutics2021138129010.3390/pharmaceutics13081290 34452250
    [Google Scholar]
  129. JangdeyM.S. GuptaA. SarafS. SarafS. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation.Artif. Cells Nanomed. Biotechnol.20174571452146210.1080/21691401.2016.1247850 28050929
    [Google Scholar]
  130. JangdeyM.S. GuptaA. SarafS. Fabrication, in-vitro characterization, and enhanced in-vivo evaluation of carbopol-based nanoemulsion gel of apigenin for UV-induced skin carcinoma.Drug Deliv.20172411026103610.1080/10717544.2017.1344333 28687053
    [Google Scholar]
  131. GuptaN. GuptaG.D. SinghD. Localized topical drug delivery systems for skin cancer: Current approaches and future prospects.rontiers in Nanotechnol.20224100662810.3389/fnano.2022.1006628
    [Google Scholar]
  132. Monge-FuentesV. MuehlmannL.A. LongoJ.P.F. SilvaJ.R. FascineliM.L. de SouzaP. FariaF. DegterevI.A. RodriguezA. CarneiroF.P. LucciC.M. EscobarP. AmorimR.F.B. AzevedoR.B. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma.J. Photochem. Photobiol. B201716630131010.1016/j.jphotobiol.2016.12.002 28024281
    [Google Scholar]
  133. RanjbarR. ZarenezhadE. AbdollahiA. NasrizadehM. FirooziyanS. NamdarN. OsanlooM. Nanoemulsion and Nanogel Containing Cuminum cyminum L Essential Oil: Antioxidant, Anticancer, Antibacterial, and Antilarval Properties.J. Trop. Med.2023202311110.1155/2023/5075581 36793773
    [Google Scholar]
  134. FalamasA. DeheleanC.A. Cinta PinzaruS. Monitoring of betulin nanoemulsion treatment and molecular changes in mouse skin cancer using surface enhanced Raman spectroscopy.Vib. Spectrosc.201895445010.1016/j.vibspec.2018.01.004
    [Google Scholar]
  135. ZhangN. LiuD. Cancer chemotherapy with lipid-based nanocarriers.Crit. Rev. Ther. Drug Carrier Syst.201027537141710.1615/CritRevTherDrugCarrierSyst.v27.i5.10 21083528
    [Google Scholar]
  136. DianzaniC. MongeC. MiglioG. SerpeL. MartinaK. CangemiL. FerrarisC. MiolettiS. OsellaS. GigliottiC.L. BoggioE. ClementeN. DianzaniU. BattagliaL. Nanoemulsions as delivery systems for poly-chemotherapy aiming at melanoma treatment.Cancers2020125119810.3390/cancers12051198 32397484
    [Google Scholar]
  137. ChitkaraA. ManglaB. KumarP. JavedS. AhsanW. PopliH. Design-of-experiments (DoE)-assisted fabrication of quercetin-loaded nanoemulgel and its evaluation against human skin cancer cell lines.Pharmaceutics20221411251710.3390/pharmaceutics14112517 36432708
    [Google Scholar]
  138. MohebianZ. BabazadehM. ZarghamiN. MousazadehH. Anticancer efficiency of curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for potential postsurgical breast cancer treatment.J. Drug Deliv. Sci. Technol.20216110217010.1016/j.jddst.2020.102170
    [Google Scholar]
  139. SiddalingamR. ChidambaramK. Topical nano-delivery of 5-fluorouracil: Preparation and characterization of water-in-oil nanoemulsion.Trop. J. Pharm. Res.201615112311231910.4314/tjpr.v15i11.3
    [Google Scholar]
  140. RomesN.B. Abdul WahabR. Abdul HamidM. OyewusiH.A. HudaN. KobunR. Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion.Sci. Rep.20211112085110.1038/s41598‑021‑00409‑0 34675286
    [Google Scholar]
  141. ArantesP. Promotion of cutaneous penetration of nifedipine for nanoemulsion.Braz. J. Pharm. Sci.201753e15249
    [Google Scholar]
  142. WilhelmS. TavaresA.J. DaiQ. OhtaS. AudetJ. DvorakH.F. ChanW.C.W. Analysis of nanoparticle delivery to tumours.Nat. Rev. Mater.2016151601410.1038/natrevmats.2016.14
    [Google Scholar]
  143. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  144. SinghR. SharmaA. SajiJ. UmapathiA. KumarS. DaimaH.K. Smart nanomaterials for cancer diagnosis and treatment.Nano Converg.2022912110.1186/s40580‑022‑00313‑x 35569081
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010302313240610111842
Loading
/content/journals/cpb/10.2174/0113892010302313240610111842
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test