Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The rapid emergence and global spread of antimicrobial resistance in recent years have raised significant concerns about the future of modern medicine. Superbugs and multidrugresistant bacteria have become endemic in many parts of the world, raising the specter of untreatable infections. The overuse and misuse of antimicrobials over the past 80 years have undoubtedly contributed to the development of antimicrobial resistance, placing immense pressure on healthcare systems worldwide. Nonetheless, the molecular mechanisms underlying antimicrobial resistance in bacteria have existed since ancient times. Some of these mechanisms and processes have served as the precursors of current resistance determinants, highlighting the ongoing arms race between bacteria and their antimicrobial adversaries. Moreover, the environment harbors many putative resistance genes, yet we cannot still predict which of these genes will emerge and manifest as pathogenic resistance phenotypes. The presence of antibiotics in natural habitats, even at sub-inhibitory concentrations, may provide selective pressures that favor the emergence of novel antimicrobial resistance apparatus and, thus, underscores the need for a comprehensive understanding of the factors driving the persistence and spread of antimicrobial resistance. As the development of antimicrobial strategies that evade resistance is urgently needed, a clear perception of these critical factors could ultimately pave the way for the design of innovative therapeutic targets.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010304596240629102419
2024-07-15
2025-09-13
Loading full text...

Full text loading...

References

  1. UddinT.M. ChakrabortyA.J. KhusroA. ZidanB.M.R.M. MitraS. EmranT.B. DhamaK. RiponM.K.H. GajdácsM. SahibzadaM.U.K. HossainM.J. KoiralaN. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects.J. Infect. Public Health202114121750176610.1016/j.jiph.2021.10.020 34756812
    [Google Scholar]
  2. HuemerM. Mairpady ShambatS. BruggerS.D. ZinkernagelA.S. Antibiotic resistance and persistence—Implications for human health and treatment perspectives.EMBO Rep.20202112e5103410.15252/embr.202051034 33400359
    [Google Scholar]
  3. ZalewskaM. BłażejewskaA. CzapkoA. PopowskaM. Antibiotics and antibiotic resistance genes in animal manure–consequences of its application in agriculture.Front. Microbiol.20211261065610.3389/fmicb.2021.610656 33854486
    [Google Scholar]
  4. AdinorteyC.A. AhetoD.W. BoatengA.A. AgbekoR. Multiple antibiotic resistance-coliform bacteria in some selected fish farms of the central region of Ghana.Scientifica2020202011110.1155/2020/6641461 33376622
    [Google Scholar]
  5. NadeemS.F. GoharU.F. TahirS.F. MukhtarH. PornpukdeewattanaS. NukthamnaP. Moula AliA.M. BavisettyS.C.B. MassaS. Antimicrobial resistance:More than 70 years of war between humans and bacteria.Crit. Rev. Microbiol.202046557859910.1080/1040841X.2020.1813687 32954887
    [Google Scholar]
  6. EbmeyerS. KristianssonE. LarssonD.G.J. A framework for identifying the recent origins of mobile antibiotic resistance genes.Commun. Biol.202141810.1038/s42003‑020‑01545‑5 33398069
    [Google Scholar]
  7. BrownK. MugohM. CallD.R. OmuloS. Antibiotic residues and antibiotic-resistant bacteria detected in milk marketed for human consumption in Kibera, Nairobi.PLoS One2020155e023341310.1371/journal.pone.0233413 32463823
    [Google Scholar]
  8. SessitschA. WakelinS. SchloterM. MaguinE. CernavaT. Champomier-VergesM.C. CharlesT.C. CotterP.D. FerrocinoI. KriaaA. LebreP. CowanD. LangeL. KiranS. MarkiewiczL. MeisnerA. OlivaresM. SarandI. SchelkleB. SelvinJ. SmidtH. van OverbeekL. BergG. CocolinL. SanzY. FernandesW.L.Jr LiuS.J. RyanM. SinghB. KosticT. Microbiome interconnectedness throughout environments with major consequences for healthy people and a healthy planet.Microbiol. Mol. Biol. Rev.2023873e002122210.1128/mmbr.00212‑22 37367231
    [Google Scholar]
  9. PuvačaN. de Llanos FrutosR. Antimicrobial resistance in Escherichia coli strains isolated from humans and Pet animals.Antibiotics20211016910.3390/antibiotics10010069 33450827
    [Google Scholar]
  10. QinS. XiaoW. ZhouC. PuQ. DengX. LanL. LiangH. SongX. WuM. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics.Signal Transduct. Target. Ther.20227119910.1038/s41392‑022‑01056‑1 35752612
    [Google Scholar]
  11. OkamotoK. GotohN. NishinoT. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: Penem resistance mechanisms and their interplay.Antimicrob. Agents Chemother.20014571964197110.1128/AAC.45.7.1964‑1971.2001 11408209
    [Google Scholar]
  12. BokmaJ. VereeckeN. NauwynckH. HaesebrouckF. TheunsS. PardonB. BoyenF. Genome-wide association study reveals genetic markers for antimicrobial resistance in Mycoplasma bovis.Microbiol. Spectr.202192e002622110.1128/Spectrum.00262‑21 34612702
    [Google Scholar]
  13. YangT. PanL. WuN. WangL. LiuZ. KongY. RuanZ. XieX. ZhangJ. Antimicrobial resistance in clinical Ureaplasma spp. and Mycoplasma hominis and structural mechanisms underlying quinolone resistance.Antimicrob. Agents Chemother.2020646e025601910.1128/AAC.02560‑19 32229497
    [Google Scholar]
  14. GuoQ. ChenJ. ZhangS. ZouY. ZhangY. HuangD. ZhangZ. LiB. ChuH. Efflux pumps contribute to intrinsic clarithromycin resistance in clinical, Mycobacterium abscessus isolates.Infect. Drug Resist.20201344745410.2147/IDR.S239850 32104016
    [Google Scholar]
  15. BaqueroF. MartínezJ.L.F. LanzaF. V.; Rodríguez-Beltrán, J.; Galán, J.C.; San Millán, A.; Cantón, R.; Coque, T.M. Evolutionary pathways and trajectories in antibiotic resistance.Clin. Microbiol. Rev.2021344e000501910.1128/CMR.00050‑19 34190572
    [Google Scholar]
  16. BotteryM.J. PitchfordJ.W. FrimanV.P. Ecology and evolution of antimicrobial resistance in bacterial communities.ISME J.202115493994810.1038/s41396‑020‑00832‑7 33219299
    [Google Scholar]
  17. DelaFuenteJ. Toribio-CelestinoL. Santos-LopezA. León-SampedroR. Alonso-del ValleA. CostasC. Hernández-GarcíaM. CuiL. Rodríguez-BeltránJ. BikardD. CantónR. San MillanA. Within-patient evolution of plasmid-mediated antimicrobial resistance.Nat. Ecol. Evol.20226121980199110.1038/s41559‑022‑01908‑7 36303001
    [Google Scholar]
  18. CastroR.A.D. BorrellS. GagneuxS. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis.FEMS Microbiol. Rev.2021454fuaa07110.1093/femsre/fuaa071 33320947
    [Google Scholar]
  19. ChenY.X. XuZ. GeX. HongJ.Y. SanyalS. LuZ.J. JavidB. Selective translation by alternative bacterial ribosomes.Proc. Natl. Acad. Sci.202011732194871949610.1073/pnas.2009607117 32723820
    [Google Scholar]
  20. AliT. BasitA. KarimA.M. LeeJ.H. JeonJ.H. RehmanS. LeeS.H. Mutation-based antibiotic resistance mechanism in methicillin-resistant Staphylococcus aureus clinical isolates.Pharmaceuticals202114542010.3390/ph14050420 34062812
    [Google Scholar]
  21. LadeH. KimJ.S. Molecular determinants of β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA): An updated review.Antibiotics2023129136210.3390/antibiotics12091362 37760659
    [Google Scholar]
  22. ShiriaevD.I. SofronovaA.A. BerdnikovichE.A. LukianovD.A. KomarovaE.S. MarinaV.I. ZakalyukinaY.V. BiryukovM.V. MavizaT.P. IvanenkovY.A. Nybomycin inhibits both types of E. coli DNA gyrase-fluoroquinolone-sensitive and fluoroquinolone- resistant.Antimicrob. Agent. Chemoth.2021955e007772010.3390/antibiotics12091362 37760659
    [Google Scholar]
  23. SpencerA.C. PandaS.S. DNA gyrase as a target for quinolones.Biomedicines202311237110.3390/biomedicines11020371 36830908
    [Google Scholar]
  24. AliA.A. ShareefH.K. Molecular detection of the mutation in RPOB gene responsible to rifampicin resistance in Mycobacterium tuberculosis.Biochem. Cell. Arch.2019192
    [Google Scholar]
  25. Rodríguez-BeltránJ. DelaFuenteJ. León-SampedroR. MacLeanR.C. San MillánÁ. Beyond horizontal gene transfer: The role of plasmids in bacterial evolution.Nat. Rev. Microbiol.202119634735910.1038/s41579‑020‑00497‑1 33469168
    [Google Scholar]
  26. RedondoS. Fernández LópezR. RuizR. VielvaL. ToroM. RochaE.P. Garcillán-BarciaM.P. CruzF. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids.Nat. Commun.202011360210.1038/s41467‑020‑17278‑2
    [Google Scholar]
  27. CheY. YangY. XuX. BřindaK. PolzM.F. HanageW.P. ZhangT. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes.Proc. Natl. Acad. Sci.20211186e200873111810.1073/pnas.2008731118 33526659
    [Google Scholar]
  28. OttL.C. MellataM. Models for gut-mediated horizontal gene transfer by bacterial plasmid conjugation.Front. Microbiol.20221389154810.3389/fmicb.2022.891548 35847067
    [Google Scholar]
  29. Pinilla-RedondoR. RusselJ. Mayo-MuñozD. ShahS.A. GarrettR.A. NesmeJ. MadsenJ.S. FineranP.C. SørensenS.J. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids.Nucleic Acids Res.20225084315432810.1093/nar/gkab859 34606604
    [Google Scholar]
  30. VirolleC. GoldlustK. DjermounS. BigotS. LesterlinC. Plasmid transfer by conjugation in Gram-negative bacteria: From the cellular to the community level.Genes20201111123910.3390/genes11111239 33105635
    [Google Scholar]
  31. KohlerV. KellerW. GrohmannE. Regulation of Gram-positive conjugation.Front. Microbiol.201910113410.3389/fmicb.2019.01134 31191478
    [Google Scholar]
  32. CochraneR.R. ShresthaA. Severo de AlmeidaM.M. Agyare-TabbiM. BrumwellS.L. HamadacheS. MeaneyJ.S. NuciforaD.P. SayH.H. SharmaJ. SoltysiakM.P.M. TongC. Van BeloisK. WalkerE.J.L. LachanceM.A. GloorG.B. EdgellD.R. ShapiroR.S. KarasB.J. Superior conjugative plasmids delivered by bacteria to diverse fungi.Biodesign Res.20222022980216810.34133/2022/9802168 37850145
    [Google Scholar]
  33. XuH. ChenZ. HuangR. CuiY. LiQ. ZhaoY. WangX. MaoD. LuoY. RenH. Antibiotic resistance gene-carrying plasmid spreads into the plant endophytic bacteria using soil bacteria as carriers.Environ. Sci. Technol.20215515104621047010.1021/acs.est.1c01615 34114802
    [Google Scholar]
  34. WaksmanG. From conjugation to T4S systems in Gram‐negative bacteria: A mechanistic biology perspective.EMBO Rep.2019202e4701210.15252/embr.201847012 30602585
    [Google Scholar]
  35. SibbaldS.J. EmeL. ArchibaldJ.M. RogerA.J. Lateral gene transfer mechanisms and pan-genomes in eukaryotes.Trends Parasitol.2020361192794110.1016/j.pt.2020.07.014 32828660
    [Google Scholar]
  36. GeorgeE.E. TashyrevaD. KwongW.K. OkamotoN. HorákA. HusnikF. LukešJ. KeelingP.J. Gene transfer agents in bacterial endosymbionts of microbial eukaryotes.Genome Biol. Evol.2022147evac09910.1093/gbe/evac099 35738252
    [Google Scholar]
  37. AlderliestenJ.B. DuxburyS.J.N. ZwartM.P. de VisserJ.A.G.M. StegemanA. FischerE.A.J. Effect of donor-recipient relatedness on the plasmid conjugation frequency: a meta-analysis.BMC Microbiol.202020113510.1186/s12866‑020‑01825‑4 32456625
    [Google Scholar]
  38. BéchonN. GhigoJ.M. Gut biofilms: Bacteroides as model symbionts to study biofilm formation by intestinal anaerobes.FEMS Microbiol. Rev.2022462fuab05410.1093/femsre/fuab054 34849798
    [Google Scholar]
  39. GhigoJ.M. Natural conjugative plasmids induce bacterial biofilm development.Nature2001412684544244510.1038/35086581 11473319
    [Google Scholar]
  40. HeaddB. BradfordS.A. The conjugation window in an Escherichia coli K-12 strain with an IncFII plasmid.Appl. Environ. Microbiol.20208617e009482010.1128/AEM.00948‑20 32591383
    [Google Scholar]
  41. ShafieifiniM. SunY. StaleyZ.R. RiethovenJ.J. LiX. Effects of nutrient level and growth rate on the conjugation process that transfers mobile antibiotic resistance genes in continuous cultures.Appl. Environ. Microbiol.20228819e011212210.1128/aem.01121‑22 36094214
    [Google Scholar]
  42. HuismanJ.S. BenzF. DuxburyS.J.N. de VisserJ.A.G.M. HallA.R. FischerE.A.J. BonhoefferS. Estimating plasmid conjugation rates: A new computational tool and a critical comparison of methods.Plasmid202212110262710.1016/j.plasmid.2022.102627 35271855
    [Google Scholar]
  43. WangY. LuJ. ZhangS. LiJ. MaoL. YuanZ. BondP.L. GuoJ. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation.ISME J.20211592493250810.1038/s41396‑021‑00945‑7 33692486
    [Google Scholar]
  44. CostaT.R.D. HarbL. KharaP. ZengL. HuB. ChristieP.J. Type IV secretion systems: Advances in structure, function, and activation.Mol. Microbiol.2021115343645210.1111/mmi.14670 33326642
    [Google Scholar]
  45. ShanX. YangM. WangN. SchwarzS. LiD. DuX.D. Plasmid fusion and recombination events that occurred during conjugation of poxtA-carrying plasmids in enterococci.Microbiol. Spectr.2022101e015052110.1128/spectrum.01505‑21 35044200
    [Google Scholar]
  46. LederbergJ. TatumE.L. Gene recombination in Escherichia coli.Nature1946158401655810.1038/158558a0 21001945
    [Google Scholar]
  47. TatumE.L. LederbergJ. Gene recombination in the bacterium Escherichia coli.J. Bacteriol.194753667368410.1128/jb.53.6.673‑684.1947 16561324
    [Google Scholar]
  48. SchindlerT.E. A hidden legacy: The life and work of Esther Zimmer Lederberg.Oxford University Press202110.1093/oso/9780197531679.001.0001
    [Google Scholar]
  49. HirotaY. IijimaT. Acriflavine as an effective agent for eliminating F-factor in Escherichia coli K-12.Nature1957180458765565610.1038/180655a0 13477247
    [Google Scholar]
  50. WeinT. DaganT. Plasmid evolution.Curr. Biol.20203019R1158R116310.1016/j.cub.2020.07.003 33022260
    [Google Scholar]
  51. IlangovanA. ConneryS. WaksmanG. Structural biology of the Gram-negative bacterial conjugation systems.Trends Microbiol.201523530131010.1016/j.tim.2015.02.012 25825348
    [Google Scholar]
  52. CzolkossS. SafronovX. RexrothS. KnokeL.R. AktasM. NarberhausF. Agrobacterium tumefaciens type IV and type VI secretion systems reside in detergent-resistant membranes.Front. Microbiol.20211275448610.3389/fmicb.2021.754486 34899640
    [Google Scholar]
  53. MohsinM. HassanB. MartinsW.M.B.S. LiR. AbdullahS. SandsK. WalshT.R. Emergence of plasmid-mediated tigecycline resistance tet(X4) gene in Escherichia coli isolated from poultry, food and the environment in South Asia.Sci. Total Environ.202178714761310.1016/j.scitotenv.2021.147613 33992939
    [Google Scholar]
  54. ZouH. JiaX. LiuH. LiS. WuX. HuangS. Emergence of NDM-5-producing Escherichia coli in a teaching hospital in Chongqing, China: IncF-type plasmids may contribute to the prevalence of bla NDM–5.Front. Microbiol.20201133410.3389/fmicb.2020.00334 32210935
    [Google Scholar]
  55. LiuZ. XiaoX. LiY. LiuY. LiR. WangZ. Emergence of IncX3 plasmid-harboring bla NDM–5 dominated by Escherichia coli ST48 in a goose farm in Jiangsu, China.Front. Microbiol.201910200210.3389/fmicb.2019.02002 31551956
    [Google Scholar]
  56. XieM. YangX. XuQ. YeL. ChenK. ZhengZ. DongN. SunQ. ShuL. GuD. ChanE.W.C. ZhangR. ChenS. Clinical evolution of ST11 carbapenem resistant and hypervirulent Klebsiella pneumoniae.Commun. Biol.20214165010.1038/s42003‑021‑02148‑4 34075192
    [Google Scholar]
  57. ZengZ. LeiL. LiL. HuaS. LiW. ZhangL. LinQ. ZhengZ. YangJ. DouX. LiL. LiX. In silico characterization of blaNDM-harboring plasmids in Klebsiella pneumoniae.Front. Microbiol.202213100890510.3389/fmicb.2022.1008905 36504778
    [Google Scholar]
  58. YangX. DongN. ChanE.W.C. ZhangR. ChenS. Carbapenem resistance-encoding and virulence-encoding conjugative plasmids in Klebsiella pneumoniae.Trends Microbiol.2021291658310.1016/j.tim.2020.04.012 32448764
    [Google Scholar]
  59. Gómez-MartínezJ. Rocha-GraciaR.C. Bello-LópezE. CevallosM.A. Castañeda-LucioM. López-GarcíaA. SáenzY. Jiménez-FloresG. Cortés-CortésG. Lozano-ZarainP. A plasmid carrying blaIMP-56 in Pseudomonas aeruginosa belonging to a novel resistance plasmid family.Microorganisms2022109186310.3390/microorganisms10091863 36144465
    [Google Scholar]
  60. LiM. GuanC. SongG. GaoX. YangW. WangT. ZhangY. Characterization of a conjugative multidrug resistance IncP-2 Megaplasmid, pPAG5, from a clinical Pseudomonas aeruginosa isolate.Microbiol. Spectr.2022101e019922110.1128/spectrum.01992‑21 35171033
    [Google Scholar]
  61. YangQ. LiY. FangL. LeiT. CaiH. HuaX. ZhengM. YuY. A novel KPC-113 variant conferring carbapenem and ceftazidime-avibactam resistance in a multidrug-resistant Pseudomonas aeruginosa isolate.Clin. Microbiol. Infect.2023293387.e7387.e1410.1016/j.cmi.2022.10.013
    [Google Scholar]
  62. ShaskolskiyB. DementievaE. KandinovI. FilippovaM. PetrovaN. PlakhovaX. ChestkovA. KubanovA. DeryabinD. GryadunovD. Resistance of Neisseria gonorrhoeae isolates to beta-lactam antibiotics (benzylpenicillin and ceftriaxone) in Russia, 2015–2017.PLoS One2019147e022033910.1371/journal.pone.0220339 31344102
    [Google Scholar]
  63. PachulecE. van der DoesC. Conjugative plasmids of Neisseria gonorrhoeae.PLoS One201054e996210.1371/journal.pone.0009962 20376355
    [Google Scholar]
  64. McMillanE.A. NguyenL.H.T. HiottL.M. SharmaP. JacksonC.R. FryeJ.G. ChenC.Y. Genomic comparison of conjugative plasmids from Salmonella enterica and Escherichia coli encoding beta-lactamases and capable of mobilizing kanamycin resistance Col-like plasmids.Microorganisms2021911220510.3390/microorganisms9112205 34835331
    [Google Scholar]
  65. RauR.B. de Lima-MoralesD. WinkP.L. RibeiroA.R. BarthA.L. Salmonella enterica mcr-1 positive from food in Brazil: detection and characterization.Foodborne Pathog. Dis.202017320220810.1089/fpd.2019.2700 31556704
    [Google Scholar]
  66. VázquezX. GarcíaV. FernándezJ. BancesM. de ToroM. LaderoV. RodicioR. RodicioM.R. Colistin resistance in monophasic isolates of Salmonella enterica ST34 collected from meat-derived products in Spain, with or without CMY-2 co-production.Front. Microbiol.20221273536410.3389/fmicb.2021.735364 35069462
    [Google Scholar]
  67. CaoG. AllardM. HoffmannM. MuruvandaT. LuoY. PayneJ. MengK. ZhaoS. McDermottP. BrownE. MengJ. Sequence analysis of IncA/C and IncI1 plasmids isolated from multidrug-resistant Salmonella Newport using single-molecule real-time sequencing.Foodborne Pathog. Dis.201815636137110.1089/fpd.2017.2385 29620958
    [Google Scholar]
  68. ChenC.Y. NguyenL.H.T. StrobaughT.P. Jr Sequence analysis and plasmid mobilization of a 6.6-kb kanamycin resistance plasmid, pSNC3-Kan, from a Salmonella enterica serotype Newport isolate.PLoS One2022177e026850210.1371/journal.pone.0268502 35834529
    [Google Scholar]
  69. SherA.A. VanAllenM.E. AhmedH. Whitehead-TilleryC. RafiqueS. BellJ.A. ZhangL. MansfieldL.S. Conjugative RP4 plasmid-mediated transfer of antibiotic resistance genes to commensal and multidrug-resistant enteric bacteria in vitro.Microorganisms202311119310.3390/microorganisms11010193 36677486
    [Google Scholar]
  70. TanW. LuY. ZhuZ. XuZ. ZhangY. HuangQ. MengX. LiS. Cotransfer of resistance to cephalosporins, colistin, and fosfomycin mediated by an IncHI2/pSH16G4928-like plasmid in ESBL-producing monophasic Salmonella Typhimurium strains of pig origin.J. Appl. Microbiol.20231343lxac060 36808475
    [Google Scholar]
  71. KhongfakS. ThummeepakR. LeungtongkamU. TasanapakK. ThanwisaiA. SitthisakS. Insights into mobile genetic elements and the role of conjugative plasmid in transferring aminoglycoside resistance in extensively drug-resistant Acinetobacter baumannii AB329.PeerJ202210e1371810.7717/peerj.13718 35855908
    [Google Scholar]
  72. TangB. WangC. SunD. LinH. MaJ. GuoH. YangH. LiX. In Silico characterization of blaNDM -harboring conjugative plasmids in acinetobacter species.Microbiol. Spectr.2022106e021022210.1128/spectrum.02102‑22 36301090
    [Google Scholar]
  73. CarraroN. SauvéM. MatteauD. LauzonG. RodrigueS. BurrusV. Development of pVCR94ΔX from Vibrio cholerae, a prototype for studying multidrug resistant IncA/C conjugative plasmids.Front. Microbiol.201454410.3389/fmicb.2014.00044 24567731
    [Google Scholar]
  74. ShahM.M. BundiM. KathiikoC. GuyoS. GalataA. MiringuG. IchinoseY. YoshidaL.M. Antibiotic-Resistant Vibrio cholerae O1 and Its SXT elements associated with two cholera epidemics in kenya in 2007 to 2010 and 2015 to 2016.Microbiol. Spectr.2023113e041402210.1128/spectrum.04140‑22 37125926
    [Google Scholar]
  75. San MillanA. Garcia-CobosS. EscuderoJ.A. HidalgoL. GutierrezB. CarrileroL. CamposJ. Gonzalez-ZornB. Haemophilus influenzae clinical isolates with plasmid pB1000 bearing blaROB-1: fitness cost and interspecies dissemination.Antimicrob. Agents Chemother.20105441506151110.1128/AAC.01489‑09 20086141
    [Google Scholar]
  76. FleuryC. ResmanF. RauJ. RiesbeckK. Prevalence, distribution and transfer of small -lactamase-containing plasmids in Swedish Haemophilus influenzae.J. Antimicrob. Chemother.20146951238124210.1093/jac/dkt511 24381073
    [Google Scholar]
  77. WangS. ZhouK. XiaoS. XieL. GuF. LiX. NiY. SunJ. HanL. A Multidrug Resistance Plasmid pIMP26, Carrying blaIMP-26, fosA5, blaDHA-1, and qnrB4 in Enterobacter cloacae.Sci. Rep.2019911021210.1038/s41598‑019‑46777‑6 31308469
    [Google Scholar]
  78. ZhuY. LiuW. SchwarzS. WangC. YangQ. LuanT. WangL. LiuS. ZhangW. Characterization of a blaNDM-1-carrying IncHI5 plasmid from Enterobacter cloacae complex of food-producing animal origin.J. Antimicrob. Chemother.20207551140114510.1093/jac/dkaa010 32016414
    [Google Scholar]
  79. GartzonikaK. PolitiL. MavroidiA. TsantesA.G. SpanakisN. PriavaliE. VrioniG. TsakrisA. High prevalence of clonally related ST182 NDM-1-producing Enterobacter cloacae complex clinical isolates in Greece.Int. J. Antimicrob. Agents202362110683710.1016/j.ijantimicag.2023.106837 37156401
    [Google Scholar]
  80. ShanmugasundarasamyT. Karaiyagowder GovindarajanD. KandaswamyK. A review on pilus assembly mechanisms in Gram-positive and Gram-negative bacteria.Cell Surf.2022810007710.1016/j.tcsw.2022.100077 35493982
    [Google Scholar]
  81. RidenhourB. TopE. Plasmid Driven Evolution of Bacteria.In: Encyclopedia of Evolutionary Biology2016pages30130610.1016/B978‑0‑12‑800049‑6.00237‑7
    [Google Scholar]
  82. Álvarez-RodríguezI. AranaL. Ugarte-UribeB. Gómez-RubioE. Martín-SantamaríaS. GarbisuC. AlkortaI. Type IV coupling proteins as potential targets to control the dissemination of antibiotic resistance.Front. Mol. Biosci.2020720110.3389/fmolb.2020.00201 32903459
    [Google Scholar]
  83. ParkC.J. SmithJ.T. AndamC.P. Horizontal gene transfer and genome evolution in the phylum Actinobacteria.In: Horizontal Gene Transfer2019155174
    [Google Scholar]
  84. LiJ. WangB. YangQ. SiH. ZhaoY. ZhengY. PengW. Enabling efficient genetic manipulations in a rare actinomycete Pseudonocardia alni Shahu.Front. Microbiol.20221384896410.3389/fmicb.2022.848964 35308340
    [Google Scholar]
  85. JagannathanS.V. ManemannE.M. RoweS.E. CallenderM.C. SotoW. Marine actinomycetes, new sources of biotechnological products.Mar. Drugs202119736510.3390/md19070365 34201951
    [Google Scholar]
  86. Goessweiner-MohrN. ArendsK. KellerW. GrohmannE. Conjugative type IV secretion systems in Gram-positive bacteria.Plasmid201370328930210.1016/j.plasmid.2013.09.005 24129002
    [Google Scholar]
  87. GriffithF. The significance of pneumococcal types.J. Hyg.192827211315910.1017/S0022172400031879 20474956
    [Google Scholar]
  88. JohnstonC. MartinB. FichantG. PolardP. ClaverysJ.P. Bacterial transformation: distribution, shared mechanisms and divergent control.Nat. Rev. Microbiol.201412318119610.1038/nrmicro3199 24509783
    [Google Scholar]
  89. SharmaD.K. MisraH.S. BihaniS.C. RajpurohitY.S. Biochemical properties and roles of dpra protein in bacterial natural transformation, virulence, and pilin variation.J. Bacteriol.20232052e004652210.1128/jb.00465‑22 36695594
    [Google Scholar]
  90. RazzaqA. Bacterial transformation; transforming principal,Study Solutions.Available from: https://istudy.pk/bacterial-transformation/ (accessed on 11-6-2024)
    [Google Scholar]
  91. GodeuxA.S. SvedholmE. BarretoS. PotronA. VennerS. CharpentierX. LaaberkiM.H. Interbacterial transfer of carbapenem resistance and large antibiotic resistance islands by natural transformation in pathogenic Acinetobacter.MBio2022131e026312110.1128/mbio.02631‑21 35073754
    [Google Scholar]
  92. PrudhommeM. AttaiechL. SanchezG. MartinB. ClaverysJ.P. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae.Science20063135783899210.1126/science.1127912 16825569
    [Google Scholar]
  93. DubnauD. BlokeschM. Mechanisms of DNA uptake by naturally competent bacteria.Annu. Rev. Genet.201953121723710.1146/annurev‑genet‑112618‑043641 31433955
    [Google Scholar]
  94. PagetE. SimonetP. On the track of natural transformation in soil.FEMS Microbiol. Ecol.1994151-210911710.1111/j.1574‑6941.1994.tb00235.x
    [Google Scholar]
  95. BaldrianP. Forest microbiome: diversity, complexity and dynamics.FEMS Microbiol. Rev.2017412109130 27856492
    [Google Scholar]
  96. PhilippotL. ChenuC. KapplerA. RilligM.C. FiererN. The interplay between microbial communities and soil properties.Nat. Rev. Microbiol.20232023114 37863969
    [Google Scholar]
  97. NielsenK.M. van ElsasJ.D. Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD413 in soil.Soil Biol. Biochem.200133334535710.1016/S0038‑0717(00)00147‑4
    [Google Scholar]
  98. WangY. LuJ. EngelstädterJ. ZhangS. DingP. MaoL. YuanZ. BondP.L. GuoJ. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation.ISME J.20201482179219610.1038/s41396‑020‑0679‑2 32424247
    [Google Scholar]
  99. TribbleG.D. RigneyT.W. DaoD.H.V. WongC.T. KerrJ.E. TaylorB.E. PachaS. KaplanH.B. Natural competence is a major mechanism for horizontal DNA transfer in the oral pathogen Porphyromonas gingivalis.MBio201231e002311110.1128/mBio.00231‑11 22294679
    [Google Scholar]
  100. LiY.H. LauP.C.Y. LeeJ.H. EllenR.P. CvitkovitchD.G. Natural genetic transformation of Streptococcus mutans growing in biofilms.J. Bacteriol.2001183389790810.1128/JB.183.3.897‑908.2001 11208787
    [Google Scholar]
  101. JinM. LiuL. WangD. YangD. LiuW. YinJ. YangZ. WangH. QiuZ. ShenZ. ShiD. LiH. GuoJ. LiJ. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation.ISME J.20201471847185610.1038/s41396‑020‑0656‑9 32327733
    [Google Scholar]
  102. Mohan RajJ.R. KarunasagarI. Phages amid antimicrobial resistance.Crit. Rev. Microbiol.2019455-670171110.1080/1040841X.2019.1691973 31775552
    [Google Scholar]
  103. LuongT. SalabarriaA.C. EdwardsR.A. RoachD.R. Standardized bacteriophage purification for personalized phage therapy.Nat. Protoc.20201592867289010.1038/s41596‑020‑0346‑0 32709990
    [Google Scholar]
  104. ChiangY.N. PenadésJ.R. ChenJ. Genetic transduction by phages and chromosomal islands: The new and noncanonical.PLoS Pathog.2019158e100787810.1371/journal.ppat.1007878 31393945
    [Google Scholar]
  105. ChenF. ChengX. LiJ. YuanX. HuangX. LianM. LiW. HuangT. XieY. LiuJ. GaoP. WeiX. WangZ. WuM. Novel lytic phages protect cells and mice against Pseudomonas aeruginosa infection.J. Virol.2021958e018322010.1128/JVI.01832‑20 33472935
    [Google Scholar]
  106. RollieC. ChevallereauA. WatsonB.N.J. ChyouT. FradetO. McLeodI. FineranP.C. BrownC.M. GandonS. WestraE.R. Targeting of temperate phages drives loss of type I CRISPR–Cas systems.Nature2020578779314915310.1038/s41586‑020‑1936‑2 31969710
    [Google Scholar]
  107. Mazaheri Nezhad FardR. BartonM.D. HeuzenroederM.W. Novel bacteriophages in Enterococcus spp.Curr. Microbiol.201060640040610.1007/s00284‑009‑9555‑z 19967374
    [Google Scholar]
  108. DebroasD. SiguretC. Viruses as key reservoirs of antibiotic resistance genes in the environment.ISME J.201913112856286710.1038/s41396‑019‑0478‑9 31358910
    [Google Scholar]
  109. MarinusM.G. PoteeteA.R. High efficiency generalized transduction in Escherichia coli O157:H7.F1000 Res.20132710.12688/f1000research.2‑7.v1 24358856
    [Google Scholar]
  110. LeclercQ.J. WildfireJ. GuptaA. LindsayJ.A. KnightG.M. Growth-Dependent Predation and Generalized Transduction of Antimicrobial Resistance by Bacteriophage.mSystems202272e001352210.1128/msystems.00135‑22 35311576
    [Google Scholar]
  111. ZhangM. ZhangT. YuM. ChenY.L. JinM. The life cycle transitions of temperate phages: Regulating factors and potential ecological implications.Viruses2022149190410.3390/v14091904 36146712
    [Google Scholar]
  112. GummallaV.S. ZhangY. LiaoY.T. WuV.C.H. The Role of Temperate Phages in Bacterial Pathogenicity.Microorganisms202311354110.3390/microorganisms11030541 36985115
    [Google Scholar]
  113. LinD.M. LinH.C. A theoretical model of temperate phages as mediators of gut microbiome dysbiosis.F1000 Res.2019899710.12688/f1000research.18480.1 31316751
    [Google Scholar]
  114. ZhouW. LiY. XuX. RaoS. WenH. HanY. DengA. ZhangZ. YangZ. ZhuG. Whole-genome analysis showed the promotion of genetic diversity and coevolution in Staphylococcus aureus lytic bacteriophages and their hosts mediated by prophages via worldwide recombination events.Front. Microbiol.202314108812510.3389/fmicb.2023.1088125 36970693
    [Google Scholar]
  115. KondoK. KawanoM. SugaiM. Distribution of antimicrobial resistance and virulence genes within the prophage-associated regions in nosocomial pathogens.MSphere202164e004522110.1128/mSphere.00452‑21 34232073
    [Google Scholar]
  116. CostaA.R. MonteiroR. AzeredoJ. Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests profound impact on bacterial virulence and fitness.Sci. Rep.2018811534610.1038/s41598‑018‑33800‑5 30337588
    [Google Scholar]
  117. BabakhaniS. OloomiM. Transposons: the agents of antibiotic resistance in bacteria.J. Basic Microbiol.2018581190591710.1002/jobm.201800204 30113080
    [Google Scholar]
  118. LipszycA. SzuplewskaM. BartosikD. How do transposable elements activate expression of transcriptionally silent antibiotic resistance genes?Int. J. Mol. Sci.20222315806310.3390/ijms23158063 35897639
    [Google Scholar]
  119. KenkelB. Plasmids 101: Using Transposons in the Lab.Available from: https://blog.addgene.org/plasmids-101-using-transposons-in-the-lab (accessed on 11-6-2024)
    [Google Scholar]
  120. Mlynarczyk-BonikowskaB. KowalewskiC. Krolak-UlinskaA. MaruszaW. Molecular mechanisms of drug resistance in Staphylococcus aureus.Int. J. Mol. Sci.20222315808810.3390/ijms23158088 35897667
    [Google Scholar]
  121. Sandoval-VillegasN. NurievaW. AmbergerM. IvicsZ. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering.Int. J. Mol. Sci.20212210508410.3390/ijms22105084 34064900
    [Google Scholar]
  122. AlgarniS. RickeS.C. FoleyS.L. HanJ. The dynamics of the antimicrobial resistance mobilome of Salmonella enterica and related enteric bacteria.Front. Microbiol.20221385985410.3389/fmicb.2022.859854 35432284
    [Google Scholar]
  123. NzabarushimanaE. TangH. Insertion sequence elements-mediated structural variations in bacterial genomes.Mob. DNA2018912910.1186/s13100‑018‑0134‑3 30181787
    [Google Scholar]
  124. JeonJ.H. JangK.M. LeeJ.H. KangL.W. LeeS.H. Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention.Sci. Total Environ.2023857Pt 215949710.1016/j.scitotenv.2022.159497 36257427
    [Google Scholar]
  125. ChandlerM. RossK. VaraniA.M. The insertion sequence excision enhancer: A PrimPol‐based primer invasion system for immobilizing transposon‐transmitted antibiotic resistance genes.Mol. Microbiol.2023120565866910.1111/mmi.15140 37574851
    [Google Scholar]
  126. LundeT.M. HjerdeE. Al-HaroniM. Prevalence, diversity and transferability of the Tn 916 -Tn 1545 family ICE in oral streptococci.J. Oral Microbiol.2021131189687410.1080/20002297.2021.1896874 33796228
    [Google Scholar]
  127. LambertsenL. Rubio-CosialsA. PatilK.R. BarabasO. Conjugative transposition of the vancomycin resistance carrying Tn 1549: enzymatic requirements and target site preferences.Mol. Microbiol.2018107563965810.1111/mmi.13905 29271522
    [Google Scholar]
  128. HeJ. LiC. CuiP. WangH. Detection of Tn7-Like Transposons and Antibiotic Resistance in Enterobacterales From Animals Used for Food Production With Identification of Three Novel Transposons Tn6813, Tn6814, and Tn6765.Front. Microbiol.202011204910.3389/fmicb.2020.02049 33013752
    [Google Scholar]
  129. LiuX. XiaoJ. WangS. ZhouJ. QinJ. JiaZ. WangY. WangZ. ZhangY. HaoH. Research Progress on Bacterial Membrane Vesicles and Antibiotic Resistance.Int. J. Mol. Sci.202223191155310.3390/ijms231911553 36232856
    [Google Scholar]
  130. BoseS. AggarwalS. SinghD.V. AcharyaN. Extracellular vesicles: An emerging platform in gram-positive bacteria.Microb. Cell202071231232210.15698/mic2020.12.737 33335921
    [Google Scholar]
  131. ToyofukuM. NomuraN. EberlL. Types and origins of bacterial membrane vesicles.Nat. Rev. Microbiol.2019171132410.1038/s41579‑018‑0112‑2 30397270
    [Google Scholar]
  132. Dell’AnnunziataF. FollieroV. GiuglianoR. De FilippisA. SantarcangeloC. IzzoV. DagliaM. GaldieroM. ArciolaC.R. FranciG. Gene transfer potential of outer membrane vesicles of gram-negative bacteria.Int. J. Mol. Sci.20212211598510.3390/ijms22115985 34205995
    [Google Scholar]
  133. MarinacciB. KrzyżekP. PellegriniB. TuracchioG. GrandeR. Latest Update on Outer Membrane Vesicles and Their Role in Horizontal Gene Transfer: A Mini-Review.Membranes2023131186010.3390/membranes13110860 37999346
    [Google Scholar]
  134. YangJ. JiaF. QiaoY. HaiZ. ZhouX. Correlation between bacterial extracellular vesicles and antibiotics: A potentially antibacterial strategy.Microb. Pathog.202318110616710.1016/j.micpath.2023.106167 37224984
    [Google Scholar]
  135. LeeA.R. ParkS.B. KimS.W. JungJ.W. ChunJ.H. KimJ. KimY.R. LazarteJ.M.S. JangH.B. ThompsonK.D. JungM. HaM.W. JungT.S. Membrane vesicles from antibiotic-resistant Staphylococcus aureus transfer antibiotic-resistance to antibiotic-susceptible Escherichia coli.J. Appl. Microbiol.202213242746275910.1111/jam.15449 35019198
    [Google Scholar]
  136. XuJ. MeiC. ZhiY. LiangZ. ZhangX. WangH. Comparative Genomics Analysis and Outer Membrane Vesicle-Mediated Horizontal Antibiotic-Resistance Gene Transfer in Avibacterium paragallinarum.Microbiol. Spectr.2022105e013792210.1128/spectrum.01379‑22 36000914
    [Google Scholar]
  137. YaronS. KollingG.L. SimonL. MatthewsK.R. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria.Appl. Environ. Microbiol.200066104414442010.1128/AEM.66.10.4414‑4420.2000 11010892
    [Google Scholar]
  138. Dell’AnnunziataF. Dell’AversanaC. DotiN. DonadioG. Dal PiazF. IzzoV. De FilippisA. GaldieroM. AltucciL. BocciaG. GaldieroM. FollieroV. FranciG. Outer Membrane Vesicles Derived from Klebsiella pneumoniae Are a Driving Force for Horizontal Gene Transfer.Int. J. Mol. Sci.20212216873210.3390/ijms22168732 34445438
    [Google Scholar]
  139. FulsundarS. HarmsK. FlatenG.E. JohnsenP.J. ChopadeB.A. NielsenK.M. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation.Appl. Environ. Microbiol.201480113469348310.1128/AEM.04248‑13 24657872
    [Google Scholar]
  140. HorneT. OrrV.T. HallJ.P.J. How do interactions between mobile genetic elements affect horizontal gene transfer?Curr. Opin. Microbiol.20237310228210.1016/j.mib.2023.102282 36863168
    [Google Scholar]
  141. GarrissG. BurrusV. Integrating conjugative elements of the SXT/R391 family. In:Bacterial integrative mobile genetic elements2022217234
    [Google Scholar]
  142. RobertsA.P. MullanyP. Tn 916 -like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance.FEMS Microbiol. Rev.201135585687110.1111/j.1574‑6976.2011.00283.x 21658082
    [Google Scholar]
  143. BurrusV. PavlovicG. DecarisB. GuédonG. Conjugative transposons: the tip of the iceberg.Mol. Microbiol.200246360161010.1046/j.1365‑2958.2002.03191.x 12410819
    [Google Scholar]
  144. EibergH. OlssonJ.B. BakM. Bang-BerthelsenC.H. TroelsenJ.T. HansenL. A family with ulcerative colitis maps to 7p21.1 and comprises a region with regulatory activity for the aryl hydrocarbon receptor gene.Eur. J. Hum. Genet.202331121440144610.1038/s41431‑023‑01298‑9 36732664
    [Google Scholar]
  145. SunS. MaoY. LeS. ZhengM. LiM. ChenY. ChenJ. FanY. LvB. Biological characteristics of molecular subtypes of ulcerative colitis characterized by ferroptosis and neutrophil infiltration.Sci. Rep.2024141951010.1038/s41598‑024‑60137‑z 38664443
    [Google Scholar]
  146. PrajsnarT.K. CunliffeV.T. FosterS.J. RenshawS.A. A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens.Cell. Microbiol.200810112312232510.1111/j.1462‑5822.2008.01213.x 18715285
    [Google Scholar]
  147. KlockgetherJ. RevaO. LarbigK. TümmlerB. Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C.J. Bacteriol.2004186251853410.1128/JB.186.2.518‑534.2004 14702321
    [Google Scholar]
  148. JohnstonE.L. ZavanL. BittoN.J. PetrovskiS. HillA.F. Kaparakis-LiaskosM. Planktonic and biofilm-derived Pseudomonas aeruginosa outer membrane vesicles facilitate horizontal gene transfer of plasmid DNA.Microbiol. Spectr.2023112e051792210.1128/spectrum.05179‑22 36946779
    [Google Scholar]
  149. CosgroveS.E. SrinivasanA. Antibiotic stewardship: a decade of progress.Infectious Disease Clinics2023374659667 37537002
    [Google Scholar]
  150. ÅrdalC. BalasegaramM. LaxminarayanR. McAdamsD. OuttersonK. RexJ.H. SumpraditN. Antibiotic development — economic, regulatory and societal challenges.Nat. Rev. Microbiol.202018526727410.1038/s41579‑019‑0293‑3 31745330
    [Google Scholar]
  151. DhingraS. RahmanN.A.A. PeileE. RahmanM. SartelliM. HassaliM.A. IslamT. IslamS. HaqueM. Microbial resistance movements: an overview of global public health threats posed by antimicrobial resistance, and how best to counter.Front. Public Health2020853566810.3389/fpubh.2020.535668 33251170
    [Google Scholar]
  152. BakerK.S. JauneikaiteE. NunnJ.G. MidegaJ.T. AtunR. HoltK.E. WaliaK. HowdenB.P. TateH. OkekeI.N. CarattoliA. HsuL.Y. HopkinsK.L. MuloiD.M. WheelerN.E. AanensenD.M. MasonL.C.E. RodgusJ. HendriksenR.S. EssackS.Y. EgyirB. HalpinA.L. MacCannellD.R. CamposJ. SrikantiahP. FeaseyN.A. PeacockS.J. Evidence review and recommendations for the implementation of genomics for antimicrobial resistance surveillance: reports from an international expert group.Lancet Microbe2023412e1035103910.1016/S2666‑5247(23)00281‑1 37977164
    [Google Scholar]
  153. MaillardJ.Y. BloomfieldS.F. CourvalinP. EssackS.Y. GandraS. GerbaC.P. RubinoJ.R. ScottE.A. Reducing antibiotic prescribing and addressing the global problem of antibiotic resistance by targeted hygiene in the home and everyday life settings: A position paper.Am. J. Infect. Control20204891090109910.1016/j.ajic.2020.04.011 32311380
    [Google Scholar]
  154. SchmidtM.G. von DessauerB. BenaventeC. BenadofD. CifuentesP. ElguetaA. DuranC. NavarreteM.S. Copper surfaces are associated with significantly lower concentrations of bacteria on selected surfaces within a pediatric intensive care unit.Am. J. Infect. Control201644220320910.1016/j.ajic.2015.09.008 26553403
    [Google Scholar]
  155. CookM.A. WrightG.D. The past, present, and future of antibiotics.Sci. Transl. Med.202214657eabo779310.1126/scitranslmed.abo7793 35947678
    [Google Scholar]
  156. NaclerioG.A. SintimH.O. Multiple ways to kill bacteria via inhibiting novel cell wall or membrane targets.Future Med. Chem.202012131253127910.4155/fmc‑2020‑0046 32538147
    [Google Scholar]
  157. MalinJ.J. de LeeuwE. Therapeutic compounds targeting Lipid II for antibacterial purposes.Infect. Drug Resist.2019122613262510.2147/IDR.S215070 31692545
    [Google Scholar]
  158. FotiC. PipernoA. ScalaA. GiuffrèO. Oxazolidinone antibiotics: chemical, biological and analytical aspects.Molecules20212614428010.3390/molecules26144280 34299555
    [Google Scholar]
  159. ChampneyW.S. Antibiotics targeting bacterial ribosomal subunit biogenesis.J. Antimicrob. Chemother.202075478780610.1093/jac/dkz544 31942624
    [Google Scholar]
  160. SalmanM. SharmaP. KumarM. EthayathullaA.S. KaurP. Targeting novel sites in DNA gyrase for development of anti-microbials.Brief. Funct. Genomics202322218019410.1093/bfgp/elac029 36064602
    [Google Scholar]
  161. SabetM. DaefE. GhaithD. AgbanM. AlyS.A. How does quinolones antibotic resistance develop? Bulletin of Pharmaceutical Sciences.Assiut202043195104
    [Google Scholar]
  162. AlauzetC. LozniewskiA. MarchandinH. Metronidazole resistance and nim genes in anaerobes: A review.Anaerobe201955405310.1016/j.anaerobe.2018.10.004 30316817
    [Google Scholar]
  163. MiędzybrodzkiR. HoyleN. ZhvaniyaF. Łusiak-SzelachowskaM. Weber-DąbrowskaB. ŁobockaM. BorysowskiJ. AlavidzeZ. KutterE. GórskiA. Current updates from the long-standing phage research centers in Georgia, Poland, and Russia. Bacteriophages: Biology, technology.Therapy20212021921951
    [Google Scholar]
  164. YangX. HaqueA. MatsuzakiS. MatsumotoT. NakamuraS. The efficacy of phage therapy in a murine model of Pseudomonas aeruginosa pneumonia and sepsis.Front. Microbiol.20211268225510.3389/fmicb.2021.682255 34290683
    [Google Scholar]
  165. KhatamiA. LinR.C.Y. Petrovic-FabijanA. Alkalay-OrenS. AlmuzamS. BrittonP.N. BrownsteinM.J. DaoQ. FacklerJ. HazanR. HorneB.A. Nir-PazR. IredellJ.R. Bacterial lysis, autophagy and innate immune responses during adjunctive phage therapy in a child.EMBO Mol. Med.2021139e1393610.15252/emmm.202113936 34369652
    [Google Scholar]
  166. ArsèneM.M.J. DavaresA.K.L. AndreevnaS.L. VladimirovichE.A. CarimeB.Z. MaroufR. KhelifiI. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics.Vet. World202114231932810.14202/vetworld.2021.319‑328 33776297
    [Google Scholar]
  167. ChenC.H. LuT.K. Development and challenges of antimicrobial peptides for therapeutic applications.Antibiotics2020912410.3390/antibiotics9010024 31941022
    [Google Scholar]
  168. LiS. WangY. XueZ. JiaY. LiR. HeC. ChenH. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review.Trends Food Sci. Technol.202110910311510.1016/j.tifs.2021.01.005
    [Google Scholar]
  169. XuL. ShaoC. LiG. ShanA. ChouS. WangJ. MaQ. DongN. Conversion of broad-spectrum antimicrobial peptides into species-specific antimicrobials capable of precisely targeting pathogenic bacteria.Sci. Rep.202010194410.1038/s41598‑020‑58014‑6 31969663
    [Google Scholar]
  170. MourtadaR. HerceH.D. YinD.J. MorocoJ.A. WalesT.E. EngenJ.R. WalenskyL.D. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice.Nat. Biotechnol.201937101186119710.1038/s41587‑019‑0222‑z 31427820
    [Google Scholar]
  171. TaoS. ChenH. LiN. LiangW. The application of the CRISPR-Cas system in antibiotic resistance.Infect. Drug Resist.2022154155416810.2147/IDR.S370869 35942309
    [Google Scholar]
  172. OliveiraG.S. OliveiraM.L.S. MiyajiE.N. RodriguesT.C. Pneumococcal vaccines: past findings, present work, and future strategies.Vaccines2021911133810.3390/vaccines9111338 34835269
    [Google Scholar]
  173. IwataS. TakataM. MorozumiM. MiyairiI. MatsubaraK. UbukataK. GroupP.M.S.S. Drastic reduction in pneumococcal meningitis in children owing to the introduction of pneumococcal conjugate vaccines: Longitudinal analysis from 2002 to 2016 in Japan.J. Infect. Chemother.202127460461210.1016/j.jiac.2020.11.019 33303361
    [Google Scholar]
  174. TsirigotakiM. GalanakisE. Impact of vaccines on Staphylococcus aureus colonization: A systematic review and meta-analysis.Vaccine202341446478648710.1016/j.vaccine.2023.09.034 37777451
    [Google Scholar]
  175. RazimA. GórskaS. GamianA. Non-Toxin-Based Clostridioides difficile Vaccination Approaches.Pathogens202312223510.3390/pathogens12020235 36839507
    [Google Scholar]
  176. ChenW. Will the mRNA vaccine platform be the panacea for the development of vaccines against antimicrobial resistant (AMR) pathogens?Expert Rev. Vaccines202221215515710.1080/14760584.2022.2011226 34818960
    [Google Scholar]
  177. NaveedM. MughalM.S. JabeenK. AzizT. NazS. NazirN. ShahzadM. AlharbiM. AlshammariA. SadhuS.S. Evaluation of the whole proteome to design a novel mRNA-based vaccine against multidrug-resistant Serratia marcescens.Front. Microbiol.20221396028510.3389/fmicb.2022.960285 36329838
    [Google Scholar]
  178. KonE. LevyY. EliaU. CohenH. Hazan-HalevyI. AftalionM. EzraA. Bar-HaimE. NaiduG.S. DiesendruckY. RotemS. Ad-ElN. GoldsmithM. MamroudE. PeerD. CohenO. A single-dose F1-based mRNA-LNP vaccine provides protection against the lethal plague bacterium.Sci. Adv.2023910eadg103610.1126/sciadv.adg1036 36888708
    [Google Scholar]
  179. MayerR.L. VerbekeR. AsselmanC. AernoutI. GulA. EggermontD. BoucherK. TheryF. MaiaT.M. DemolH. GabrielsR. MartensL. BécavinC. De SmedtS.C. VandekerckhoveB. LentackerI. ImpensF. Immunopeptidomics-based design of mRNA vaccine formulations against Listeria monocytogenes.Nat. Commun.2022131607510.1038/s41467‑022‑33721‑y 36241641
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010304596240629102419
Loading
/content/journals/cpb/10.2174/0113892010304596240629102419
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test