Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Cervical cancer has become a major worldwide health concern that demands attention to women's health and often needs more effective and specialized treatment options. Cervical cancer claims the lives of over 300,000 women globally, ranking as the fourth most prevalent cancer among women. The tumor microenvironment (TME) shapes a distinctive landscape for tumor survival, characterized by factors like immunosuppression, hypoxia, acidity, and nutrient scarcity. Comprising tumor cells, immune cells, mesenchymal cells, cancer-associated fibroblasts, and extracellular matrix, the TME reprograms key aspects of tumor development, uncontrolled proliferation, invasion, metastasis, and response to treatments. Recognizing the TME's pivotal role in tumor progression and treatment responsiveness, targeting the TME has emerged as a potential strategy in cancer therapy. This publication delves into recent TME research, offering a comprehensive overview of the specific functions of each TME component in cancer development and progression. Based on the reviewed literature, it appears that women with cervical cancer may benefit from more effective therapy, fewer side effects, and a higher quality of life in the future. By addressing pressing problems and unmet needs in the field, this review has the potential to significantly alter the course of cervical cancer treatment in the future. Furthermore, it outlines the primary therapeutic targets identified by researchers, which may prove valuable in treating tumors.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010315757240821063137
2024-09-04
2025-12-15
Loading full text...

Full text loading...

References

  1. FrickC. RumgayH. VignatJ. GinsburgO. NolteE. BrayF. SoerjomataramI. Quantitative estimates of preventable and treatable deaths from 36 cancers worldwide: A population-based study.Lancet Glob. Health20231111e1700e171210.1016/S2214‑109X(23)00406‑037774721
    [Google Scholar]
  2. LitwinC. SmithL. DonkenR. KrajdenM. van NiekerkD. NausM. CookD. AlbertA. OgilvieG. High-risk HPV prevalence among women undergoing cervical cancer screening: Findings a decade after HPV vaccine implementation in british columbia, canada.Vaccine202139365198520410.1016/j.vaccine.2021.07.00934344555
    [Google Scholar]
  3. VinogradovaN.A. DomonovaE.A. VinokurovM.A. PopovaA.A. The role of possibly high carcinogenic risk human papilloma virus the development of cervical malignant pathology: Systematic review and metaanalysis. Epidemiology and Infectious Diseases. Current Items2023134106114
    [Google Scholar]
  4. LiS. ZhangK. YangL. WuJ. BhargavaN. LiY. GaoF. Distribution patterns of human papillomavirus genotypes among women in guangzhou, china.Infect. Agent. Cancer20231816710.1186/s13027‑023‑00541‑837907979
    [Google Scholar]
  5. NelsonC. W. MirabelloL. Human papillomavirus genomics: Understanding carcinogenicity.Tumour Virus Res202320025810.1016/j.tvr.2023.200258
    [Google Scholar]
  6. R sJ. The immune microenvironment in human papilloma virus-induced cervical lesions-evidence for estrogen as an immunomodulator.Front. Cell. Infect. Microbiol.20211164981510.3389/fcimb.2021.64981533996630
    [Google Scholar]
  7. BinnewiesM RobertsEW KerstenK ChanV FearonDF MeradM CoussensLM GabrilovichDI Ostrand-RosenbergS HedrickCC VonderheideRH PittetMJ JainRK ZouW HowcroftTK WoodhouseEC WeinbergRA KrummelMF Understanding the tumor immune microenvironment (TIME) for effective therapy.Nat Med2018245541550Epub 2018 Apr 2310.1038/s41591‑018‑0014‑x29686425PMC5998822
    [Google Scholar]
  8. PremkumarK. VanajothiR. SrikanthN. VijayakumarR. PalanisamyM. BhavaniramyaS. HPV-mediated cervical cancer: A systematic review on immunological basis, molecular biology, and immune evasion mechanisms.Curr. Drug Targets202223878280110.2174/138945012366621122116063234939539
    [Google Scholar]
  9. SuP. MaJ. YuL. TangS. SunP. Clinical significance of extended high-risk human papillomavirus genotyping and viral load in cervical cancer and precancerous lesions.Gynecology and Obstetrics Clinical Medicine202310.1016/j.gocm.2023.01.001
    [Google Scholar]
  10. LoopikD.L. BentleyH.A. EijgenraamM.N. IntHoutJ. BekkersR.L.M. BentleyJ.R. The natural history of cervical intraepithelial neoplasia grades 1, 2, and 3: A systematic review and meta-analysis.J. Low. Genit. Tract Dis.202125322123110.1097/LGT.000000000000060434176914
    [Google Scholar]
  11. BejaranoL. JordāoM.J.C. JoyceJ.A. Therapeutic targeting of the tumor microenvironment.Cancer Discov.202111493395910.1158/2159‑8290.CD‑20‑180833811125
    [Google Scholar]
  12. MellmanI. ChenD.S. PowlesT. TurleyS.J. The cancer-immunity cycle: Indication, genotype, and immunotype.Immunity202356102188220510.1016/j.immuni.2023.09.01137820582
    [Google Scholar]
  13. XuL. ZouC. ZhangS. ChuT.S.M. ZhangY. ChenW. ZhaoC. YangL. XuZ. DongS. YuH. LiB. GuanX. HouY. KongF.M. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors.J. Hematol. Oncol.20221518710.1186/s13045‑022‑01307‑235799264
    [Google Scholar]
  14. NiaH.T. MunnL.L. JainR.K. Physical traits of cancer.Science20203706516eaaz086810.1126/science.aaz086833122355
    [Google Scholar]
  15. WeisslederR. PittetM.J. The expanding landscape of inflammatory cells affecting cancer therapy.Nat. Biomed. Eng.20204548949810.1038/s41551‑020‑0524‑y32203281
    [Google Scholar]
  16. AnsemsM. SpanP.N. The tumor microenvironment and radiotherapy response; a central role for cancer-associated fibroblasts.Clin. Transl. Radiat. Oncol.202022909710.1016/j.ctro.2020.04.00132337377
    [Google Scholar]
  17. AkkariL. BowmanR.L. TessierJ. KlemmF. HandgraafS.M. de GrootM. QuailD.F. TillardL. GadiotJ. HuseJ.T. BrandsmaD. WestergaJ. WattsC. JoyceJ.A. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance.Sci. Transl. Med.202012552eaaw784310.1126/scitranslmed.aaw784332669424
    [Google Scholar]
  18. MantoniT.S. LunardiS. Al-AssarO. MasamuneA. BrunnerT.B. Pancreatic stellate cells radioprotect pancreatic cancer cells through β1-integrin signaling.Cancer Res.201171103453345810.1158/0008‑5472.CAN‑10‑163321558392
    [Google Scholar]
  19. LyssiotisC.A. KimmelmanA.C. Metabolic interactions in the tumor microenvironment.Trends Cell Biol.2017271186387510.1016/j.tcb.2017.06.00328734735
    [Google Scholar]
  20. PavlovaN.N. ZhuJ. ThompsonC.B. The hallmarks of cancer metabolism: Still emerging.Cell Metab.202234335537710.1016/j.cmet.2022.01.00735123658
    [Google Scholar]
  21. AltmanB.J. StineZ.E. DangC.V. From Krebs to clinic: Glutamine metabolism to cancer therapy.Nat. Rev. Cancer2016161061963410.1038/nrc.2016.7127492215
    [Google Scholar]
  22. VennetiS. DunphyM. P. ZhangH. PitterK. L. ZanzonicoP. CamposC. ThompsonC. B. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo.Science translational medicine20157274274ra17
    [Google Scholar]
  23. HoxhajG. ManningB.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism.Nat. Rev. Cancer2020202748810.1038/s41568‑019‑0216‑731686003
    [Google Scholar]
  24. JingX. YangF. ShaoC. WeiK. XieM. ShenH. ShuY. Role of hypoxia in cancer therapy by regulating the tumor microenvironment.Mol. Cancer201918115710.1186/s12943‑019‑1089‑931711497
    [Google Scholar]
  25. PetrovaV. Annicchiarico-PetruzzelliM. MelinoG. AmelioI. The hypoxic tumour microenvironment.Oncogenesis2018711010.1038/s41389‑017‑0011‑929362402
    [Google Scholar]
  26. TirpeA.A. GuleiD. CiorteaS.M. CriviiC. Berindan-NeagoeI. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes.Int. J. Mol. Sci.20192024614010.3390/ijms2024614031817513
    [Google Scholar]
  27. WeisS.M. ChereshD.A. Tumor angiogenesis: Molecular pathways and therapeutic targets.Nat. Med.201117111359137010.1038/nm.253722064426
    [Google Scholar]
  28. KeithB. JohnsonR.S. SimonM.C. HIF1α and HIF2α: Sibling rivalry in hypoxic tumour growth and progression.Nat. Rev. Cancer201212192210.1038/nrc318322169972
    [Google Scholar]
  29. QiuG.Z. JinM.Z. DaiJ.X. SunW. FengJ.H. JinW.L. Reprogramming of the tumor in the hypoxic niche: The emerging concept and associated therapeutic strategies.Trends Pharmacol. Sci.201738866968610.1016/j.tips.2017.05.00228602395
    [Google Scholar]
  30. MulthoffG. VaupelP. Oxygen Transport to Tissue XLI.Advances in Experimental Medicine and BiologySpringerCham20201232
    [Google Scholar]
  31. ParodiM. RaggiF. CangelosiD. ManziniC. BalsamoM. BlengioF. EvaA. VaresioL. PietraG. MorettaL. MingariM.C. VitaleM. BoscoM.C. Hypoxia modifies the transcriptome of human NK cells, modulates their immunoregulatory profile, and influences NK cell subset migration.Front. Immunol.20189235810.3389/fimmu.2018.0235830459756
    [Google Scholar]
  32. WuQ. ZhouW. YinS. ZhouY. ChenT. QianJ. SuR. HongL. LuH. ZhangF. XieH. ZhouL. ZhengS. Blocking triggering receptor expressed on myeloid cells‐1‐positive tumor‐associated macrophages induced by hypoxia reverses immunosuppression and anti‐programmed cell death ligand 1 resistance in liver cancer.Hepatology201970119821410.1002/hep.3059330810243
    [Google Scholar]
  33. LiuC. ChikinaM. DeshpandeR. MenkA.V. WangT. TabibT. BrunazziE.A. VignaliK.M. SunM. StolzD.B. LafyatisR.A. ChenW. DelgoffeG.M. WorkmanC.J. WendellS.G. VignaliD.A.A. Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8+ T cell-derived interferon-γ.Immunity2019512381397.e610.1016/j.immuni.2019.06.01731350177
    [Google Scholar]
  34. VegliaF. PeregoM. GabrilovichD. Myeloid-derived suppressor cells coming of age.Nat. Immunol.201819210811910.1038/s41590‑017‑0022‑x29348500
    [Google Scholar]
  35. HanahanD. WeinbergR. A. Hallmarks of cancer: The next generation.cell20111445646674
    [Google Scholar]
  36. ForsterJ. Harriss-PhillipsW. DouglassM. BezakE. A review of the development of tumor vasculature and its effects on the tumor microenvironment.Hypoxia20175213210.2147/HP.S13323128443291
    [Google Scholar]
  37. AndersonN.M. SimonM.C. The tumor microenvironment.Curr. Biol.20203016R921R92510.1016/j.cub.2020.06.08132810447
    [Google Scholar]
  38. SunW. FuS. Role of cancer-associated fibroblasts in tumor structure, composition and the microenvironment in ovarian cancer.Oncol. Lett.20191832173217810.3892/ol.2019.1058731452720
    [Google Scholar]
  39. McCarthyJ.B. El-AshryD. TurleyE.A. Hyaluronan, cancer-associated fibroblasts and the tumor microenvironment in malignant progression.Front. Cell Dev. Biol.201864810.3389/fcell.2018.0004829868579
    [Google Scholar]
  40. LeiX. LeiY. LiJ.K. DuW.X. LiR.G. YangJ. LiJ. LiF. TanH.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy.Cancer Lett.202047012613310.1016/j.canlet.2019.11.00931730903
    [Google Scholar]
  41. NaglL. HorvathL. PircherA. WolfD. Tumor endothelial cells (TECs) as potential immune directors of the tumor microenvironment–new findings and future perspectives.Front. Cell Dev. Biol.2020876610.3389/fcell.2020.0076632974337
    [Google Scholar]
  42. LongHJ 3rd LaackNN GostoutBS Prevention, diagnosis, and treatment of cervical cancerMayo Clin Proc200782121566157410.1016/S0025‑6196(11)61104‑X18053467
    [Google Scholar]
  43. HenkeE. NandigamaR. ErgünS. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy.Front. Mol. Biosci.2020616010.3389/fmolb.2019.0016032118030
    [Google Scholar]
  44. StapleyS. HamiltonW. Gynaecological symptoms reported by young women: Examining the potential for earlier diagnosis of cervical cancer.Fam. Pract.201128659259810.1093/fampra/cmr03321632969
    [Google Scholar]
  45. MarthC. LandoniF. MahnerS. McCormackM. Gonzalez-MartinA. ColomboN. ESMO guidelines committee.Cervical cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201728Suppl. 4iv72iv8310.1093/annonc/mdx22028881916
    [Google Scholar]
  46. BlinovD.V. SolopovaA.G. AchkasovE.E. KorabelnikovD.I. AkavovaS.A. GalkinV.N. Contemporary insights into rehabilitation of cervical cancer patients. Obstetrics.Ginecol. Reprod.2023173343356
    [Google Scholar]
  47. WuerthnerB.A. Avila-WallaceM. Cervical cancer.Nurse Pract.2016419182310.1097/01.NPR.0000490390.43604.5f27513347
    [Google Scholar]
  48. CohenP.A. JhingranA. OakninA. DennyL. Cervical cancer.Lancet20193931016716918210.1016/S0140‑6736(18)32470‑X30638582
    [Google Scholar]
  49. LiH. PangY. ChengX. Surgery of primary sites for stage IVB cervical cancer patients receiving chemoradiotherapy: A population-based study.J. Gynecol. Oncol.2020311e810.3802/jgo.2020.31.e831788998
    [Google Scholar]
  50. KohW.J. Abu-RustumN.R. BeanS. BradleyK. CamposS.M. ChoK.R. ChonH.S. ChuC. ClarkR. CohnD. CrispensM.A. DamastS. DorigoO. EifelP.J. FisherC.M. FrederickP. GaffneyD.K. HanE. HuhW.K. LurainJ.R.III MarianiA. MutchD. NagelC. NekhlyudovL. FaderA.N. RemmengaS.W. ReynoldsR.K. TillmannsT. UedaS. WyseE. YasharC.M. McMillianN.R. ScavoneJ.L. Cervical cancer, version 3.2019, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.2019171648410.6004/jnccn.2019.000130659131
    [Google Scholar]
  51. BhatlaN. AokiD. SharmaD.N. SankaranarayananR. Cancer of the cervix uteri: 2021 update.Int. J. Gynaecol. Obstet.2021155S1Suppl. 1284410.1002/ijgo.1386534669203
    [Google Scholar]
  52. RamirezP.T. FrumovitzM. ParejaR. LopezA. VieiraM. RibeiroR. BudaA. YanX. ShuzhongY. ChettyN. IslaD. TamuraM. ZhuT. RobledoK.P. GebskiV. AsherR. BehanV. NicklinJ.L. ColemanR.L. ObermairA. Minimally invasive versus abdominal radical hysterectomy for cervical cancer.N. Engl. J. Med.2018379201895190410.1056/NEJMoa180639530380365
    [Google Scholar]
  53. ZhaoY. BilalM. RazaA. KhanM.I. MehmoodS. HayatU. HassanS.T.S. IqbalH.M.N. Tyrosine kinase inhibitors and their unique therapeutic potentialities to combat cancer.Int. J. Biol. Macromol.2021168223710.1016/j.ijbiomac.2020.12.00933290765
    [Google Scholar]
  54. GuoQ. SunY. KongE. RaoL. ChenJ. WuQ. ZhangT. LiuN. LiM. SunL. Apatinib combined with chemotherapy or concurrent chemo-brachytherapy in patients with recurrent or advanced cervical cancer.Medicine20209911e1937210.1097/MD.000000000001937232176061
    [Google Scholar]
  55. QiuH. LiJ. LiuQ. TangM. WangY. Apatinib, a novel tyrosine kinase inhibitor, suppresses tumor growth in cervical cancer and synergizes with paclitaxel.Cell Cycle201817101235124410.1080/15384101.2018.147131529886786
    [Google Scholar]
  56. OakninA. FriedmanC.F. RomanL.D. D’SouzaA. BranaI. BidardF.C. GoldmanJ. AlvarezE.A. BoniV. ElNaggarA.C. PassalacquaR. DoK.T.M. SantinA.D. KeyvanjahK. XuF. EliL.D. LalaniA.S. BryceR.P. HymanD.M. Meric-BernstamF. SolitD.B. MonkB.J. Neratinib in patients with HER2-mutant, metastatic cervical cancer: Findings from the phase 2 SUMMIT basket trial.Gynecol. Oncol.2020159115015610.1016/j.ygyno.2020.07.02532723675
    [Google Scholar]
  57. MonkB.J. Mas LopezL. ZarbaJ.J. OakninA. TarpinC. TermrungruanglertW. AlberJ.A. DingJ. StuttsM.W. PanditeL.N. Phase II, open-label study of pazopanib or lapatinib monotherapy compared with pazopanib plus lapatinib combination therapy in patients with advanced and recurrent cervical cancer.J. Clin. Oncol.201028223562356910.1200/JCO.2009.26.957120606083
    [Google Scholar]
  58. AydinlikS. DereE. UlukayaE. Induction of autophagy enhances apoptotic cell death via epidermal growth factor receptor inhibition by canertinib in cervical cancer cells.Biochim. Biophys. Acta, Gen. Subj.20191863590391610.1016/j.bbagen.2019.02.01430825616
    [Google Scholar]
  59. El-MeguidE.A.A. El-DeenE.M.M. NaelM.A. AnwarM.M. Novel benzimidazole derivatives as anti-cervical cancer agents of potential multi-targeting kinase inhibitory activity.Arab. J. Chem.202013129179919510.1016/j.arabjc.2020.10.041
    [Google Scholar]
  60. HarkenriderM.M. MarkhamM.J. DizonD.S. JhingranA. SalaniR. SerourR.K. LynnJ. KohnE.C. Moving forward in cervical cancer: Enhancing susceptibility to DNA repair inhibition and damage, an NCI clinical trials planning meeting report.J. Natl. Cancer Inst.2020112111081108810.1093/jnci/djaa04132219419
    [Google Scholar]
  61. YipB. Recent advances in CRISPR/Cas9 delivery strategies.Biomolecules202010683910.3390/biom1006083932486234
    [Google Scholar]
  62. ZhenS. HuaL. TakahashiY. NaritaS. LiuY.H. LiY. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9.Biochem. Biophys. Res. Commun.201445041422142610.1016/j.bbrc.2014.07.01425044113
    [Google Scholar]
  63. YoshibaT. SagaY. UrabeM. UchiboriR. MatsubaraS. FujiwaraH. MizukamiH. CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6.Oncol. Lett.20191722197220630675284
    [Google Scholar]
  64. WangK. TepperJ.E. Radiation therapy‐associated toxicity: Etiology, management, and prevention.CA Cancer J. Clin.202171543745410.3322/caac.2168934255347
    [Google Scholar]
  65. TewariK.S. MonkB.J. The rationale for the use of non-platinum chemotherapy doublets for metastatic and recurrent cervical carcinoma.Clin. Adv. Hematol. Oncol.20108210811520386532
    [Google Scholar]
  66. ZhuX. ZhuH. LuoH. ZhangW. ShenZ. HuX. Molecular mechanisms of cisplatin resistance in cervical cancer.Drug Des. Devel. Ther.2016101885189510.2147/DDDT.S10641227354763
    [Google Scholar]
  67. HirteH. KennedyE.B. ElitL. Fung Kee FungM. Systemic therapy for recurrent, persistent, or metastatic cervical cancer: A clinical practice guideline.Curr. Oncol.201522321121910.3747/co.22.244726089720
    [Google Scholar]
  68. Orang’oE. ItsuraP. TonuiP. MuliroH. RosenB. van LonkhuijzenL. Use of palliative cisplatinum for advanced cervical cancer in a resource-poor setting: A case series from Kenya.J. Glob. Oncol.20173553954410.1200/JGO.2016.00641129094093
    [Google Scholar]
  69. MailankodyS. DhanushkodiM. GanesanT. S. RadhakrishnanV. ChristopherV. GanesharajahS. SagarT. G. Recurrent cervical cancer treated with palliative chemotherapy: Real-world outcome.Ecancermedicalscience.20201122
    [Google Scholar]
  70. KagabuM. NagasawaT. SatoC. FukagawaY. KawamuraH. TomabechiH. TakemotoS. ShojiT. BabaT. Immunotherapy for uterine cervical cancer using checkpoint inhibitors: Future directions.Int. J. Mol. Sci.2020217233510.3390/ijms2107233532230938
    [Google Scholar]
  71. JazaeriA. A. ZsirosE. AmariaR. N. ArtzA. S. EdwardsR. P. WenhamR. M. MonkB. J. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma.Journal of Clinical Oncology20193715
    [Google Scholar]
  72. MauricioD. ZeybekB. Tymon-RosarioJ. HaroldJ. SantinA.D. Immunotherapy in cervical cancer.Curr. Oncol. Rep.20212366110.1007/s11912‑021‑01052‑833852056
    [Google Scholar]
  73. EmensL.A. AsciertoP.A. DarcyP.K. DemariaS. EggermontA.M.M. RedmondW.L. SeligerB. MarincolaF.M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape.Eur. J. Cancer20178111612910.1016/j.ejca.2017.01.03528623775
    [Google Scholar]
  74. BrowneI. FennellyD. W. CrownJ. MurrayH. The efficacy and safety of pembrolizumab in advanced cervical cancer—A real world treatment study in an irish healthcare setting.Journal of Clinical Oncology20203815
    [Google Scholar]
  75. NaumannR.W. HollebecqueA. MeyerT. DevlinM.J. OakninA. KergerJ. López-PicazoJ.M. MachielsJ.P. DelordJ.P. EvansT.R.J. BoniV. CalvoE. TopalianS.L. ChenT. SoumaoroI. LiB. GuJ. ZwirtesR. MooreK.N. Safety and efficacy of nivolumab monotherapy in recurrent or metastatic cervical, vaginal, or vulvar carcinoma: Results from the phase I/II CheckMate 358 trial.J. Clin. Oncol.201937312825283410.1200/JCO.19.0073931487218
    [Google Scholar]
  76. DurantiS. PietragallaA. DanieleG. NeroC. CiccaroneF. ScambiaG. LorussoD. Role of immune checkpoint inhibitors in cervical cancer: From preclinical to clinical data.Cancers2021139208910.3390/cancers1309208933925884
    [Google Scholar]
  77. LheureuxS. ButlerM.O. ClarkeB. CristeaM.C. MartinL.P. TonkinK. FlemingG.F. TinkerA.V. HirteH.W. TsorefD. MackayH. DhaniN.C. GhatageP. WeberpalsJ. WelchS. PhamN.A. MottaV. SotovV. WangL. KarakasisK. UdaganiS. Kamel-ReidS. StreicherH.Z. ShawP. OzaA.M. Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus–related cervical carcinoma.JAMA Oncol.201847e173776e17377610.1001/jamaoncol.2017.377629145543
    [Google Scholar]
  78. Da SilvaD.M. EnserroD.M. MayadevJ.S. SkeateJ.G. MatsuoK. PhamH.Q. LankesH.A. MoxleyK.M. GhamandeS.A. LinY.G. SchilderR.J. BirrerM.J. KastW.M. Immune activation in patients with locally advanced cervical cancer treated with ipilimumab following definitive chemoradiation (GOG-9929).Clin. Cancer Res.202026215621563010.1158/1078‑0432.CCR‑20‑077632816895
    [Google Scholar]
  79. NaumannR.W. OakninA. MeyerT. Lopez-PicazoJ.M. LaoC. BangY.J. BoniV. SharfmanW.H. ParkJ.C. DevrieseL.A. HaranoK. ChungC.H. TopalianS.L. ZakiK. ChenT. GuJ. LiB. BarrowsA. HorvathA. MooreK.N. Efficacy and safety of nivolumab (Nivo) + ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: Results from CheckMate 358.Ann. Oncol.201930v898v89910.1093/annonc/mdz394.059
    [Google Scholar]
  80. KapałczyńskaM. KolendaT. PrzybyłaW. ZajączkowskaM. TeresiakA. FilasV. IbbsM. BliźniakR. ŁuczewskiŁ. LamperskaK. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures.Arch. Med. Sci.201814491091930002710
    [Google Scholar]
  81. Hoarau-VéchotJ. RafiiA. TouboulC. PasquierJ. Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer-microenvironment interactions?Int. J. Mol. Sci.201819118110.3390/ijms1901018129346265
    [Google Scholar]
  82. FontanaF. MarzagalliM. SommarivaM. GaglianoN. LimontaP. In vitro 3D cultures to model the tumor microenvironment.Cancers20211312297010.3390/cancers1312297034199324
    [Google Scholar]
  83. ChenX. TianF. LiM. XuH. CaiM. LiQ. ZuoX. WangH. ShiX. FanC. BaigudeH. ShanY. Size‐independent transmembrane transporting of single tetrahedral DNA nanostructures.Glob. Chall.202043190007510.1002/gch2.20190007532140254
    [Google Scholar]
  84. BreslinS. O’DriscollL. Three-dimensional cell culture: The missing link in drug discovery.Drug Discov. Today2013185-624024910.1016/j.drudis.2012.10.00323073387
    [Google Scholar]
  85. ParkY. HuhK.M. KangS.W. Applications of biomaterials in 3D cell culture and contributions of 3D cell culture to drug development and basic biomedical research.Int. J. Mol. Sci.2021225249110.3390/ijms2205249133801273
    [Google Scholar]
  86. ZhaoJ. LiS. PangX. ShanY. Evaluating the therapeutic efficacy of nano-drugs targeting epidermal growth factor receptor.Chem. Commun202258162726272910.1039/D1CC06754K35113095
    [Google Scholar]
  87. SunW. LuoZ. LeeJ. KimH.J. LeeK. TebonP. FengY. DokmeciM.R. SenguptaS. KhademhosseiniA. Organ‐on‐a‐chip for cancer and immune organs modeling.Adv. Healthc. Mater.201984180136310.1002/adhm.20180136330605261
    [Google Scholar]
  88. NiiT. MakinoK. TabataY. Three-dimensional culture system of cancer cells combined with biomaterials for drug screening.Cancers20201210275410.3390/cancers1210275432987868
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010315757240821063137
Loading
/content/journals/cpb/10.2174/0113892010315757240821063137
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer therapy; Cervical cancer; drug designing; therapeutics; TME; tumor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test