Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Neurological disorders are devastating conditions affecting both cognitive and motor-related functions in aged people. Yet there is no proper medication to treat these illnesses, and the currently available medications can only provide symptomatic relief to the patients. All neurological disorders share the same etiology, such as oxidative stress, mitochondrial dysfunction, neurochemical deficiency, neuronal loss, apoptosis, endoplasmic reticulum stress, neuroinflammation, and disease-related protein aggregation. Nowadays, researchers use antioxidant-based strategies to prevent or halt the disease progression. Nerolidol, a strong antioxidant, possesses various biological activities and properties that treat cardiotoxicity, nephrotoxicity, neurotoxicity, and many other diseases. Many recent publications and research studies highlight the beneficial effect of nerolidol on brain disorders. In Alzheimer’s disease, nerolidol shows neuroprotection by decreasing amyloid plaque formation, lipid peroxidation, cholinergic neuronal loss, locomotor dysfunction, neuroinflammation, and hippocampal damage enhancing antioxidant expression. Also, it shows neuroprotection against rotenone-induced neurotoxicity by inhibiting microglial activation. Another study reported that nerolidol shows antiepileptic effects in animal models by suppressing kindling-induced memory impairment by decreasing oxidative stress. It has been found that NRL administration increases the antioxidant levels, decreasing the pro-inflammatory cytokine release as well as decreasing the apoptotic protein and cerebral infarct size. In conclusion, nerolidol tends to reverse the harmful effects of disease-related factors, including OS, neuroinflammation, protein aggregation, and apoptosis, making nerolidol a choiceable drug for the management of neurological disorders. The purpose of this review is to discuss the mechanism of nerolidol in treating various neurological disorders.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010307891240819064720
2024-09-03
2025-12-16
Loading full text...

Full text loading...

References

  1. MishraA. MishraP.S. BandopadhyayR. KhuranaN. AngelopoulouE. PaudelY.N. PiperiC. Neuroprotective potential of chrysin: Mechanistic insights and therapeutic potential for neurological disorders.Molecules20212621645610.3390/molecules2621645634770864
    [Google Scholar]
  2. FeiginV.L. NicholsE. AlamT. BannickM.S. BeghiE. BlakeN. CulpepperW.J. DorseyE.R. ElbazA. EllenbogenR.G. FisherJ.L. FitzmauriceC. GiussaniG. GlennieL. JamesS.L. JohnsonC.O. KassebaumN.J. LogroscinoG. MarinB. Mountjoy-VenningW.C. NguyenM. Ofori-AsensoR. PatelA.P. PiccininniM. RothG.A. SteinerT.J. StovnerL.J. SzoekeC.E.I. TheadomA. VollsetS.E. WallinM.T. WrightC. ZuntJ.R. AbbasiN. Abd-AllahF. AbdelalimA. AbdollahpourI. AboyansV. AbrahaH.N. AcharyaD. AdamuA.A. AdebayoO.M. AdeoyeA.M. AdsuarJ.C. AfaridehM. AgrawalS. AhmadiA. AhmedM.B. AichourA.N. AichourI. AichourM.T.E. AkinyemiR.O. AkseerN. Al-EyadhyA. Al-Shahi SalmanR. AlahdabF. AleneK.A. AljunidS.M. AltirkawiK. Alvis-GuzmanN. AnberN.H. AntonioC.A.T. ArablooJ. AremuO. ÄrnlövJ. AsayeshH. AsgharR.J. AtalayH.T. AwasthiA. Ayala QuintanillaB.P. AyukT.B. BadawiA. BanachM. BanoubJ.A.M. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BauneB.T. BediN. BehzadifarM. BehzadifarM. BéjotY. BekeleB.B. BelachewA.B. BennettD.A. BensenorI.M. BerhaneA. BeuranM. BhattacharyyaK. BhuttaZ.A. BiadgoB. BijaniA. BililignN. Bin SayeedM.S. BlazesC.K. BrayneC. ButtZ.A. Campos-NonatoI.R. Cantu-BritoC. CarM. CárdenasR. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. CastroF. Catalá-LópezF. CerinE. ChaiahY. ChangJ-C. ChatziralliI. ChiangP.P-C. ChristensenH. ChristopherD.J. CooperC. CortesiP.A. CostaV.M. CriquiM.H. CroweC.S. DamascenoA.A.M. DaryaniA. De la Cruz-GóngoraV. De la HozF.P. De LeoD. DemozG.T. DeribeK. DharmaratneS.D. DiazD. DinberuM.T. DjalaliniaS. DokuD.T. DubeyM. DubljaninE. DukenE.E. EdvardssonD. El-KhatibZ. EndresM. EndriesA.Y. EskandariehS. EsteghamatiA. EsteghamatiS. FarhadiF. FaroA. FarzadfarF. FarzaeiM.H. FatimaB. FereshtehnejadS-M. FernandesE. FeyissaG.T. FilipI. FischerF. FukumotoT. GanjiM. GankpeF.G. Garcia-GordilloM.A. GebreA.K. GebremichaelT.G. GelawB.K. GeleijnseJ.M. GeremewD. GezaeK.E. Ghasemi-KasmanM. GideyM.Y. GillP.S. GillT.K. GirmaE.T. GnedovskayaE.V. GoulartA.C. GradaA. GrossoG. GuoY. GuptaR. GuptaR. HaagsmaJ.A. HagosT.B. Haj-MirzaianA. Haj-MirzaianA. HamadehR.R. HamidiS. HankeyG.J. HaoY. HaroJ.M. HassankhaniH. HassenH.Y. HavmoellerR. HayS.I. HegazyM.I. HeidariB. HenokA. HeydarpourF. HoangC.L. HoleM.K. Homaie RadE. HosseiniS.M. HuG. IgumborE.U. IlesanmiO.S. IrvaniS.S.N. IslamS.M.S. JakovljevicM. JavanbakhtM. JhaR.P. JobanputraY.B. JonasJ.B. JozwiakJ.J. JürissonM. KahsayA. KalaniR. KalkondeY. KamilT.A. KanchanT. KaramiM. KarchA. KarimiN. KasaeianA. KassaT.D. KassaZ.Y. KaulA. KefaleA.T. KeiyoroP.N. KhaderY.S. KhafaieM.A. KhalilI.A. KhanE.A. KhangY-H. KhazaieH. KiadaliriA.A. KiirithioD.N. KimA.S. KimD. KimY-E. KimY.J. KisaA. KokuboY. KoyanagiA. KrishnamurthiR.V. Kuate DefoB. Kucuk BicerB. KumarM. LaceyB. LafranconiA. LansinghV.C. LatifiA. LeshargieC.T. LiS. LiaoY. LinnS. LoW.D. LopezJ.C.F. LorkowskiS. LotufoP.A. LucasR.M. LuneviciusR. MackayM.T. MahotraN.B. MajdanM. MajdzadehR. MajeedA. MalekzadehR. MaltaD.C. ManafiN. MansourniaM.A. MantovaniL.G. MärzW. Mashamba-ThompsonT.P. MassenburgB.B. MateK.K.V. McAlindenC. McGrathJ.J. MehtaV. MeierT. MelesH.G. MeleseA. MemiahP.T.N. MemishZ.A. MendozaW. MengistuD.T. MengistuG. MeretojaA. MeretojaT.J. MestrovicT. MiazgowskiB. MiazgowskiT. MillerT.R. MiniG.K. MirrakhimovE.M. MoazenB. MohajerB. Mohammad Gholi MezerjiN. MohammadiM. Mohammadi-KhanaposhtaniM. MohammadibakhshR. Mohammadnia-AfrouziM. MohammedS. MohebiF. MokdadA.H. MonastaL. MondelloS. MoodleyY. MoosazadehM. MoradiG. Moradi-LakehM. MoradinazarM. MoragaP. Moreno VelásquezI. MorrisonS.D. MousaviS.M. MuhammedO.S. MuruetW. MusaK.I. MustafaG. NaderiM. NagelG. NaheedA. NaikG. NajafiF. NangiaV. NegoiI. NegoiR.I. NewtonC.R.J. NgunjiriJ.W. NguyenC.T. NguyenL.H. NingrumD.N.A. NirayoY.L. NixonM.R. NorrvingB. NoubiapJ.J. Nourollahpour ShiadehM. NyasuluP.S. OgahO.S. OhI-H. OlagunjuA.T. OlagunjuT.O. OlivaresP.R. OnwujekweO.E. OrenE. OwolabiM.O. PaM. PakpourA.H. PanW-H. Panda-JonasS. PandianJ.D. PatelS.K. PereiraD.M. PetzoldM. PillayJ.D. PiradovM.A. PolanczykG.V. PolinderS. PostmaM.J. PoultonR. PoustchiH. PrakashS. PrakashV. QorbaniM. RadfarA. RafayA. RafieiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.H.U. RahmanM.A. RajatiF. RamU. RantaA. RawafD.L. RawafS. ReinigN. ReisC. RenzahoA.M.N. ResnikoffS. RezaeianS. RezaiM.S. Rios GonzálezC.M. RobertsN.L.S. RoeverL. RonfaniL. RoroE.M. RoshandelG. RostamiA. SabbaghP. SaccoR.L. SachdevP.S. SaddikB. SafariH. Safari-FaramaniR. SafiS. SafiriS. SagarR. SahathevanR. SahebkarA. SahraianM.A. SalamatiP. Salehi ZahabiS. SalimiY. SamyA.M. SanabriaJ. SantosI.S. Santric MilicevicM.M. SarrafzadeganN. SartoriusB. SarviS. SathianB. SatpathyM. SawantA.R. SawhneyM. SchneiderI.J.C. SchöttkerB. SchwebelD.C. SeedatS. SepanlouS.G. ShabaninejadH. ShafieesabetA. ShaikhM.A. ShakirR.A. Shams-BeyranvandM. ShamsizadehM. SharifM. Sharif-AlhoseiniM. SheJ. SheikhA. ShethK.N. ShigematsuM. ShiriR. ShirkoohiR. ShiueI. SiabaniS. SiddiqiT.J. SigfusdottirI.D. SigurvinsdottirR. SilberbergD.H. SilvaJ.P. SilveiraD.G.A. SinghJ.A. SinhaD.N. SkiadaresiE. SmithM. SobaihB.H. SobhaniS. SoofiM. SoyiriI.N. SposatoL.A. SteinD.J. SteinM.B. StokesM.A. SufiyanM.B. SykesB.L. SylajaP.N. Tabarés-SeisdedosR. Te AoB.J. Tehrani-BanihashemiA. TemsahM-H. TemsahO. ThakurJ.S. ThriftA.G. Topor-MadryR. Tortajada-GirbésM. Tovani-PaloneM.R. TranB.X. TranK.B. TruelsenT.C. TsadikA.G. Tudor CarL. UkwajaK.N. UllahI. UsmanM.S. UthmanO.A. ValdezP.R. VasankariT.J. VasanthanR. VeisaniY. VenketasubramanianN. ViolanteF.S. VlassovV. VosoughiK. VuG.T. VujcicI.S. WagnewF.S. WaheedY. WangY-P. WeiderpassE. WeissJ. WhitefordH.A. WijeratneT. WinklerA.S. WiysongeC.S. WolfeC.D.A. XuG. YadollahpourA. YamadaT. YanoY. YaseriM. YatsuyaH. YimerE.M. YipP. YismaE. YonemotoN. YousefifardM. YuC. ZaidiZ. ZamanS.B. ZamaniM. ZandianH. ZareZ. ZhangY. ZodpeyS. NaghaviM. MurrayC.J.L. VosT. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the global burden of disease study 2016.Lancet Neurol.201918545948010.1016/S1474‑4422(18)30499‑X30879893
    [Google Scholar]
  3. PoudinehS. PoudinehM. GhotbiT. AziziF. KaramiN. ZolfaghariZ. GheisariF. HormoziM. Neuropharmaceutical properties of naringin against alzheimer’s and parkinson’s diseases.Galen Med. J.202211e233710.31661/gmj.v11i.233736698693
    [Google Scholar]
  4. LiuH. HuY. ZhangY. ZhangH. GaoS. WangL. WangT. HanZ. SunB. LiuG. Mendelian randomization highlights significant difference and genetic heterogeneity in clinically diagnosed Alzheimer’s disease GWAS and self-report proxy phenotype GWAX.Alzheimers Res. Ther.20221411710.1186/s13195‑022‑00963‑335090530
    [Google Scholar]
  5. SanjayS. SharmaA. LeeH.J. Role of phytoconstituents as PPAR Agonists: Implications for neurodegenerative disorders.Biomedicines2021912191410.3390/biomedicines912191434944727
    [Google Scholar]
  6. TejeraD. HenekaM.T. Microglia in neurodegenerative disorders.Methods Mol. Biol.20192034576710.1007/978‑1‑4939‑9658‑2_531392677
    [Google Scholar]
  7. FreitasR.M. VasconcelosS.M.M. SouzaF.C.F. VianaG.S.B. FontelesM.M.F. Oxidative stress in the hippocampus after pilocarpine‐induced status epilepticus in Wistar rats.FEBS J.200527261307131210.1111/j.1742‑4658.2004.04537.x15752349
    [Google Scholar]
  8. DevermanB.E. RavinaB.M. BankiewiczK.S. PaulS.M. SahD.W.Y. Erratum: Gene therapy for neurological disorders: Progress and prospects.Nat. Rev. Drug Discov.2018171076710.1038/nrd.2018.15830206384
    [Google Scholar]
  9. EspayA.J. AybekS. CarsonA. EdwardsM.J. GoldsteinL.H. HallettM. LaFaverK. LaFranceW.C.Jr LangA.E. NicholsonT. NielsenG. ReuberM. VoonV. StoneJ. MorganteF. Current concepts in diagnosis and treatment of functional neurological disorders.JAMA Neurol.20187591132114110.1001/jamaneurol.2018.126429868890
    [Google Scholar]
  10. LeeJ. JinC. ChoS.Y. ParkS.U. JungW.S. MoonS.K. ParkJ.M. KoC.N. ChoK.H. KwonS. Herbal medicine treatment for Alzheimer disease.Medicine (Baltimore)20209933e2174510.1097/MD.000000000002174532872063
    [Google Scholar]
  11. LiangY.T. LinC.Y. WangY.H. ChouH.H. WeiJ.C.C. Associations of chinese herbal medicine usage with risk of dementia in patients with Parkinson’s disease: A population-based, nested case–control study.J. Altern. Complement. Med.202127760661210.1089/acm.2020.042233979532
    [Google Scholar]
  12. SandhirR. YadavA. SunkariaA. SinghalN. Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions.Neurochem. Int.20158920922610.1016/j.neuint.2015.08.01126315960
    [Google Scholar]
  13. HuangM. LuJ.J. HuangM.Q. BaoJ.L. ChenX.P. WangY.T. Terpenoids: Natural products for cancer therapy.Expert Opin. Investig. Drugs201221121801181810.1517/13543784.2012.72739523092199
    [Google Scholar]
  14. MerfortI. Perspectives on sesquiterpene lactones in inflammation and cancer.Curr. Drug Targets201112111560157310.2174/13894501179810943721561425
    [Google Scholar]
  15. AmoratiR. FotiM.C. ValgimigliL. Antioxidant activity of essential oils.J. Agric. Food Chem.20136146108351084710.1021/jf403496k24156356
    [Google Scholar]
  16. LeeW.L. HuangJ.Y. ShyurL.F. Phytoagents for cancer management: Regulation of nucleic acid oxidation, ROS, and related mechanisms.Oxid. Med. Cell. Longev.2013201312210.1155/2013/92580424454991
    [Google Scholar]
  17. XuP. WangK. LuC. DongL. GaoL. YanM. AibaiS. LiuX. Protective effect of lavender oil on scopolamine induced cognitive deficits in mice and H2O2 induced cytotoxicity in PC12 cells.J. Ethnopharmacol.201619340841510.1016/j.jep.2016.08.03027558947
    [Google Scholar]
  18. ChangH.J. KimJ.M. LeeJ.C. KimW.K. ChunH.S. Protective effect of β-caryophyllene, a natural bicyclic sesquiterpene, against cerebral ischemic injury.J. Med. Food201316647148010.1089/jmf.2012.228323734999
    [Google Scholar]
  19. FerreiraF.M. PalmeiraC.M. OliveiraM.M. SantosD. SimõesA.M. RochaS.M. CoimbraM.A. PeixotoF. Nerolidol effects on mitochondrial and cellular energetics.Toxicol. In Vitro201226218919610.1016/j.tiv.2011.11.00922138475
    [Google Scholar]
  20. LapczynskiA. BhatiaS.P. LetiziaC.S. ApiA.M. Fragrance material review on nerolidol (isomer unspecified).Food Chem. Toxicol.20084611S247S25010.1016/j.fct.2008.06.06318640205
    [Google Scholar]
  21. ArrudaD.C. D’AlexandriF.L. KatzinA.M. UlianaS.R.B. Antileishmanial activity of the terpene nerolidol.Antimicrob. Agents Chemother.20054951679168710.1128/AAC.49.5.1679‑1687.200515855481
    [Google Scholar]
  22. SaitoA.Y. Marin RodriguezA.A. Menchaca VegaD.S. SussmannR.A.C. KimuraE.A. KatzinA.M. Antimalarial activity of the terpene nerolidol.Int. J. Antimicrob. Agents201648664164610.1016/j.ijantimicag.2016.08.01727742206
    [Google Scholar]
  23. BastakiS.M.A. AmirN. AdeghateE. OjhaS. Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats.Mol. Cell. Biochem.202147693497351210.1007/s11010‑021‑04094‑533999335
    [Google Scholar]
  24. de MouraD.F. RochaT.A. de Melo BarrosD. da SilvaM.M. dos Santos SantanaM. NetaB.M. CavalcantiI.M.F. MartinsR.D. da SilvaM.V. Evaluation of the antioxidant, antibacterial, and antibiofilm activity of the sesquiterpene nerolidol.Arch. Microbiol.202120374303431110.1007/s00203‑021‑02377‑534110480
    [Google Scholar]
  25. Nogueira NetoJ.D. de AlmeidaA.A.C. da Silva OliveiraJ. dos SantosP.S. de SousaD.P. de FreitasR.M. Antioxidant effects of nerolidol in mice hippocampus after open field test.Neurochem. Res.20133891861187010.1007/s11064‑013‑1092‑223765368
    [Google Scholar]
  26. LeeK. LeeJ.H. KimS.I. ChoM.H. LeeJ. Anti-biofilm, anti-hemolysis, and anti-virulence activities of black pepper, cananga, myrrh oils, and nerolidol against Staphylococcus aureus .Appl. Microbiol. Biotechnol.201498229447945710.1007/s00253‑014‑5903‑425027570
    [Google Scholar]
  27. KristS. BanovacD. TabancaN. WedgeD.E. GochevV.K. WannerJ. SchmidtE. JirovetzL. Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities.Nat. Prod. Commun.20151011934578X150100010.1177/1934578X150100013325920237
    [Google Scholar]
  28. SilvaM.P. de OliveiraR.N. MengardaA.C. RoquiniD.B. AllegrettiS.M. SalvadoriM.C. TeixeiraF.S. de SousaD.P. PintoP.L.S. da Silva FilhoA.A. de MoraesJ. Antiparasitic activity of nerolidol in a mouse model of schistosomiasis.Int. J. Antimicrob. Agents201750346747210.1016/j.ijantimicag.2017.06.00528666754
    [Google Scholar]
  29. FonsêcaD.V. SalgadoP.R.R. de CarvalhoF.L. SalvadoriM.G.S.S. PenhaA.R.S. LeiteF.C. BorgesC.J.S. PiuvezamM.R. PordeusL.C.M. SousaD.P. AlmeidaR.N. Nerolidol exhibits antinociceptive and anti‐inflammatory activity: Involvement of the GABA ergic system and proinflammatory cytokines.Fundam. Clin. Pharmacol.2016301142210.1111/fcp.1216626791997
    [Google Scholar]
  30. LeeS.J. HanJ.I. LeeG.S. ParkM.J. ChoiI.G. NaK.J. JeungE.B. Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a guinea pig model.Biol. Pharm. Bull.200730118418810.1248/bpb.30.18417202684
    [Google Scholar]
  31. AkhterS. IrfanH.M. Alamgeer JahanS. ShahzadM. LatifM.B. Nerolidol: A potential approach in rheumatoid arthritis through reduction of TNF-α, IL-1β, IL-6, NF-kB, COX-2 and antioxidant effect in CFA-induced arthritic model.Inflammopharmacology202230253754810.1007/s10787‑022‑00930‑235212850
    [Google Scholar]
  32. BiaziB.I. ZanettiT.A. BaranoskiA. CorveloniA.C. MantovaniM.S. Cis‐nerolidol induces endoplasmic reticulum stress and cell death in human hepatocellular carcinoma cells through extensive CYP2C19 and CYP1A2 oxidation.Basic Clin. Pharmacol. Toxicol.2017121433434110.1111/bcpt.1277228256105
    [Google Scholar]
  33. JavedH. AzimullahS. Abul KhairS.B. OjhaS. HaqueM.E. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone.BMC Neurosci.20161715810.1186/s12868‑016‑0293‑427549180
    [Google Scholar]
  34. TaheriP. YaghmaeiP. HajebrahimiZ. ParivarK. Neuroprotective effects of nerolidol against Alzheimer’s disease in Wistar rats.Drug Dev. Res.20228381858186610.1002/ddr.2200236321205
    [Google Scholar]
  35. IqubalA. SharmaS. NajmiA.K. SyedMA. AliJ. AlamMM. HaqueSE. Nerolidol ameliorates cyclophosphamide-induced oxidative stress, neuroinflammation and cognitive dysfunction: Plausible role of Nrf2 and NF- κB.Life Sci.201923611686710.1016/j.lfs.2019.11686710.1016/j.lfs.2019.116867.
    [Google Scholar]
  36. SilvaM. OliveiraG. De CarvalhoR. De SousaD. FreitasR. PintoP. MoraesJ. Antischistosomal activity of the terpene nerolidol.Molecules20141933793380310.3390/molecules1903379324662089
    [Google Scholar]
  37. SchubertV. DietrichA. UlrichT. MosandlA. The stereoisomers of nerolidol: Separation, analysis and olfactoric properties.Z. Naturforsch. C J. Biosci.1992473-430430710.1515/znc‑1992‑3‑422
    [Google Scholar]
  38. BurdockG.A. Fenaroli's Handbook of Flavor Ingredients.Routledge2010
    [Google Scholar]
  39. BenedictC.R. LuJ.L. PettigrewD.W. LiuJ. StipanovicR.D. WilliamsH.J. The cyclization of farnesyl diphosphate and nerolidyl diphosphate by a purified recombinant delta-cadinene synthase.Plant Physiol.200112541754176510.1104/pp.125.4.175411299356
    [Google Scholar]
  40. SellC.S. Terpenoids.Kirk-Othmer Encyclopedia of Chemical TechnologyWiley200610.1002/0471238961.2005181602120504.a01.pub2
    [Google Scholar]
  41. McGintyD. LetiziaC.S. ApiA.M. Addendum to fragrance material review on nerolidol (isomer unspecified).Food Chem. Toxicol.201048S43S4510.1016/j.fct.2009.11.00820141875
    [Google Scholar]
  42. ParkM.J. GwakK.S. YangI. KimK.W. JeungE.B. ChangJ.W. ChoiI.G. Effect of citral, eugenol, nerolidol and α-terpineol on the ultrastructural changes of Trichophyton mentagrophytes .Fitoterapia200980529029610.1016/j.fitote.2009.03.00719345255
    [Google Scholar]
  43. De CarvalhoR.B.F. De AlmeidaA.A.C. CampeloN.B. LellisD.R.O.D. NunesL.C.C. Nerolidol and its pharmacological application in treating neurodegenerative diseases: A review.Recent Pat. Biotechnol.201812315816810.2174/187220831266617120612380529210667
    [Google Scholar]
  44. SperottoA.R.M. MouraD.J. PéresV.F. DamascenoF.C. CaramãoE.B. HenriquesJ.A.P. SaffiJ. Cytotoxic mechanism of Piper gaudichaudianum Kunth essential oil and its major compound nerolidol.Food Chem. Toxicol.201357576810.1016/j.fct.2013.03.01323523831
    [Google Scholar]
  45. SasidharanI. MenonA.N. Comparative chemical composition and antimicrobial activity fresh & dry ginger oils ( Zingiber officinale Roscoe).Int. J. Curr. Pharm. Res.2010244043
    [Google Scholar]
  46. CysneJ.B. CanutoK.M. PessoaO.D.L. NunesE.P. SilveiraE.R. Leaf essential oils of four Piper species from the State of Ceará - Northeast of Brazil.J. Braz. Chem. Soc.2005166b1378138110.1590/S0103‑50532005000800012
    [Google Scholar]
  47. VenskutonisP.R. DapkeviciusA. BaranauskieneM. Composition of the essential oil of Lavender ( Lavandula angustifolia Mill.) from Lithuania.J. Essent. Oil Res.19979110711010.1080/10412905.1997.9700727
    [Google Scholar]
  48. BallardC. GauthierS. CorbettA. BrayneC. AarslandD. JonesE. Alzheimer’s disease.Lancet201137797701019103110.1016/S0140‑6736(10)61349‑921371747
    [Google Scholar]
  49. FargoK. Alzheimer’s association report: 2014 Alzheimers disease facts and figures.Alzheimers Dement.201410210.1016/j.jalz.2014.02.001
    [Google Scholar]
  50. MattsonM.P. Pathways towards and away from Alzheimer’s disease.Nature2004430700063163910.1038/nature0262115295589
    [Google Scholar]
  51. PorteliusE. ZetterbergH. AndreassonU. BrinkmalmG. AndreasenN. WallinA. Westman-BrinkmalmA. BlennowK. An Alzheimer’s disease-specific β-amyloid fragment signature in cerebrospinal fluid.Neurosci. Lett.2006409321521910.1016/j.neulet.2006.09.04417049739
    [Google Scholar]
  52. KrilJ.J. Alzheimer disease neuropathology in the oldest old.Nat. Rev. Neurol.20095841141210.1038/nrneurol.2009.10519657342
    [Google Scholar]
  53. GoyalA. SolankiA. VermaA. Preclinical evidence-based review on therapeutic potential of eugenol for the treatment of brain disorders.Curr. Mol. Med.202323539040010.2174/156652402266622052514552135619280
    [Google Scholar]
  54. ZhaoY. ZhaoB. Oxidative stress and the pathogenesis of Alzheimer’s disease.Oxid. Med. Cell. Longev.2013201311010.1155/2013/31652323983897
    [Google Scholar]
  55. CassidyL. FernandezF. JohnsonJ.B. NaikerM. OwoolaA.G. BroszczakD.A. Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics.Complement. Ther. Med.20204910229410.1016/j.ctim.2019.10229432147039
    [Google Scholar]
  56. ColovićM.B. KrstićD.Z. Lazarević-PaštiT.D. BondžićA.M. VasićV.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology.Curr. Neuropharmacol.201311331533510.2174/1570159X1131103000624179466
    [Google Scholar]
  57. GoldmanD.P. FillitH. NeumannP. Accelerating Alzheimer’s disease drug innovations from the research pipeline to patients.Alzheimers Dement.201814683383610.1016/j.jalz.2018.02.00729680407
    [Google Scholar]
  58. YadavM. SehrawatN. SinghM. UpadhyayS.K. AggarwalD. SharmaA.K. Cardioprotective and hepatoprotective potential of citrus flavonoid naringin: Current status and future perspectives for health benefits.Asian Journal of Biological and Life sciences2020911510.5530/ajbls.2020.9.1
    [Google Scholar]
  59. KhanT. AliM. KhanA. NisarP. JanS.A. AfridiS. ShinwariZ.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects.Biomolecules20191014710.3390/biom1001004731892257
    [Google Scholar]
  60. KhanA. JahanS. AlshahraniS. Phytotherapeutic agents for neurodegenerative disorders: A neuropharmacological review.PhytomedicineAcademic Press202158162010.1016/B978‑0‑12‑824109‑7.00012‑1
    [Google Scholar]
  61. SunC. LiuY. ZhanL. RayatG.R. XiaoJ. JiangH. LiX. ChenK. Anti-diabetic effects of natural antioxidants from fruits.Trends Food Sci. Technol.202111731410.1016/j.tifs.2020.07.024
    [Google Scholar]
  62. WangD. LiH. DuX. ZhouJ. YuanL. RenH. YangX. ZhangG. ChenX. Circulating brain-derived neurotrophic factor, antioxidant enzymes activities, and mitochondrial dna in bipolar disorder: An exploratory report.Front. Psychiatry20201151465810.3389/fpsyt.2020.51465833061913
    [Google Scholar]
  63. AliN.A. WursterM. ArnoldN. LindequisU. WessjohanL. Essential oil composition from oleogum resin of Soqotraen commiphorakua .Rec. Nat. Prod.20082370
    [Google Scholar]
  64. BaldisseraM.D. SouzaC.F. GrandoT.H. MoreiraK.L.S. SchaferA.S. CossetinL.F. da SilvaA.P.T. da VeigaM.L. da RochaM.I.U.M. StefaniL.M. da SilvaA.S. MonteiroS.G. Nerolidol-loaded nanospheres prevent behavioral impairment via ameliorating Na+, K+-ATPase and AChE activities as well as reducing oxidative stress in the brain of Trypanosoma evansi-infected mice.Naunyn Schmiedebergs Arch. Pharmacol.2017390213914810.1007/s00210‑016‑1313‑827807596
    [Google Scholar]
  65. ZhaoH. JiZ.H. LiuC. YuX.Y. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats.Neuroscience201529048549110.1016/j.neuroscience.2015.01.06025662510
    [Google Scholar]
  66. ZhaoM. ZhangN. GaoT. JinJ. JingT. WangJ. WuY. WanX. SchwabW. SongC. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants.New Phytol.2020226236237210.1111/nph.1636431828806
    [Google Scholar]
  67. HalliwellB. Antioxidants in human health and disease.Annu. Rev. Nutr.1996161335010.1146/annurev.nu.16.070196.0003418839918
    [Google Scholar]
  68. WangC.Y. WangS.Y. ChenC. Increasing antioxidant activity and reducing decay of blueberries by essential oils.J. Agric. Food Chem.200856103587359210.1021/jf703769618442248
    [Google Scholar]
  69. CoronaJ.C. Natural compounds for the management of parkinson’s disease and attention-deficit/hyperactivity disorder.BioMed Res. Int.2018201811210.1155/2018/406759730596091
    [Google Scholar]
  70. HayesM.T. Parkinson’s Disease and Parkinsonism.Am. J. Med.2019132780280710.1016/j.amjmed.2019.03.00130890425
    [Google Scholar]
  71. PrakashJ. YadavS.K. ChouhanS. SinghS.P. Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism.Neurochem. Res.201338597298010.1007/s11064‑013‑1005‑423430469
    [Google Scholar]
  72. EssaM.M. BraidyN. BridgeW. SubashS. ManivasagamT. VijayanR.K. Al-AdawiS. GuilleminG.J. Review of natural products on Parkinson’s disease pathology.JARLIFE20143111010.14283/jarcp.2014.23
    [Google Scholar]
  73. Spires-JonesT.L. AttemsJ. ThalD.R. Interactions of pathological proteins in neurodegenerative diseases.Acta Neuropathol.2017134218720510.1007/s00401‑017‑1709‑728401333
    [Google Scholar]
  74. ChungY.C. BaekJ.Y. KimS.R. KoH.W. BokE. ShinW.H. WonS.Y. JinB.K. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease.Exp. Mol. Med.2017493e29810.1038/emm.2016.15928255166
    [Google Scholar]
  75. DauerW. PrzedborskiS. Parkinson’s Disease.Neuron200339688990910.1016/S0896‑6273(03)00568‑312971891
    [Google Scholar]
  76. WangX. WangC. WangJ. ZhaoS. ZhangK. WangJ. ZhangW. WuC. YangJ. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways.Neuropharmacology20147964265610.1016/j.neuropharm.2014.01.02224467851
    [Google Scholar]
  77. GoedertM. Alpha-synuclein and neurodegenerative diseases.Nat. Rev. Neurosci.20012749250110.1038/3508156411433374
    [Google Scholar]
  78. DavieC.A. A review of Parkinson’s disease.Br. Med. Bull.200886110912710.1093/bmb/ldn01318398010
    [Google Scholar]
  79. HunnB.H.M. CraggS.J. BolamJ.P. SpillantiniM.G. Wade-MartinsR. Impaired intracellular trafficking defines early Parkinson’s disease.Trends Neurosci.201538317818810.1016/j.tins.2014.12.00925639775
    [Google Scholar]
  80. PickrellA.M. YouleR.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease.Neuron201585225727310.1016/j.neuron.2014.12.00725611507
    [Google Scholar]
  81. LiJ.Q. TanL. YuJ.T. The role of the LRRK2 gene in Parkinsonism.Mol. Neurodegener.2014914710.1186/1750‑1326‑9‑4725391693
    [Google Scholar]
  82. WeiZ. LiX. LiX. LiuQ. ChengY. Oxidative stress in parkinson’s disease: A systematic review and meta-analysis.Front. Mol. Neurosci.20181123610.3389/fnmol.2018.0023630026688
    [Google Scholar]
  83. JennerP. Oxidative stress in Parkinson’s disease.Ann. Neurol.200353S3S26S3810.1002/ana.1048312666096
    [Google Scholar]
  84. BurbullaL.F. SongP. MazzulliJ.R. ZampeseE. WongY.C. JeonS. SantosD.P. BlanzJ. ObermaierC.D. StrojnyC. SavasJ.N. KiskinisE. ZhuangX. KrügerR. SurmeierD.J. KraincD. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease.Science201735763571255126110.1126/science.aam908028882997
    [Google Scholar]
  85. DamascenoJ. NetoN. Pergentino De SousaD. Mendes De FreitasR. Evaluation of the in vitro antioxidant potential of nerolidol.Rev. Cienc. Farm. Basica Apl.2013341125130
    [Google Scholar]
  86. HammadF.T. Al-SalamS. AhmadR. YasinJ. HammadA.F. RasheedJ.A. LubbadL. The effect of nerolidol renal dysfunction following ischemia–reperfusion injury in the rat.Nutrients202315245510.3390/nu1502045536678327
    [Google Scholar]
  87. CaiJ. YangJ. JonesD. Mitochondrial control of apoptosis: the role of cytochrome c.Biochim. Biophys. Acta Bioenerg.199813661-213914910.1016/S0005‑2728(98)00109‑19714780
    [Google Scholar]
  88. ShererT.B. BetarbetR. StoutA.K. LundS. BaptistaM. PanovA.V. CooksonM.R. GreenamyreJ.T. An in vitro model of Parkinson’s disease: Linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage.J. Neurosci.200222167006701510.1523/JNEUROSCI.22‑16‑07006.200212177198
    [Google Scholar]
  89. IqubalA. SyedM.A. NajmiA.K. AzamF. BarretoG.E. IqubalM.K. AliJ. HaqueS.E. Nano-engineered nerolidol loaded lipid carrier delivery system attenuates cyclophosphamide neurotoxicity – Probable role of NLRP3 inflammasome and caspase-1.Exp. Neurol.202033411346410.1016/j.expneurol.2020.11346432941795
    [Google Scholar]
  90. NiY.L. ShenH.T. SuC.H. ChenW.Y. Huang-LiuR. ChenC.J. ChenS.P. KuanY.H. Nerolidol suppresses the inflammatory response during lipopolysaccharide-induced acute lung injury via the modulation of antioxidant enzymes and the AMPK/Nrf-2/HO-1 pathway.Oxid. Med. Cell. Longev.2019201911010.1155/2019/960598031827712
    [Google Scholar]
  91. MurrayC.J.L. VosT. LozanoR. NaghaviM. FlaxmanA.D. MichaudC. EzzatiM. ShibuyaK. SalomonJ.A. AbdallaS. AboyansV. AbrahamJ. AckermanI. AggarwalR. AhnS.Y. AliM.K. AlMazroaM.A. AlvaradoM. AndersonH.R. AndersonL.M. AndrewsK.G. AtkinsonC. BaddourL.M. BahalimA.N. Barker-ColloS. BarreroL.H. BartelsD.H. BasáñezM-G. BaxterA. BellM.L. BenjaminE.J. BennettD. BernabéE. BhallaK. BhandariB. BikbovB. AbdulhakA.B. BirbeckG. BlackJ.A. BlencoweH. BloreJ.D. BlythF. BolligerI. BonaventureA. BoufousS. BourneR. BoussinesqM. BraithwaiteT. BrayneC. BridgettL. BrookerS. BrooksP. BrughaT.S. Bryan-HancockC. BucelloC. BuchbinderR. BuckleG. BudkeC.M. BurchM. BurneyP. BursteinR. CalabriaB. CampbellB. CanterC.E. CarabinH. CarapetisJ. CarmonaL. CellaC. CharlsonF. ChenH. ChengA.T-A. ChouD. ChughS.S. CoffengL.E. ColanS.D. ColquhounS. ColsonK.E. CondonJ. ConnorM.D. CooperL.T. CorriereM. CortinovisM. de VaccaroK.C. CouserW. CowieB.C. CriquiM.H. CrossM. DabhadkarK.C. DahiyaM. DahodwalaN. Damsere-DerryJ. DanaeiG. DavisA. LeoD.D. DegenhardtL. DellavalleR. DelossantosA. DenenbergJ. DerrettS. Des JarlaisD.C. DharmaratneS.D. DheraniM. Diaz-TorneC. DolkH. DorseyE.R. DriscollT. DuberH. EbelB. EdmondK. ElbazA. AliS.E. ErskineH. ErwinP.J. EspindolaP. EwoigbokhanS.E. FarzadfarF. FeiginV. FelsonD.T. FerrariA. FerriC.P. FèvreE.M. FinucaneM.M. FlaxmanS. FloodL. ForemanK. ForouzanfarM.H. FowkesF.G.R. FransenM. FreemanM.K. GabbeB.J. GabrielS.E. GakidouE. GanatraH.A. GarciaB. GaspariF. GillumR.F. GmelG. Gonzalez-MedinaD. GosselinR. GraingerR. GrantB. GroegerJ. GuilleminF. GunnellD. GuptaR. HaagsmaJ. HaganH. HalasaY.A. HallW. HaringD. HaroJ.M. HarrisonJ.E. HavmoellerR. HayR.J. HigashiH. HillC. HoenB. HoffmanH. HotezP.J. HoyD. HuangJ.J. IbeanusiS.E. JacobsenK.H. JamesS.L. JarvisD. JasrasariaR. JayaramanS. JohnsN. JonasJ.B. KarthikeyanG. KassebaumN. KawakamiN. KerenA. KhooJ-P. KingC.H. KnowltonL.M. KobusingyeO. KorantengA. KrishnamurthiR. LadenF. LallooR. LaslettL.L. LathleanT. LeasherJ.L. LeeY.Y. LeighJ. LevinsonD. LimS.S. LimbE. LinJ.K. LipnickM. LipshultzS.E. LiuW. LoaneM. OhnoS.L. LyonsR. MabweijanoJ. MacIntyreM.F. MalekzadehR. MallingerL. ManivannanS. MarcenesW. MarchL. MargolisD.J. MarksG.B. MarksR. MatsumoriA. MatzopoulosR. MayosiB.M. McAnultyJ.H. McDermottM.M. McGillN. McGrathJ. Medina-MoraM.E. MeltzerM. MemishZ.A. MensahG.A. MerrimanT.R. MeyerA-C. MiglioliV. MillerM. MillerT.R. MitchellP.B. MockC. MocumbiA.O. MoffittT.E. MokdadA.A. MonastaL. MonticoM. Moradi-LakehM. MoranA. MorawskaL. MoriR. MurdochM.E. MwanikiM.K. NaidooK. NairM.N. NaldiL. NarayanK.M.V. NelsonP.K. NelsonR.G. NevittM.C. NewtonC.R. NolteS. NormanP. NormanR. O’DonnellM. O’HanlonS. OlivesC. OmerS.B. OrtbladK. OsborneR. OzgedizD. PageA. PahariB. PandianJ.D. RiveroA.P. PattenS.B. PearceN. PadillaR.P. Perez-RuizF. PericoN. PesudovsK. PhillipsD. PhillipsM.R. PierceK. PionS. PolanczykG.V. PolinderS. PopeC.A.III PopovaS. PorriniE. PourmalekF. PrinceM. PullanR.L. RamaiahK.D. RanganathanD. RazaviH. ReganM. RehmJ.T. ReinD.B. RemuzziG. RichardsonK. RivaraF.P. RobertsT. RobinsonC. De LeònF.R. RonfaniL. RoomR. RosenfeldL.C. RushtonL. SaccoR.L. SahaS. SampsonU. Sanchez-RieraL. SanmanE. SchwebelD.C. ScottJ.G. Segui-GomezM. ShahrazS. ShepardD.S. ShinH. ShivakotiR. SilberbergD. SinghD. SinghG.M. SinghJ.A. SingletonJ. SleetD.A. SliwaK. SmithE. SmithJ.L. StapelbergN.J.C. SteerA. SteinerT. StolkW.A. StovnerL.J. SudfeldC. SyedS. TamburliniG. TavakkoliM. TaylorH.R. TaylorJ.A. TaylorW.J. ThomasB. ThomsonW.M. ThurstonG.D. TleyjehI.M. TonelliM. TowbinJ.A. TruelsenT. TsilimbarisM.K. UbedaC. UndurragaE.A. van der WerfM.J. van OsJ. VavilalaM.S. VenketasubramanianN. WangM. WangW. WattK. WeatherallD.J. WeinstockM.A. WeintraubR. WeisskopfM.G. WeissmanM.M. WhiteR.A. WhitefordH. WiebeN. WiersmaS.T. WilkinsonJ.D. WilliamsH.C. WilliamsS.R.M. WittE. WolfeF. WoolfA.D. WulfS. YehP-H. ZaidiA.K.M. ZhengZ-J. ZoniesD. LopezA.D. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010.Lancet201238098592197222310.1016/S0140‑6736(12)61689‑423245608
    [Google Scholar]
  92. EnglandM.J. LivermanC.T. SchultzA.M. StrawbridgeL.M. Summary.Epilepsy Curr.201212624525310.5698/1535‑7511‑12.6.24523447726
    [Google Scholar]
  93. FiestK.M. SauroK.M. WiebeS. PattenS.B. KwonC.S. DykemanJ. PringsheimT. LorenzettiD.L. JettéN. Prevalence and incidence of epilepsy.Neurology201788329630310.1212/WNL.000000000000350927986877
    [Google Scholar]
  94. TianN. BoringM. KobauR. ZackM.M. CroftJ.B. Active epilepsy and seizure control in adults — United States, 2013 and 2015.MMWR Morb. Mortal. Wkly. Rep.2018671543744210.15585/mmwr.mm6715a129672474
    [Google Scholar]
  95. RajagopalanK. LeeL.K. Association between adherence to sodium channel blockers and patient-reported outcomes: Analysis of US survey data among patients with epilepsy.Epilepsy Behav.20199910648310.1016/j.yebeh.2019.10648331480000
    [Google Scholar]
  96. ShorvonS.D. The etiologic classification of epilepsy.Epilepsia20115261052105710.1111/j.1528‑1167.2011.03041.x21449936
    [Google Scholar]
  97. FolbergrováJ. KunzW.S. Mitochondrial dysfunction in epilepsy.Mitochondrion2012121354010.1016/j.mito.2011.04.00421530687
    [Google Scholar]
  98. KangH.C. LeeY.M. KimH.D. Mitochondrial disease and epilepsy.Brain Dev.201335875776110.1016/j.braindev.2013.01.00623414619
    [Google Scholar]
  99. DinizT.C. SilvaJ.C. Lima-SaraivaS.R.G. RibeiroF.P.R.A. PachecoA.G.M. de FreitasR.M. Quintans-JúniorL.J. QuintansJ.S.S. MendesR.L. AlmeidaJ.R.G.S. The role of flavonoids on oxidative stress in epilepsy.Oxid. Med. Cell. Longev.201520151910.1155/2015/17175625653736
    [Google Scholar]
  100. SiesH. Oxidative stress: A concept in redox biology and medicine.Redox Biol.2015418018310.1016/j.redox.2015.01.00225588755
    [Google Scholar]
  101. BlairR.E. SombatiS. LawrenceD.C. McCayB.D. DeLorenzoR.J. Epileptogenesis causes acute and chronic increases in GABAA receptor endocytosis that contributes to the induction and maintenance of seizures in the hippocampal culture model of acquired epilepsy.J. Pharmacol. Exp. Ther.2004310387188010.1124/jpet.104.06847815084648
    [Google Scholar]
  102. PitkänenA. LukasiukK. Molecular and cellular basis of epileptogenesis in symptomatic epilepsy.Epilepsy Behav.2009141162510.1016/j.yebeh.2008.09.02318835369
    [Google Scholar]
  103. SucherN.J. CarlesM.C. A pharmacological basis of herbal medicines for epilepsy.Epilepsy Behav.201552Pt B30831810.1016/j.yebeh.2015.05.01226074183
    [Google Scholar]
  104. JacobL. KerimbaevaZ. KalyapinA. KostevK. Prescription patterns of antiepileptic drugs in Kazakhstan in 2018: A retrospective study of 57,959 patients.Epilepsy Behav.20199910644510.1016/j.yebeh.2019.10644531520850
    [Google Scholar]
  105. TzadokM. HarushA. NissenkornA. ZaubermanY. FeldmanZ. Ben-zeevB. Clinical outcomes of closed-loop vagal nerve stimulation in patients with refractory epilepsy.Seizure20197114014410.1016/j.seizure.2019.07.00631326720
    [Google Scholar]
  106. JukkarwalaA. BahetiN.N. DhakojiA. SalgotraB. MenonG. GuptaA. PrakashS. RathoreC. Establishment of low cost epilepsy surgery centers in resource poor setting.Seizure20196924525010.1016/j.seizure.2019.05.00731121549
    [Google Scholar]
  107. BrodieM.J. CovanisA. Gil-NagelA. PeruccaE. J. SillsG. Steve WhiteH. Antiepileptic drug therapy: Does mechanism of action matter?Epilepsy Behav.201110.1016/j.yebeh.2011.05.025.
    [Google Scholar]
  108. WangY. ChenZ. An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy.Pharmacol. Ther.2019201779310.1016/j.pharmthera.2019.05.01031128154
    [Google Scholar]
  109. SirvenJ.I. FifeT.D. WingerchukD.M. DrazkowskiJ.F. Second-generation antiepileptic drugs’ impact on balance: A meta-analysis.Mayo Clin. Proc.2007821404710.1016/S0025‑6196(11)60965‑817285784
    [Google Scholar]
  110. AronicaE. CiusaniE. CoppolaA. CostaC. RussoE. SalmaggiA. PerversiF. MaschioM. Epilepsy and brain tumors: Two sides of the same coin.J. Neurol. Sci.202344612058410.1016/j.jns.2023.12058436842341
    [Google Scholar]
  111. AdachiN. FenwickP. AkanumaN. HaraK. IshiiR. OkazakiM. ItoM. SekimotoM. KatoM. OnumaT. Increased frequency of psychosis after second-generation antiepileptic drug administration in adults with focal epilepsy.Epilepsy Behav.20199713814310.1016/j.yebeh.2019.06.00231252268
    [Google Scholar]
  112. BjørkeA.B. NomeC.G. FalkR.S. GjerstadL. TaubøllE. HeuserK. Evaluation of long-term antiepileptic drug use in patients with temporal lobe epilepsy: Assessment of risk factors for drug resistance and polypharmacy.Seizure201861637010.1016/j.seizure.2018.07.01130099235
    [Google Scholar]
  113. CopelandL. MeekA. KerrM. RoblingM. HoodK. McNamaraR. Measurement of side effects of anti-epileptic drugs (AEDs) in adults with intellectual disability: A systematic review.Seizure201751617310.1016/j.seizure.2017.07.01328806588
    [Google Scholar]
  114. WagnerJ.L. MuellerM. KellermannT. GriffinM. SmithG. SolivenM. GuilfoyleS.M. JungerK.F. MucciG. HusztiH. BarrettL. ZupancM. ModiA.C. Vulnerabilities to antiepileptic drug (AED) side effects in youth with epilepsy.Epilepsy Behav.201997222810.1016/j.yebeh.2019.05.01231181425
    [Google Scholar]
  115. AghdashS.N. Herbal medicine in the treatment of epilepsy.Curr. Drug Targets202122335636710.2174/138945012199920100115222133023444
    [Google Scholar]
  116. LöscherW. Animal models of seizures and epilepsy: Past, present, and future role for the discovery of antiseizure drugs.Neurochem. Res.20174271873188810.1007/s11064‑017‑2222‑z28290134
    [Google Scholar]
  117. SzyndlerJ. MaciejakP. KołosowskaK. ChmielewskaN. SkórzewskaA. DaszczukP. PłaźnikA. Altered expression of GABA-A receptor subunits in the hippocampus of PTZ-kindled rats.Pharmacol. Rep.2018701142110.1016/j.pharep.2017.07.00829306758
    [Google Scholar]
  118. PitkänenA. EngelJ.Jr Past and present definitions of epileptogenesis and its biomarkers.Neurotherapeutics201411223124110.1007/s13311‑014‑0257‑224492975
    [Google Scholar]
  119. LiuH. SongZ. LiaoD. ZhangT. LiuF. ZhuangK. LuoK. YangL. Neuroprotective effects of trans-caryophyllene against kainic acid induced seizure activity and oxidative stress in mice.Neurochem. Res.201540111812310.1007/s11064‑014‑1474‑025417010
    [Google Scholar]
  120. GarletQ.I. PiresL.C. MilanesiL.H. MarafigaJ.R. BaldisserottoB. MelloC.F. HeinzmannB.M. (+)-Dehydrofukinone modulates membrane potential and delays seizure onset by GABAa receptor-mediated mechanism in mice.Toxicol. Appl. Pharmacol.2017332526310.1016/j.taap.2017.07.01028733205
    [Google Scholar]
  121. NóbregaF.F.F. SalvadoriM.G.S.S. MassonC.J. MelloC.F. NascimentoT.S. Leal-CardosoJ.H. de SousaD.P. AlmeidaR.N. Monoterpenoid terpinen-4-ol exhibits anticonvulsant activity in behavioural and electrophysiological studies.Oxid Med Cell Longev.2014201470384810.1155/2014/703848
    [Google Scholar]
  122. PacificoS. D’AbroscaB. GolinoA. MastelloneC. PiccolellaS. FiorentinoA. MonacoP. Antioxidant evaluation of polyhydroxylated nerolidols from redroot pigweed ( Amaranthus retroflexus ) leaves.Lebensm. Wiss. Technol.20084191665167110.1016/j.lwt.2007.10.006
    [Google Scholar]
  123. ScalvenziL. GrandiniA. SpagnolettiA. TacchiniM. NeillD. BallesterosJ. SacchettiG. GuerriniA. Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A chemical characterization and bioactivity profile.Molecules2017227116310.3390/molecules2207116328704964
    [Google Scholar]
  124. CeoleL.F. CardosoM.D.G. SoaresM.J. Nerolidol, the main constituent of Piper aduncum essential oil, has anti- Leishmania braziliensis activity.Parasitology201714491179119010.1017/S003118201700045228482935
    [Google Scholar]
  125. KaurD. PahwaP. GoelR.K. Protective effect of nerolidol against pentylenetetrazol-induced kindling, oxidative stress and associated behavioral comorbidities in mice.Neurochem. Res.201641112859286710.1007/s11064‑016‑2001‑227418279
    [Google Scholar]
  126. ElhwuegiA.S. Central monoamines and their role in major depression.Prog. Neuropsychopharmacol. Biol. Psychiatry200428343545110.1016/j.pnpbp.2003.11.01815093950
    [Google Scholar]
  127. NgF. BerkM. DeanO. BushA.I. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications.Int. J. Neuropsychopharmacol.200811685187610.1017/S146114570700840118205981
    [Google Scholar]
  128. BaxendaleS. HoldsworthC.J. Meza SantoscoyP.L. HarrisonM.R.M. FoxJ. ParkinC.A. InghamP.W. CunliffeV.T. Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures.Dis. Model. Mech.201256dmm.01009010.1242/dmm.01009022730455
    [Google Scholar]
  129. ViraniS.S. AlonsoA. BenjaminE.J. BittencourtM.S. CallawayC.W. CarsonA.P. ChamberlainA.M. ChangA.R. ChengS. DellingF.N. DjousseL. ElkindM.S.V. FergusonJ.F. FornageM. KhanS.S. KisselaB.M. KnutsonK.L. KwanT.W. LacklandD.T. LewisT.T. LichtmanJ.H. LongeneckerC.T. LoopM.S. LutseyP.L. MartinS.S. MatsushitaK. MoranA.E. MussolinoM.E. PerakA.M. RosamondW.D. RothG.A. SampsonU.K.A. SatouG.M. SchroederE.B. ShahS.H. ShayC.M. SpartanoN.L. StokesA. TirschwellD.L. VanWagnerL.B. TsaoC.W. Heart Disease and stroke statistics—2020 update: A report from the American Heart Association.Circulation20201419e139e59610.1161/CIR.000000000000075731992061
    [Google Scholar]
  130. TouzéE. VarenneO. CalvetD. MasJ.L. Coronary risk stratification in patients with ischemic stroke or transient ischemic stroke attack.Int. J. Stroke20072317718310.1111/j.1747‑4949.2007.00136.x18705941
    [Google Scholar]
  131. Della-MorteD. GuadagniF. PalmirottaR. TestaG. CasoV. PaciaroniM. AbeteP. RengoF. FerroniP. SaccoR.L. RundekT. Genetics of ischemic stroke, stroke-related risk factors, stroke precursors and treatments.Pharmacogenomics201213559561310.2217/pgs.12.1422462751
    [Google Scholar]
  132. GoA.S. MozaffarianD. RogerV.L. BenjaminE.J. BerryJ.D. BlahaM.J. DaiS. FordE.S. FoxC.S. FrancoS. FullertonH.J. GillespieC. HailpernS.M. HeitJ.A. HowardV.J. HuffmanM.D. JuddS.E. KisselaB.M. KittnerS.J. LacklandD.T. LichtmanJ.H. LisabethL.D. MackeyR.H. MagidD.J. MarcusG.M. MarelliA. MatcharD.B. McGuireD.K. MohlerE.R.III MoyC.S. MussolinoM.E. NeumarR.W. NicholG. PandeyD.K. PaynterN.P. ReevesM.J. SorlieP.D. SteinJ. TowfighiA. TuranT.N. ViraniS.S. WongN.D. WooD. TurnerM.B. Heart disease and stroke statistics--2014 update: A report from the American Heart Association.Circulation20141293e28e29210.1161/01.cir.0000441139.02102.8024352519
    [Google Scholar]
  133. SaccoR.L. KasnerS.E. BroderickJ.P. CaplanL.R. ConnorsJ.J.B. CulebrasA. ElkindM.S.V. GeorgeM.G. HamdanA.D. HigashidaR.T. HohB.L. JanisL.S. KaseC.S. KleindorferD.O. LeeJ.M. MoseleyM.E. PetersonE.D. TuranT.N. ValderramaA.L. VintersH.V. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association.Stroke20134472064208910.1161/STR.0b013e318296aeca23652265
    [Google Scholar]
  134. KaraszewskiB. WardlawJ.M. MarshallI. CvoroV. WartolowskaK. HagaK. ArmitageP.A. BastinM.E. DennisM.S. Early brain temperature elevation and anaerobic metabolism in human acute ischaemic stroke.Brain2008132495596410.1093/brain/awp01019346327
    [Google Scholar]
  135. CastilloJ. LozaM.I. MirelmanD. BreaJ. BlancoM. SobrinoT. CamposF. A novel mechanism of neuroprotection: Blood glutamate grabber.J. Cereb. Blood Flow Metab.201636229230110.1177/0271678X1560672126661174
    [Google Scholar]
  136. LewénA. MatzP. ChanP.H. Free radical pathways in CNS injury.J. Neurotrauma2000171087189010.1089/neu.2000.17.87111063054
    [Google Scholar]
  137. ChanP.H. Reactive oxygen radicals in signaling and damage in the ischemic brain.J. Cereb. Blood Flow Metab.200121121410.1097/00004647‑200101000‑0000211149664
    [Google Scholar]
  138. Gürsoy-ÖzdemirY. BolayH. SaribaşO. DalkaraT. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia.Stroke20003181974198110.1161/01.STR.31.8.197410926966
    [Google Scholar]
  139. PeerschkeE.I. YinW. GhebrehiwetB. Complement activation on platelets: Implications for vascular inflammation and thrombosis.Mol. Immunol.201047132170217510.1016/j.molimm.2010.05.00920621693
    [Google Scholar]
  140. BrownG.C. NeherJ.J. Microglial phagocytosis of live neurons.Nat. Rev. Neurosci.201415420921610.1038/nrn371024646669
    [Google Scholar]
  141. SumiiT. LoE.H. Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats.Stroke200233383183610.1161/hs0302.10454211872911
    [Google Scholar]
  142. IadecolaC. AnratherJ. The immunology of stroke: From mechanisms to translation.Nat. Med.201117779680810.1038/nm.239921738161
    [Google Scholar]
  143. NieminenA.L. Apoptosis and necrosis in health and disease: Role of mitochondria.Int. Rev. Cytol.2003224295510.1016/S0074‑7696(05)24002‑012722948
    [Google Scholar]
  144. PowersW.J. RabinsteinA.A. AckersonT. AdeoyeO.M. BambakidisN.C. BeckerK. BillerJ. BrownM. DemaerschalkB.M. HohB. JauchE.C. KidwellC.S. Leslie-MazwiT.M. OvbiageleB. ScottP.A. ShethK.N. SoutherlandA.M. SummersD.V. TirschwellD.L. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association.Stroke20195012e344e41810.1161/STR.000000000000021131662037
    [Google Scholar]
  145. PetersO. BackT. LindauerU. BuschC. MegowD. DreierJ. DirnaglU. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat.J. Cereb. Blood Flow Metab.199818219620510.1097/00004647‑199802000‑000119469163
    [Google Scholar]
  146. AllenC.L. BayraktutanU. Oxidative stress and its role in the pathogenesis of ischaemic stroke.Int. J. Stroke20094646147010.1111/j.1747‑4949.2009.00387.x19930058
    [Google Scholar]
  147. KevilC.G. OshimaT. AlexanderB. CoeL.L. AlexanderJ.S. H 2 O 2 -mediated permeability: role of MAPK and occludin.Am. J. Physiol. Cell Physiol.20002791C21C3010.1152/ajpcell.2000.279.1.C2110898713
    [Google Scholar]
  148. KellyP.J. MorrowJ.D. NingM. KoroshetzW. LoE.H. TerryE. MilneG.L. HubbardJ. LeeH. StevensonE. LedererM. FurieK.L. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study.Stroke200839110010410.1161/STROKEAHA.107.48818918063832
    [Google Scholar]
  149. IgneyF.H. KrammerP.H. Death and anti-death: tumour resistance to apoptosis.Nat. Rev. Cancer20022427728810.1038/nrc77612001989
    [Google Scholar]
  150. WangF. LuZ. HawkesM. YangH. KainK.C. LilesW.C. Fas (CD95) induces rapid, TLR4/IRAK4-dependent release of pro-inflammatory HMGB1 from macrophages.J. Inflamm. (Lond.)2010713010.1186/1476‑9255‑7‑3020565784
    [Google Scholar]
  151. SirénA.L. FratelliM. BrinesM. GoemansC. CasagrandeS. LewczukP. KeenanS. GleiterC. PasqualiC. CapobiancoA. MenniniT. HeumannR. CeramiA. GhezziP. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress.Proc Natl Acad Sci U S A.20019874044404910.1073/pnas.051606598.
    [Google Scholar]
  152. BroughtonB.R.S. ReutensD.C. SobeyC.G. Apoptotic mechanisms after cerebral ischemia.Stroke2009405e331e33910.1161/STROKEAHA.108.53163219182083
    [Google Scholar]
  153. Martin-VillalbaA. HerrI. JeremiasI. HahneM. BrandtR. VogelJ. SchenkelJ. HerdegenT. DebatinK.M. CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons.J. Neurosci.199919103809381710.1523/JNEUROSCI.19‑10‑03809.199910234013
    [Google Scholar]
  154. ParaskevasK.I. MikhailidisD.P. VeithF.J. SpenceJ.D. Definition of best medical treatment in asymptomatic and symptomatic carotid artery stenosis.Angiology201667541141910.1177/000331971562452626721504
    [Google Scholar]
  155. GiannopoulosA. KakkosS. AbbottA. NaylorA.R. RichardsT. MikhailidisD.P. GeroulakosG. NicolaidesA.N. Long-term mortality in patients with asymptomatic carotid stenosis: Implications for statin therapy.Eur. J. Vasc. Endovasc. Surg.201550557358210.1016/j.ejvs.2015.06.11526299982
    [Google Scholar]
  156. GaireB.P. MoonS.K. KimH. Scutellaria baicalensis in stroke management: Nature’s blessing in traditional Eastern medicine.Chin. J. Integr. Med.201420971272010.1007/s11655‑014‑1347‑924752475
    [Google Scholar]
  157. ZhangJ. LiY. ZhouT. Nerolidol attenuates cerebral ischemic injury in middle cerebral artery occlusion-induced rats via regulation of inflammation, apoptosis, and oxidative stress markers.Pharmacogn. Mag.202319118619610.1177/09731296221137380
    [Google Scholar]
  158. BhattacharyaS. GachhuiR. SilP.C. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats.Food Chem. Toxicol.20136032834010.1016/j.fct.2013.07.05123907022
    [Google Scholar]
  159. SarkarA. GhoshM. SilP.C. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles.J. Nanosci. Nanotechnol.201414173074310.1166/jnn.2014.875224730293
    [Google Scholar]
  160. MartemucciG. PortincasaP. CentonzeV. MarianoM. KhalilM. D’AlessandroA.G. Prevention of oxidative stress and diseases by antioxidant supplementation.Med. Chem.202319650953710.2174/157340641966622113016251236453505
    [Google Scholar]
  161. SjödinB. WestingY.H. AppleF.S. Biochemical mechanisms for oxygen free radical formation during exercise.Sports Med.199010423625410.2165/00007256‑199010040‑000032247725
    [Google Scholar]
  162. VinholesJ. GonçalvesP. MartelF. CoimbraM.A. RochaS.M. Assessment of the antioxidant and antiproliferative effects of sesquiterpenic compounds in in vitro Caco-2 cell models.Food Chem.201415620421110.1016/j.foodchem.2014.01.10624629959
    [Google Scholar]
  163. RammohanA. ZyryanovG.V. BhagathY.B. ManjulaK. Antioxidants: Structure–activity of plant polyphenolics.Vitam. Horm.202312139541110.1016/bs.vh.2022.10.00136707141
    [Google Scholar]
  164. MancusoC. BatesT.E. ButterfieldD.A. CalafatoS. CorneliusC. LorenzoA.D. Dinkova KostovaA.T. CalabreseV. Natural antioxidants in Alzheimer’s disease.Expert Opin. Investig. Drugs200716121921193110.1517/13543784.16.12.192118042001
    [Google Scholar]
  165. WhittonP.S. Inflammation as a causative factor in the aetiology of Parkinson’s disease.Br. J. Pharmacol.2007150896397610.1038/sj.bjp.070716717339843
    [Google Scholar]
  166. PhamD.Q. PlakogiannisR. Vitamin E supplementation in Alzheimer’s disease, Parkinson’s disease, tardive dyskinesia, and cataract: Part 2.Ann. Pharmacother.200539122065207210.1345/aph.1G27116288072
    [Google Scholar]
  167. HöhnA. WeberD. JungT. OttC. HugoM. KochlikB. KehmR. KönigJ. GruneT. CastroJ.P. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence.Redox Biol.20171148250110.1016/j.redox.2016.12.00128086196
    [Google Scholar]
  168. TraberM.G. StevensJ.F. Vitamins C and E: Beneficial effects from a mechanistic perspective.Free Radic. Biol. Med.20115151000101310.1016/j.freeradbiomed.2011.05.01721664268
    [Google Scholar]
  169. DixitS. BernardoA. WalkerJ.M. KennardJ.A. KimG.Y. KesslerE.S. HarrisonF.E. Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice.ACS Chem. Neurosci.20156457058110.1021/cn500308h25642732
    [Google Scholar]
  170. ShahS.A. YoonG.H. KimH.O. KimM.O. VitaminC. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain.Neurochem. Res.201540587588410.1007/s11064‑015‑1540‑225701025
    [Google Scholar]
  171. HuangH.Y. AppelL.J. CroftK.D. MillerE.R.III MoriT.A. PuddeyI.B. Effects of vitamin C and vitamin E on in vivo lipid peroxidation: results of a randomized controlled trial.Am. J. Clin. Nutr.200276354955510.1093/ajcn/76.3.54912197998
    [Google Scholar]
  172. ChanA.C. Partners in defense, vitamin E and vitamin C.Can. J. Physiol. Pharmacol.199371972573110.1139/y93‑1098313238
    [Google Scholar]
  173. SchirinziT. MartellaG. ImbrianiP. Di LazzaroG. FrancoD. ColonaV.L. AlwardatM. Sinibaldi SalimeiP. MercuriN.B. PierantozziM. PisaniA. Dietary Vitamin E as a protective factor for Parkinson’s disease: Clinical and experimental evidence.Front. Neurol.20191014810.3389/fneur.2019.0014830863359
    [Google Scholar]
  174. FengY. WangX. Antioxidant therapies for Alzheimer’s disease.Oxid. Med. Cell. Longev.2012201211710.1155/2012/47293222888398
    [Google Scholar]
  175. MaokaT. Carotenoids as natural functional pigments.J. Nat. Med.202074111610.1007/s11418‑019‑01364‑x31588965
    [Google Scholar]
  176. Dias-SantagataD. FulgaT.A. DuttaroyA. FeanyM.B. Oxidative stress mediates tau-induced neurodegeneration in Drosophila.J. Clin. Invest.2007117123624510.1172/JCI2876917173140
    [Google Scholar]
  177. MaoP. ManczakM. CalkinsM.J. TruongQ. ReddyTP. ReddyAP. ShirendebU. loHH. ReddyPH. RabinovitchPS. Mitochondria-targeted catalase reduces abnormal APP processing, amyloid β production and BACE1 in a mouse model of Alzheimer's disease: Implications for neuroprotection and lifespan extension.Hum Mol Genet.201221132973299010.1093/hmg/dds128.
    [Google Scholar]
  178. PandeyS. SinghB. YadavS.K. MahdiA.A. Novel biomarker for neurodegenerative diseases- Motor neuron disease (MND), cerebellar ataxia (CA) and Parkinson’s disease (PD).Clin. Chim. Acta201848525826110.1016/j.cca.2018.07.02130006282
    [Google Scholar]
  179. SharmaG. ShinE.J. SharmaN. NahS.Y. MaiH.N. NguyenB.T. JeongJ.H. LeiX.G. KimH.C. Glutathione peroxidase-1 and neuromodulation: Novel potentials of an old enzyme.Food Chem. Toxicol.202114811194510.1016/j.fct.2020.11194533359022
    [Google Scholar]
  180. BroderickT.L. RasoolS. LiR. ZhangY. AndersonjM. Al-NakkashL. PlochockiJeffrey H. Ramesh BabuJ. GeethaT. Neuroprotective effects of chronic resveratrol treatment and exercise training in the 3xTg-AD mouse model of Alzheimer’s disease.Int. J. Mol. Sci.20202119733710.3390/ijms21197337.
    [Google Scholar]
  181. LimG.P. ChuT. YangF. BeechW. FrautschyS.A. ColeG.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse.J. Neurosci.200121218370837710.1523/JNEUROSCI.21‑21‑08370.200111606625
    [Google Scholar]
  182. MorenoL.C.G.I. PuertaE. Suárez-SantiagoJ.E. Santos-MagalhãesN.S. RamirezM.J. IracheJ.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease.Int. J. Pharm.20175171-2505710.1016/j.ijpharm.2016.11.06127915007
    [Google Scholar]
  183. SpagnuoloC. NapolitanoM. TedescoI. MocciaS. MilitoA. Luigi RussoG. Neuroprotective role of natural polyphenols.Curr. Top. Med. Chem.201616171943195010.2174/156802661666616020412244926845551
    [Google Scholar]
  184. GoyalA. SinghG. VermaA. A comprehensive review on therapeutic potential of chrysin in brain related disorders.CNS Neurol. Disord. Drug Targets202322678980010.2174/187152732166622060211193535657041
    [Google Scholar]
  185. Fonseca-KellyZ. NassrallahM. UribeJ. KhanR.S. DineK. DuttM. ShindlerK.S. Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis.Front. Neurol.201238410.3389/fneur.2012.0008422654783
    [Google Scholar]
  186. ÖzduranG. BecerE. VatanseverH.S. YücecanS. Neuroprotective effects of catechins in an experimental Parkinson’s disease model and SK-N-AS cells: Evaluation of cell viability, anti-inflammatory and anti-apoptotic effects.Neurol. Res.202244651152310.1080/01616412.2021.202471535000557
    [Google Scholar]
  187. ProrokT. JanaM. PatelD. PahanK. Cinnamic acid protects the nigrostriatum in a mouse model of parkinson’s disease via peroxisome proliferator-activated Receptorα.Neurochem. Res.201944475176210.1007/s11064‑018‑02705‑030612307
    [Google Scholar]
  188. PhomL. AchumiB. AloneDP. Curcumin's neuroprotective efficacy in Drosophila model of idiopathic Parkinson's disease is phase specific:Implication of its therapeutic effectiveness.Rejuvenation Res.201417648148910.1089/rej.2014.1591
    [Google Scholar]
  189. ZbarskyV. DatlaK.P. ParkarS. RaiD.K. AruomaO.I. DexterD.T. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease.Free Radic. Res.200539101119112510.1080/1071576050023311316298737
    [Google Scholar]
  190. El NebrisiE. JavedH. OjhaS.K. OzM. ShehabS. Neuroprotective effect of curcumin on the nigrostriatal pathway in a 6-hydroxydopmine-induced rat model of parkinson’s disease is mediated by α7-nicotinic receptors.Int. J. Mol. Sci.20202119732910.3390/ijms2119732933023066
    [Google Scholar]
  191. Mohd SairaziN.S. SirajudeenK.N.S. Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases.Evid. Based Complement. Alternat. Med.2020202013010.1155/2020/656539632148547
    [Google Scholar]
  192. MarrazzoP. O’LearyC. Repositioning natural antioxidants for therapeutic applications in tissue engineering.Bioengineering (Basel)20207310410.3390/bioengineering703010432887327
    [Google Scholar]
  193. DeshmukhP. UnniS. KrishnappaG. PadmanabhanB. The Keap1–Nrf2 pathway: Promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases.Biophys. Rev201692017415610.1007/s12551‑016‑0244‑4.
    [Google Scholar]
  194. BrandesN. SchmittS. JakobU. Thiol-based redox switches in eukaryotic proteins.Antioxid. Redox Signal.2009115997101410.1089/ars.2008.228518999917
    [Google Scholar]
  195. BirbenE. SahinerU.M. SackesenC. ErzurumS. KalayciO. Oxidative stress and antioxidant defense.World Allergy Organ. J.20125191910.1097/WOX.0b013e318243961323268465
    [Google Scholar]
  196. VarshneyV. KumarA. ParasharV. KumarA. GoyalA. GarabaduD. Therapeutic potential of capsaicin in various neurodegenerative diseases with special focus on Nrf2 signaling.Curr. Pharm. Biotechnol.20242538173062
    [Google Scholar]
  197. ZhangD.D. Mechanistic studies of the Nrf2-Keap1 signaling pathway.Drug Metab. Rev.200638476978910.1080/0360253060097197417145701
    [Google Scholar]
  198. EnomotoA. ItohK. NagayoshiE. HarutaJ. KimuraT. O'ConnorT. HaradaT. YamamotoM. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes.Toxicol Sci.200159116917710.1093/toxsci/59.1.169.
    [Google Scholar]
  199. ChaturvediR.K. Flint BealM. Mitochondrial diseases of the brain.Free Radic. Biol. Med.20136312910.1016/j.freeradbiomed.2013.03.01823567191
    [Google Scholar]
  200. CalabreseV. CorneliusC. Dinkova-KostovaA.T. IavicoliI. Di PaolaR. KoverechA. CuzzocreaS. RizzarelliE. CalabreseE.J. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity.Biochim. Biophys. Acta Mol. Basis Dis.20121822575378310.1016/j.bbadis.2011.11.00222108204
    [Google Scholar]
  201. LouJ. CaoG. LiR. LiuJ. DongZ. XuL. β-Caryophyllene attenuates focal cerebral ischemia-reperfusion injury by Nrf2/HO-1 pathway in rats.Neurochem. Res.20164161291130410.1007/s11064‑016‑1826‑z26801169
    [Google Scholar]
  202. HabottaO.A. AbdeenA. El-HanafyA.A. YassinN. ElgameelD. IbrahimS.F. AbdelrahamanD. HasanT. ImbreaF. GhamryH.I. FericeanL. BehairyA. AtwaA.M. AbdelkaderA. MahdiM.R. El-MosallamyS.A. Sesquiterpene nootkatone counteracted the melamine-induced neurotoxicity via repressing of oxidative stress, inflammatory, and apoptotic trajectories.Biomed. Pharmacother.202316511513310.1016/j.biopha.2023.11513337454594
    [Google Scholar]
  203. HuQ. ZuoT. DengL. ChenS. YuW. LiuS. LiuJ. WangX. FanX. DongZ. β-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats.Phytomedicine202210215411210.1016/j.phymed.2022.15411235550220
    [Google Scholar]
  204. SunZ. LiG. TongT. ChenJ. Micheliolide suppresses LPS-induced neuroinflammatory responses.PLoS One20171210e018659210.1371/journal.pone.018659229040306
    [Google Scholar]
  205. VinholesJ. RudnitskayaA. GonçalvesP. MartelF. CoimbraM.A. RochaS.M. Hepatoprotection of sesquiterpenoids: A quantitative structure–activity relationship (QSAR) approach.Food Chem.2014146788410.1016/j.foodchem.2013.09.03924176316
    [Google Scholar]
  206. KaurA. JaiswalG. BrarJ. KumarP. Neuroprotective effect of nerolidol in traumatic brain injury associated behavioural comorbidities in rats.Toxicol. Res. (Camb.)2021101405010.1093/toxres/tfaa10033613971
    [Google Scholar]
  207. BaldisseraM.D. SouzaC.F. da SilvaA.S. VelhoM.C. OuriqueA.F. BaldisserottoB. Benefits of nanotechnology: Dietary supplementation with nerolidol-loaded nanospheres increases survival rates, reduces bacterial loads and prevents oxidative damage in brains of Nile tilapia experimentally infected by Streptococcus agalactiae .Microb. Pathog.202014110398910.1016/j.micpath.2020.10398931982567
    [Google Scholar]
  208. ChanWK TanLTH ChanKG LeeLH GohBH Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological ActivitiesMolecules201621552910.3390/molecules21050529
    [Google Scholar]
  209. TürkmenN.B. YüceH. TaşlidereA. Şahi̇nY. Çi̇ftçi̇O. The ameliorate effects of nerolidol on thioasteamide-induced oxidative damage in heart and kidney tissue.Turk J Pharm Sci.20221911810.4274/tjps.galenos.2021.3080635227035
    [Google Scholar]
  210. MeeranM.F.N. AzimullahS. MamoudhH.H. SharmaC. KumarS. GoyalS.N. OjhaS. Nerolidol, a sesquiterpene from the essential oils of aromatic plants, attenuates doxorubicin-induced chronic cardiotoxicity in rats.J. Agric. Food Chem.202169267334734310.1021/acs.jafc.0c0566734170670
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010307891240819064720
Loading
/content/journals/cpb/10.2174/0113892010307891240819064720
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test