Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The human microbiota represents the community and diverse population of microbes within the human body, which comprises approximately 100 trillion micro-organisms. They exist in the human gastrointestinal tract and various other organs and are now considered virtual body organs. It is mainly represented by bacteria but also includes viruses, fungi, and protozoa. Although there is a heritable component to the gut microbiota, environmental factors related to diet, drugs, and anthropometry determine the composition of the microbiota. Besides the gastrointestinal tract, the human body also harbours microbial communities in the skin, oral and nasal cavities, and reproductive tract. The current review demonstrates the role of gut microbiota and its involvement in processing food, drugs, and immune responses. The discussion focuses on the implications of human microbiota in developing several diseases, such as gastrointestinal infections, metabolic disorders, malignancies, ., through symbiotic relationships. The microbial population may vary depending on the pathophysiological condition of an individual and thus may be exploited as a therapeutic and clinical player. Further, we need a more thorough investigation to establish the correlation between microbes and pathophysiology in humans and propose them as potential therapeutic targets.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010314433240823113111
2024-09-05
2025-12-15
Loading full text...

Full text loading...

References

  1. MueggeB.D. KuczynskiJ. KnightsD. ClementeJ.C. GonzálezA. FontanaL. HenrissatB. KnightR. GordonJ.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans.Science2011332603297097410.1126/science.119871921596990
    [Google Scholar]
  2. BäckhedF. LeyR.E. SonnenburgJ.L. PetersonD.A. GordonJ.I. Host-bacterial mutualism in the human intestine.Science200530757171915192010.1126/science.110481615790844
    [Google Scholar]
  3. SekirovI. RussellS.L. AntunesL.C.M. FinlayB.B. Gut microbiota in health and disease.Physiol. Rev.201090385990410.1152/physrev.00045.200920664075
    [Google Scholar]
  4. SalzmanN.H. UnderwoodM.A. BevinsC.L. Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa.Semin. Immunol.2007192708310.1016/j.smim.2007.04.00217485224
    [Google Scholar]
  5. UrsellL.K. HaiserH.J. Van TreurenW. GargN. ReddivariL. VanamalaJ. DorresteinP.C. TurnbaughP.J. KnightR. The intestinal metabolome: an intersection between microbiota and host.Gastroenterology201414661470147610.1053/j.gastro.2014.03.00124631493
    [Google Scholar]
  6. HollisterE.B. GaoC. VersalovicJ. Compositional and functional features of the gastrointestinal microbiome and their effects on human health.Gastroenterology201414661449145810.1053/j.gastro.2014.01.05224486050
    [Google Scholar]
  7. SenderR. FuchsS. MiloR. Revised Estimates for the Number of Human and Bacteria Cells in the Body.PLoS Biol.2016148e100253310.1371/journal.pbio.100253327541692
    [Google Scholar]
  8. TapJ. MondotS. LevenezF. PelletierE. CaronC. FuretJ.P. UgarteE. Muñoz-TamayoR. PaslierD.L.E. NalinR. DoreJ. LeclercM. Towards the human intestinal microbiota phylogenetic core.Environ. Microbiol.200911102574258410.1111/j.1462‑2920.2009.01982.x19601958
    [Google Scholar]
  9. CogenA.L. NizetV. GalloR.L. Skin microbiota: a source of disease or defence?Br. J. Dermatol.2008158344245510.1111/j.1365‑2133.2008.08437.x18275522
    [Google Scholar]
  10. GriceE.A. SegreJ.A. The skin microbiome.Nat. Rev. Microbiol.20119424425310.1038/nrmicro253721407241
    [Google Scholar]
  11. JakubovicsN.S. GillS.R. VickermanM.M. KolenbranderP.E. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii.FEMS Microbiol. Ecol.200866363764410.1111/j.1574‑6941.2008.00585.x18785881
    [Google Scholar]
  12. AvilaM. OjciusD.M. YilmazÖ. The oral microbiota: living with a permanent guest.DNA Cell Biol.200928840541110.1089/dna.2009.087419485767
    [Google Scholar]
  13. AasJ.A. PasterB.J. StokesL.N. OlsenI. DewhirstF.E. Defining the normal bacterial flora of the oral cavity.J. Clin. Microbiol.200543115721573210.1128/JCM.43.11.5721‑5732.200516272510
    [Google Scholar]
  14. RasmussenT.T. KirkebyL.P. PoulsenK. ReinholdtJ. KilianM. Resident aerobic microbiota of the adult human nasal cavity.APMIS20001081066367510.1034/j.1600‑0463.2000.d01‑13.x
    [Google Scholar]
  15. HaldarS. KapilA. SoodS. SenguptaS. Female reproductive tract microbiome in gynecological health and problems.J. Reprod. Health Med.20162S48S5410.1016/j.jrhm.2016.11.007
    [Google Scholar]
  16. PavlovaS.I. KilicA.O. KilicS.S. SoJ.S. Nader-MaciasM.E. SimoesJ.A. TaoL. Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences.J. Appl. Microbiol.200292345145910.1046/j.1365‑2672.2002.01547.x11872120
    [Google Scholar]
  17. ZhouX. BrownC.J. AbdoZ. DavisC.C. HansmannM.A. JoyceP. FosterJ.A. ForneyL.J. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women.ISME J.20071212113310.1038/ismej.2007.1218043622
    [Google Scholar]
  18. LamontR.F. SobelJ.D. AkinsR.A. HassanS.S. ChaiworapongsaT. KusanovicJ.P. RomeroR. The vaginal microbiome: new information about genital tract flora using molecular based techniques.BJOG2011118553354910.1111/j.1471‑0528.2010.02840.x21251190
    [Google Scholar]
  19. MändarR. Microbiota of male genital tract: Impact on the health of man and his partner.Pharmacol. Res.2013691324110.1016/j.phrs.2012.10.01923142212
    [Google Scholar]
  20. SommerF. BäckhedF. The gut microbiota — masters of host development and physiology.Nat. Rev. Microbiol.201311422723810.1038/nrmicro297423435359
    [Google Scholar]
  21. DieterichW. SchuppanD. SchinkM. SchwappacherR. WirtzS. AgaimyA. NeurathM.F. ZopfY. Influence of low FODMAP and gluten-free diets on disease activity and intestinal microbiota in patients with non-celiac gluten sensitivity.Clin. Nutr.201938269770710.1016/j.clnu.2018.03.01729653862
    [Google Scholar]
  22. Dominguez-BelloM.G. CostelloE.K. ContrerasM. MagrisM. HidalgoG. FiererN. KnightR. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.Proc. Natl. Acad. Sci. USA201010726119711197510.1073/pnas.100260110720566857
    [Google Scholar]
  23. BokulichN.A. ChungJ. BattagliaT. HendersonN. JayM. LiH. D LieberA. WuF. Perez-PerezG.I. ChenY. SchweizerW. ZhengX. ContrerasM. Dominguez-BelloM.G. BlaserM.J. Antibiotics, birth mode, and diet shape microbiome maturation during early life.Sci. Transl. Med.20168343343ra8210.1126/scitranslmed.aad712127306664
    [Google Scholar]
  24. QuigleyE.M. Gut bacteria in health and disease.Gastroenterol. Hepatol. (N. Y.)20139956056924729765
    [Google Scholar]
  25. KhannaS. ToshP.K. A clinician’s primer on the role of the microbiome in human health and disease.Mayo Clin. Proc.201489110711410.1016/j.mayocp.2013.10.01124388028
    [Google Scholar]
  26. GuarnerF. MalageladaJ.R. Gut flora in health and disease.Lancet2003361935651251910.1016/S0140‑6736(03)12489‑012583961
    [Google Scholar]
  27. BeaugerieL. PetitJ.C. Antibiotic-associated diarrhoea.Best Pract. Res. Clin. Gastroenterol.200418233735210.1016/j.bpg.2003.10.00215123074
    [Google Scholar]
  28. SimonG.L. GorbachS.L. Intestinal flora in health and disease.Gastroenterology198486117419310.1016/0016‑5085(84)90606‑16357937
    [Google Scholar]
  29. BorrielloS.P. Microbial flora of the gastrointestinal tract.Microbial metabolism in the digestive tract. HillM.J. Boca RatonCRC Press1986216
    [Google Scholar]
  30. BengmarkS. Ecological control of the gastrointestinal tract. The role of probiotic flora.Gut19984212710.1136/gut.42.1.29505873
    [Google Scholar]
  31. NormanJ.M. HandleyS.A. BaldridgeM.T. DroitL. LiuC.Y. KellerB.C. KambalA. MonacoC.L. ZhaoG. FleshnerP. StappenbeckT.S. McGovernD.P.B. KeshavarzianA. MutluE.A. SaukJ. GeversD. XavierR.J. WangD. ParkesM. VirginH.W. Disease-specific alterations in the enteric virome in inflammatory bowel disease.Cell2015160344746010.1016/j.cell.2015.01.00225619688
    [Google Scholar]
  32. ManriqueP. BolducB. WalkS.T. van der OostJ. de VosW.M. YoungM.J. Healthy human gut phageome.Proc. Natl. Acad. Sci. USA201611337104001040510.1073/pnas.160106011327573828
    [Google Scholar]
  33. ForbesJ.D. Van DomselaarG. BernsteinC.N. The Gut Microbiota in Immune-Mediated Inflammatory Diseases.Front. Microbiol.20167108110.3389/fmicb.2016.0108127462309
    [Google Scholar]
  34. SokolH. LeducqV. AschardH. PhamH.P. JegouS. LandmanC. CohenD. LiguoriG. BourrierA. Nion-LarmurierI. CosnesJ. SeksikP. LangellaP. SkurnikD. RichardM.L. BeaugerieL. Fungal microbiota dysbiosis in IBD.Gut20176661039104810.1136/gutjnl‑2015‑31074626843508
    [Google Scholar]
  35. OttS.J. KühbacherT. MusfeldtM. RosenstielP. HellmigS. RehmanA. DrewsO. WeichertW. TimmisK.N. SchreiberS. Fungi and inflammatory bowel diseases: Alterations of composition and diversity.Scand. J. Gastroenterol.200843783184110.1080/0036552080193543418584522
    [Google Scholar]
  36. ChiaroT.R. SotoR. Zac StephensW. KubinakJ.L. PetersenC. GogokhiaL. BellR. DelgadoJ.C. CoxJ. VothW. BrownJ. StillmanD.J. O’ConnellR.M. TeboA.E. RoundJ.L. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice.Sci. Transl. Med.20179380eaaf904410.1126/scitranslmed.aaf904428275154
    [Google Scholar]
  37. SonnenburgJ.L. BäckhedF. Diet–microbiota interactions as moderators of human metabolism.Nature20165357610566410.1038/nature1884627383980
    [Google Scholar]
  38. TapJ. FuretJ.P. BensaadaM. PhilippeC. RothH. RabotS. LakhdariO. LombardV. HenrissatB. CorthierG. FontaineE. DoréJ. LeclercM. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults.Environ. Microbiol.201517124954496410.1111/1462‑2920.1300626235304
    [Google Scholar]
  39. MartínezI. LattimerJ.M. HubachK.L. CaseJ.A. YangJ. WeberC.G. LoukJ.A. RoseD.J. KyureghianG. PetersonD.A. HaubM.D. WalterJ. Gut microbiome composition is linked to whole grain-induced immunological improvements.ISME J.20137226928010.1038/ismej.2012.10423038174
    [Google Scholar]
  40. DeehanE.C. WalterJ. The Fiber Gap and the Disappearing Gut Microbiome: Implications for Human Nutrition.Trends Endocrinol. Metab.201627523924210.1016/j.tem.2016.03.00127079516
    [Google Scholar]
  41. HolscherH.D. CaporasoJ.G. HoodaS. BrulcJ.M. FaheyG.C.Jr SwansonK.S. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial.Am. J. Clin. Nutr.20151011556410.3945/ajcn.114.09206425527750
    [Google Scholar]
  42. HolscherH.D. BauerL.L. GourineniV. PelkmanC.L. FaheyG.C.Jr SwansonK.S. Agave inulin supplementation affects the fecal microbiota of healthy adults participating in a randomized, double-blind, placebo-controlled, crossover trial1–3.J. Nutr.201514592025203210.3945/jn.115.21733126203099
    [Google Scholar]
  43. MartínezI. KimJ. DuffyP.R. SchlegelV.L. WalterJ. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects.PLoS One2010511e1504610.1371/journal.pone.001504621151493
    [Google Scholar]
  44. JaneiroM. RamírezM. MilagroF. MartínezJ. SolasM. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target.Nutrients20181010139810.3390/nu1010139830275434
    [Google Scholar]
  45. De FilippisF. PellegriniN. VanniniL. JefferyI.B. La StoriaA. LaghiL. SerrazanettiD.I. Di CagnoR. FerrocinoI. LazziC. TurroniS. CocolinL. BrigidiP. NevianiE. GobbettiM. O’TooleP.W. ErcoliniD. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome.Gut201665111812182110.1136/gutjnl‑2015‑30995726416813
    [Google Scholar]
  46. SinghR.K. ChangH.W. YanD. LeeK.M. UcmakD. WongK. AbroukM. FarahnikB. NakamuraM. ZhuT.H. BhutaniT. LiaoW. Influence of diet on the gut microbiome and implications for human health.J. Transl. Med.20171517310.1186/s12967‑017‑1175‑y28388917
    [Google Scholar]
  47. LeeY.K. Effects of diet on gut microbiota profile and the implications for health and disease.Biosci. Microbiota Food Health201332111210.12938/bmfh.32.124936357
    [Google Scholar]
  48. ObeidR. AwwadH.M. KellerM. GeiselJ. Trimethylamine-N-oxide and its biological variations in vegetarians.Eur. J. Nutr.20175682599260910.1007/s00394‑016‑1295‑927562778
    [Google Scholar]
  49. WuG.D. CompherC. ChenE.Z. SmithS.A. ShahR.D. BittingerK. ChehoudC. AlbenbergL.G. NesselL. GilroyE. StarJ. WeljieA.M. FlintH.J. MetzD.C. BennettM.J. LiH. BushmanF.D. LewisJ.D. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production.Gut2016651637210.1136/gutjnl‑2014‑30820925431456
    [Google Scholar]
  50. SonnenburgJ.L. XuJ. LeipD.D. ChenC.H. WestoverB.P. WeatherfordJ. BuhlerJ.D. GordonJ.I. Glycan foraging in vivo by an intestine-adapted bacterial symbiont.Science200530757171955195910.1126/science.110905115790854
    [Google Scholar]
  51. SidhuH. HoppeB. HesseA. TenbrockK. BrömmeS. RietschelE. PeckA.B. Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria.Lancet199835291331026102910.1016/S0140‑6736(98)03038‑49759746
    [Google Scholar]
  52. MagwiraC.A. KullinB. LewandowskiS. RodgersA. ReidS.J. AbrattV.R. Diversity of faecal oxalate-degrading bacteria in black and white South African study groups: insights into understanding the rarity of urolithiasis in the black group.J. Appl. Microbiol.2012113241842810.1111/j.1365‑2672.2012.05346.x22616725
    [Google Scholar]
  53. HooperL.V. WongM.H. ThelinA. HanssonL. FalkP.G. GordonJ.I. Molecular analysis of commensal host-microbial relationships in the intestine.Science2001291550588188410.1126/science.291.5505.88111157169
    [Google Scholar]
  54. ThomasC.M. HongT. van PijkerenJ.P. HemarajataP. TrinhD.V. HuW. BrittonR.A. KalkumM. VersalovicJ. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling.PLoS One201272e3195110.1371/journal.pone.003195122384111
    [Google Scholar]
  55. De BiaseD. PennacchiettiE. Glutamate decarboxylase‐dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon.Mol. Microbiol.201286477078610.1111/mmi.1202022995042
    [Google Scholar]
  56. Baddini FeitozaA. Fernandes PereiraA. Ferreira da CostaN. Gonçalves RibeiroB. Conjugated linoleic acid (CLA): effect modulation of body composition and lipid profile.Nutr. Hosp.200924442242819721921
    [Google Scholar]
  57. DevillardE. McIntoshF.M. DuncanS.H. WallaceR.J. Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid.J. Bacteriol.200718962566257010.1128/JB.01359‑0617209019
    [Google Scholar]
  58. DevillardE. McIntoshF.M. PaillardD. ThomasN.A. ShingfieldK.J. WallaceR.J. Differences between human subjects in the composition of the faecal bacterial community and faecal metabolism of linoleic acid.Microbiology (Reading)2009155251352010.1099/mic.0.023416‑019202099
    [Google Scholar]
  59. FukiyaS. ArataM. KawashimaH. YoshidaD. KanekoM. MinamidaK. WatanabeJ. OguraY. UchidaK. ItohK. WadaM. ItoS. YokotaA. Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by Bacteroides intestinalis AM-1 isolated from human feces.FEMS Microbiol. Lett.2009293226327010.1111/j.1574‑6968.2009.01531.x19243441
    [Google Scholar]
  60. MarínL. MiguélezE.M. VillarC.J. LombóF. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties.BioMed Res. Int.2015201511810.1155/2015/90521525802870
    [Google Scholar]
  61. ClaytonT.A. BakerD. LindonJ.C. EverettJ.R. NicholsonJ.K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism.Proc. Natl. Acad. Sci. USA200910634147281473310.1073/pnas.090448910619667173
    [Google Scholar]
  62. DobkinJ.F. SahaJ.R. ButlerV.P.Jr NeuH.C. LindenbaumJ. Digoxin-inactivating bacteria: identification in human gut flora.Science1983220459432532710.1126/science.68362756836275
    [Google Scholar]
  63. WallaceB.D. WangH. LaneK.T. ScottJ.E. OransJ. KooJ.S. VenkateshM. JobinC. YehL.A. ManiS. RedinboM.R. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme.Science2010330600583183510.1126/science.119117521051639
    [Google Scholar]
  64. DurkinH.G. BazinH. WaksmanB.H. Origin and fate of IgE-bearing lymphocytes. I. Peyer’s patches as differentiation site of cells. Simultaneously bearing IgA and IgE.J. Exp. Med.1981154364064810.1084/jem.154.3.6406974216
    [Google Scholar]
  65. ChungH. PampS.J. HillJ.A. SuranaN.K. EdelmanS.M. TroyE.B. ReadingN.C. VillablancaE.J. WangS. MoraJ.R. UmesakiY. MathisD. BenoistC. RelmanD.A. KasperD.L. Gut immune maturation depends on colonization with a host-specific microbiota.Cell201214971578159310.1016/j.cell.2012.04.03722726443
    [Google Scholar]
  66. HasegawaM. OsakaT. TawaratsumidaK. YamazakiT. TadaH. ChenG.Y. TsunedaS. NúñezG. InoharaN. Transitions in oral and intestinal microflora composition and innate immune receptor-dependent stimulation during mouse development.Infect. Immun.201078263965010.1128/IAI.01043‑0919933833
    [Google Scholar]
  67. SmithP.M. HowittM.R. PanikovN. MichaudM. GalliniC.A. Bohlooly-YM. GlickmanJ.N. GarrettW.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.Science2013341614556957310.1126/science.124116523828891
    [Google Scholar]
  68. FurusawaY. ObataY. FukudaS. EndoT.A. NakatoG. TakahashiD. NakanishiY. UetakeC. KatoK. KatoT. TakahashiM. FukudaN.N. MurakamiS. MiyauchiE. HinoS. AtarashiK. OnawaS. FujimuraY. LockettT. ClarkeJ.M. ToppingD.L. TomitaM. HoriS. OharaO. MoritaT. KosekiH. KikuchiJ. HondaK. HaseK. OhnoH. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.Nature2013504748044645010.1038/nature1272124226770
    [Google Scholar]
  69. ArpaiaN. CampbellC. FanX. DikiyS. van der VeekenJ. deRoosP. LiuH. CrossJ.R. PfefferK. CofferP.J. RudenskyA.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.Nature2013504748045145510.1038/nature1272624226773
    [Google Scholar]
  70. SpitsH. Di SantoJ.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling.Nat. Immunol.2011121212710.1038/ni.196221113163
    [Google Scholar]
  71. SpitsH. CupedoT. Innate lymphoid cells: emerging insights in development, lineage relationships, and function.Annu. Rev. Immunol.201230164767510.1146/annurev‑immunol‑020711‑07505322224763
    [Google Scholar]
  72. ZelanteT. IannittiR.G. CunhaC. De LucaA. GiovanniniG. PieracciniG. ZecchiR. D’AngeloC. Massi-BenedettiC. FallarinoF. CarvalhoA. PuccettiP. RomaniL. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22.Immunity201339237238510.1016/j.immuni.2013.08.00323973224
    [Google Scholar]
  73. MantaC. HeupelE. RadulovicK. RossiniV. GarbiN. RiedelC.U. NiessJ.H. CX3CR1+ macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium.Mucosal Immunol.20136117718810.1038/mi.2012.6122854708
    [Google Scholar]
  74. NagpalR. TsujiH. TakahashiT. KawashimaK. NagataS. NomotoK. YamashiroY. Sensitive Quantitative Analysis of the Meconium Bacterial Microbiota in Healthy Term Infants Born Vaginally or by Cesarean Section.Front. Microbiol.20167199710.3389/fmicb.2016.0199728018325
    [Google Scholar]
  75. NagpalR. TsujiH. TakahashiT. NomotoK. KawashimaK. NagataS. YamashiroY. Gut dysbiosis following C-section instigates higher colonisation of toxigenic Clostridium perfringens in infants.Benef. Microbes20178335336610.3920/BM2016.021628504574
    [Google Scholar]
  76. MuellerN.T. BakacsE. CombellickJ. GrigoryanZ. Dominguez-BelloM.G. The infant microbiome development: mom matters.Trends Mol. Med.201521210911710.1016/j.molmed.2014.12.00225578246
    [Google Scholar]
  77. FavierC.F. VaughanE.E. De VosW.M. AkkermansA.D.L. Molecular monitoring of succession of bacterial communities in human neonates.Appl. Environ. Microbiol.200268121922610.1128/AEM.68.1.219‑226.200211772630
    [Google Scholar]
  78. LakshminarayananB. StantonC. O’TooleP.W. RossR.P. Compositional dynamics of the human intestinal microbiota with aging: Implications for health.J. Nutr. Health Aging201418977378610.1007/s12603‑014‑0549‑625389954
    [Google Scholar]
  79. Rakoff-NahoumS. PaglinoJ. Eslami-VarzanehF. EdbergS. MedzhitovR. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis.Cell2004118222924110.1016/j.cell.2004.07.00215260992
    [Google Scholar]
  80. AbtM.C. OsborneL.C. MonticelliL.A. DoeringT.A. AlenghatT. SonnenbergG.F. PaleyM.A. AntenusM. WilliamsK.L. EriksonJ. WherryE.J. ArtisD. Commensal bacteria calibrate the activation threshold of innate antiviral immunity.Immunity201237115817010.1016/j.immuni.2012.04.01122705104
    [Google Scholar]
  81. BelkaidY. NaikS. Compartmentalized and systemic control of tissue immunity by commensals.Nat. Immunol.201314764665310.1038/ni.260423778791
    [Google Scholar]
  82. ClaessonM.J. JefferyI.B. CondeS. PowerS.E. O’ConnorE.M. CusackS. HarrisH.M.B. CoakleyM. LakshminarayananB. O’SullivanO. FitzgeraldG.F. DeaneJ. O’ConnorM. HarnedyN. O’ConnorK. O’MahonyD. van SinderenD. WallaceM. BrennanL. StantonC. MarchesiJ.R. FitzgeraldA.P. ShanahanF. HillC. RossR.P. O’TooleP.W. Gut microbiota composition correlates with diet and health in the elderly.Nature2012488741017818410.1038/nature1131922797518
    [Google Scholar]
  83. KumarA. WuH. Collier-HyamsL.S. HansenJ.M. LiT. YamoahK. PanZ.Q. JonesD.P. NeishA.S. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species.EMBO J.200726214457446610.1038/sj.emboj.760186717914462
    [Google Scholar]
  84. DonohoeD.R. GargeN. ZhangX. SunW. O’ConnellT.M. BungerM.K. BultmanS.J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon.Cell Metab.201113551752610.1016/j.cmet.2011.02.01821531334
    [Google Scholar]
  85. HamerH.M. JonkersD. VenemaK. VanhoutvinS. TroostF.J. BrummerR.J. Review article: the role of butyrate on colonic function.Aliment. Pharmacol. Ther.200827210411910.1111/j.1365‑2036.2007.03562.x17973645
    [Google Scholar]
  86. ComaladaM. BailónE. de HaroO. Lara-VillosladaF. XausJ. ZarzueloA. GálvezJ. The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype.J. Cancer Res. Clin. Oncol.2006132848749710.1007/s00432‑006‑0092‑x16788843
    [Google Scholar]
  87. ChambersA.F. GroomA.C. MacDonaldI.C. Dissemination and growth of cancer cells in metastatic sites.Nat. Rev. Cancer20022856357210.1038/nrc86512154349
    [Google Scholar]
  88. BiagiE. NylundL. CandelaM. OstanR. BucciL. PiniE. NikkïlaJ. MontiD. SatokariR. FranceschiC. BrigidiP. De VosW. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians.PLoS One201055e1066710.1371/journal.pone.001066720498852
    [Google Scholar]
  89. BraheL.K. AstrupA. LarsenL.H. Is butyrate the link between diet, intestinal microbiota and obesity‐related metabolic diseases?Obes. Rev.2013141295095910.1111/obr.1206823947604
    [Google Scholar]
  90. GaoZ. YinJ. ZhangJ. WardR.E. MartinR.J. LefevreM. CefaluW.T. YeJ. Butyrate improves insulin sensitivity and increases energy expenditure in mice.Diabetes20095871509151710.2337/db08‑163719366864
    [Google Scholar]
  91. De VadderF. Kovatcheva-DatcharyP. GoncalvesD. VineraJ. ZitounC. DuchamptA. BäckhedF. MithieuxG. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits.Cell20141561-2849610.1016/j.cell.2013.12.01624412651
    [Google Scholar]
  92. DinanT.G. CryanJ.F. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration.J. Physiol.2017595248950310.1113/JP27310627641441
    [Google Scholar]
  93. WestfallS. LomisN. KahouliI. DiaS.Y. SinghS.P. PrakashS. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis.Cell. Mol. Life Sci.201774203769378710.1007/s00018‑017‑2550‑928643167
    [Google Scholar]
  94. GibsonG.R. HutkinsR. SandersM.E. PrescottS.L. ReimerR.A. SalminenS.J. ScottK. StantonC. SwansonK.S. CaniP.D. VerbekeK. ReidG. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat. Rev. Gastroenterol. Hepatol.201714849150210.1038/nrgastro.2017.7528611480
    [Google Scholar]
  95. AgusA. PlanchaisJ. SokolH. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease.Cell Host Microbe201823671672410.1016/j.chom.2018.05.00329902437
    [Google Scholar]
  96. BlaserM.J. Antibiotic use and its consequences for the normal microbiome.Science2016352628554454510.1126/science.aad935827126037
    [Google Scholar]
  97. DuncanS.H. LouisP. FlintH.J. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product.Appl. Environ. Microbiol.200470105810581710.1128/AEM.70.10.5810‑5817.200415466518
    [Google Scholar]
  98. HiippalaK. KainulainenV. SuutarinenM. HeiniT. BowersJ.R. Jasso-SellesD. LemmerD. ValentineM. BarnesR. EngelthalerD.M. SatokariR. Isolation of Anti-Inflammatory and Epithelium Reinforcing Bacteroides and Parabacteroides Spp. from A Healthy Fecal Donor.Nutrients202012493510.3390/nu1204093532230951
    [Google Scholar]
  99. GuoP. ZhangK. MaX. HeP. Clostridium species as probiotics: potentials and challenges.J. Anim. Sci. Biotechnol.20201112410.1186/s40104‑019‑0402‑132099648
    [Google Scholar]
  100. ColliouN. GeY. SahayB. GongM. ZadehM. OwenJ.L. NeuJ. FarmerieW.G. AlonzoF.III LiuK. JonesD.P. LiS. MohamadzadehM. Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation.J. Clin. Invest.2017127113970398610.1172/JCI9537628945202
    [Google Scholar]
  101. Monteagudo-MeraA. RastallR.A. GibsonG.R. CharalampopoulosD. ChatzifragkouA. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health.Appl. Microbiol. Biotechnol.2019103166463647210.1007/s00253‑019‑09978‑731267231
    [Google Scholar]
  102. MadhuA.N. AmruthaN. PrapullaS.G. Characterization and Antioxidant Property of Probiotic and Synbiotic Yogurts.Probiotics Antimicrob. Proteins201242909710.1007/s12602‑012‑9099‑626781850
    [Google Scholar]
  103. KrumbeckJ.A. WalterJ. HutkinsR.W. Synbiotics for Improved Human Health: Recent Developments, Challenges, and Opportunities.Annu. Rev. Food Sci. Technol.20189145147910.1146/annurev‑food‑030117‑01275729350558
    [Google Scholar]
  104. WanM.L.Y. ForsytheS.J. El-NezamiH. Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges.Crit. Rev. Food Sci. Nutr.201959203320333310.1080/10408398.2018.149088529993263
    [Google Scholar]
  105. GibsonG.R. McCartneyA.L. RastallR.A. Prebiotics and resistance to gastrointestinal infections.Br. J. Nutr.200593S1Suppl. 1S31S3410.1079/BJN2004134315877892
    [Google Scholar]
  106. LichtT.R. EbersbachT. FrøkiaerH. Prebiotics for prevention of gut infections.Trend. Food Sci. Technol.2012232708210.1016/j.tifs.2011.08.011
    [Google Scholar]
  107. BronP.A. KleerebezemM. BrummerR.J. CaniP.D. MercenierA. MacDonaldT.T. Garcia-RódenasC.L. WellsJ.M. Can probiotics modulate human disease by impacting intestinal barrier function?Br. J. Nutr.201711719310710.1017/S000711451600403728102115
    [Google Scholar]
  108. LiangJ. LiH. ChenJ. HeL. DuX. ZhouL. XiongQ. LaiX. YangY. HuangS. HouS. Dendrobium officinale polysaccharides alleviate colon tumorigenesis via restoring intestinal barrier function and enhancing anti-tumor immune response.Pharmacol. Res.201914810441710.1016/j.phrs.2019.10441731473343
    [Google Scholar]
  109. CaniP.D. de VosW.M. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front. Microbiol.20178176510.3389/fmicb.2017.0176529018410
    [Google Scholar]
  110. KangC. BanM. ChoiE.J. MoonH.G. JeonJ.S. KimD.K. ParkS.K. JeonS.G. RohT.Y. MyungS.J. GhoY.S. KimJ.G. KimY.K. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis.PLoS One2013810e7652010.1371/journal.pone.007652024204633
    [Google Scholar]
  111. DerrienM. BelzerC. de VosW.M. Akkermansia muciniphila and its role in regulating host functions.Microb. Pathog.201710617118110.1016/j.micpath.2016.02.00526875998
    [Google Scholar]
  112. NegiS. DasD.K. PahariS. NadeemS. AgrewalaJ.N. Potential Role of Gut Microbiota in Induction and Regulation of Innate Immune Memory.Front. Immunol.201910244110.3389/fimmu.2019.0244131749793
    [Google Scholar]
  113. DerrienM. van Hylckama VliegJ.E.T. Fate, activity, and impact of ingested bacteria within the human gut microbiota.Trends Microbiol.201523635436610.1016/j.tim.2015.03.00225840765
    [Google Scholar]
  114. ZhangD. LiS. WangN. TanH.Y. ZhangZ. FengY. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases.Front. Microbiol.20201130110.3389/fmicb.2020.0030132158441
    [Google Scholar]
  115. MehtaP. McAuleyD.F. BrownM. SanchezE. TattersallR.S. MansonJ.J. HLH Across Speciality Collaboration, UK COVID-19: consider cytokine storm syndromes and immunosuppression.Lancet2020395102291033103410.1016/S0140‑6736(20)30628‑032192578
    [Google Scholar]
  116. CheungK.S. HungI.F.N. ChanP.P.Y. LungK.C. TsoE. LiuR. NgY.Y. ChuM.Y. ChungT.W.H. TamA.R. YipC.C.Y. LeungK.H. FungA.Y.F. ZhangR.R. LinY. ChengH.M. ZhangA.J.X. ToK.K.W. ChanK.H. YuenK.Y. LeungW.K. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis.Gastroenterology20201591819510.1053/j.gastro.2020.03.06532251668
    [Google Scholar]
  117. ZhangH. KangZ. GongH. XuD. WangJ. LiZ. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes.bioRxiv 927806202010.1101/2020.01.30.927806
    [Google Scholar]
  118. CamargoS.M.R. Vuille-Dit-BilleR.N. MeierC.F. VerreyF. ACE2 and gut amino acid transport.Clinic Sci2020134212823283310.1042/CS20200477
    [Google Scholar]
  119. VerdecchiaP. CavalliniC. SpanevelloA. AngeliF. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection.Eur. J. Intern. Med.202076142010.1016/j.ejim.2020.04.03732336612
    [Google Scholar]
  120. HeY. WangJ. LiF. ShiY. Main Clinical Features of COVID-19 and Potential Prognostic and Therapeutic Value of the Microbiota in SARS-CoV-2 Infections.Front. Microbiol.202011130210.3389/fmicb.2020.0130232582134
    [Google Scholar]
  121. VillapolS. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome.Transl. Res.2020226576910.1016/j.trsl.2020.08.00432827705
    [Google Scholar]
  122. ElzeM.C. GregsonJ. BaberU. WilliamsonE. SartoriS. MehranR. NicholsM. StoneG.W. PocockS.J. Comparison of Propensity Score Methods and Covariate Adjustment.J. Am. Coll. Cardiol.201769334535710.1016/j.jacc.2016.10.06028104076
    [Google Scholar]
  123. BurchillE. LymberopoulosE. MenozziE. BudhdeoS. McIlroyJ.R. MacnaughtanJ. SharmaN. The Unique Impact of COVID-19 on Human Gut Microbiome Research.Front. Med. (Lausanne)2021865246410.3389/fmed.2021.65246433796545
    [Google Scholar]
  124. DeoP. DeshmukhR. Oral microbiome: Unveiling the fundamentals.J. Oral Maxillofac. Pathol.201923112212810.4103/jomfp.JOMFP_304_1831110428
    [Google Scholar]
  125. ThangaleelaS. SivamaruthiB.S. KesikaP. BharathiM. ChaiyasutC. Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging—A Review.Microorganisms2022107140510.3390/microorganisms1007140535889124
    [Google Scholar]
  126. BoxbergerM. CenizoV. CassirN. La ScolaB. Challenges in exploring and manipulating the human skin microbiome.Microbiome20219112510.1186/s40168‑021‑01062‑534053468
    [Google Scholar]
  127. HouK. WuZ.X. ChenX.Y. WangJ.Q. ZhangD. XiaoC. ZhuD. KoyaJ.B. WeiL. LiJ. ChenZ.S. Microbiota in health and diseases.Signal Transduct. Target. Ther.20227113510.1038/s41392‑022‑00974‑435461318
    [Google Scholar]
  128. Rowan-NashA.D. KorryB.J. MylonakisE. BelenkyP. Cross-Domain and Viral Interactions in the Microbiome. Microbiology and molecular biology reviews. Microbiol. Mol. Biol. Rev.2019831e00044-1810.1128/MMBR.00044‑1830626617
    [Google Scholar]
  129. AfzaalM. SaeedF. ShahY.A. HussainM. RabailR. SocolC.T. HassounA. PateiroM. LorenzoJ.M. RusuA.V. AadilR.M. Human gut microbiota in health and disease: Unveiling the relationship.Front. Microbiol.20221399900110.3389/fmicb.2022.99900136225386
    [Google Scholar]
  130. CunninghamM. Azcarate-PerilM.A. BarnardA. BenoitV. GrimaldiR. GuyonnetD. HolscherH.D. HunterK. ManurungS. ObisD. PetrovaM.I. SteinertR.E. SwansonK.S. van SinderenD. VulevicJ. GibsonG.R. Shaping the Future of Probiotics and Prebiotics.Trends Microbiol.202129866768510.1016/j.tim.2021.01.00333551269
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010314433240823113111
Loading
/content/journals/cpb/10.2174/0113892010314433240823113111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test