Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Pharmaceutical research is increasingly focusing on transdermal drug delivery due to its potential for improved compliance and bioavailability. However, it is challenging due to the tight intracellular junctions present in the skin. Researchers have developed noninvasive methods, like transfersomes, to overcome these challenges. Transfersomes are ultra-deformable vesicles utilized for improved transdermal applications. They are made up of a phospholipid-rich lipid bilayer, an edge activator, and an ethanol/aqueous core. After topical treatment, transfersomes can penetrate deeper skin regions, delivering larger concentrations of active compounds. A transfersomal patch is applied to the skin and left for an extended period of time to allow a large dose of medication to permeate into the bloodstream. The transfersomal patch offers an advantage over the transfersomal gel because it allows the transfersomes to be applied under occlusive conditions, resulting in greater permeability, a lower amount of active medication, and a steady supply rather than a massive dose. This review represents the preparation and evaluation of transfersomal patches, recent research approaches, and future aspects of transfersomal patches. This study suggests that drug-loaded transfersomal patches could be a unique option to avoid invasive therapy.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010315069240805074205
2024-08-23
2026-02-01
Loading full text...

Full text loading...

References

  1. KhamkatP. GhoshA. MukherjeeS. Transfersomes: An innovative vesicular carrier for boosted transdermal delivery system.Res J. Pharm. Technol.202215627932800
    [Google Scholar]
  2. SinghV. RoyM. GargN. KumarA. AroraS. MalikD.S. An insight into the dermatological applications of neem: A review on traditional and modern aspect.Recent Adv Anti-Infect Drug Disc20211629412110.2174/277243441666621060410525134961431
    [Google Scholar]
  3. OpathaS.A.T TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.sPharmaceutics202012123
    [Google Scholar]
  4. SoussanE. CasselS. BlanzatM. Rico-LattesI. Drug delivery by soft matter: Matrix and vesicular carriers.Angew. Chem. Int. Ed.200948227428810.1002/anie.20080245319072808
    [Google Scholar]
  5. GujjarM. BangaA. Iontophoretic and microneedle mediated transdermal delivery of glycopyrrolate.Pharmaceutics20146466367110.3390/pharmaceutics604066325533309
    [Google Scholar]
  6. RichardC. CasselS. BlanzatM. Vesicular systems for dermal and transdermal drug delivery.RSC Advances202111144245110.1039/D0RA09561C35423006
    [Google Scholar]
  7. ChoudhariV.N. Digital Exposure: Boon or Bane.Indian J Nat Sci202314806178361787
    [Google Scholar]
  8. CevcG. BlumeG. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes.Biochim. Biophys. Acta Biomembr.20011514219120510.1016/S0005‑2736(01)00369‑811557020
    [Google Scholar]
  9. SahuA.R. BotharaS.B. Formulation and evaluation of phytosome drug delivery system of boswellia serrata extract.Int. J. Res. Med.201549499
    [Google Scholar]
  10. MehtaM. DurejaH. GargM. Development and optimization of boswellic acid-loaded proniosomal gel.Drug Deliv.20162383072308110.3109/10717544.2016.114974426953869
    [Google Scholar]
  11. BharadiaP. ModiC.D. BharadiaP.D. Transfersomes: New dominants for transdermal drug delivery.Am. J. Pharm. Tech. Res.201227191
    [Google Scholar]
  12. SharmaV. YusufM. PathakK. Nanovesicles for transdermal delivery of felodipine: Development, characterization, and pharmacokinetics.Int. J. Pharm. Investig.20144311913010.4103/2230‑973X.13834225126525
    [Google Scholar]
  13. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  14. KhanM.S. Jaswanth GowdaB.H. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910.1016/j.drudis.2023.10381937940034
    [Google Scholar]
  15. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2024347230707410.1002/adfm.202307074
    [Google Scholar]
  16. BanazadehM. BehnamB. GanjooeiN.A. GowdaB.H.J. KesharwaniP. SahebkarA. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy.J. Drug Deliv. Sci. Technol.20238910504010.1016/j.jddst.2023.105040
    [Google Scholar]
  17. MohantoS. NarayanaS. MeraiK.P. KumarJ.A. BhuniaA. HaniU. Al FateaseA. GowdaB.H.J. NagS. AhmedM.G. PaulK. VoraL.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review.Int. J. Biol. Macromol.2023253Pt 512714310.1016/j.ijbiomac.2023.12714337793512
    [Google Scholar]
  18. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. Singh ThakurR.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689410.1016/j.envres.2023.11689437586450
    [Google Scholar]
  19. Sameer KhanM. Jaswanth GowdaB.H. HasanN. GuptaG. SinghT. MdS. KesharwaniP. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives.Eur. Polym. J.202420611280010.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  20. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.10395938228257
    [Google Scholar]
  21. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  22. KaratiD. MukherjeeS. SinghS. PrajapatiB.G. BasuB. Biopolymer-based nano-formulations for mitigation of ocular infections: A review.Polym. Bull.20248197631765810.1007/s00289‑023‑05095‑8
    [Google Scholar]
  23. KaratiD. MukherjeeS. PrajapatiB. BoseA. PaulS. ElossailyG.M. RoyS. A review on lipid-polymer hybrid nanocarriers in cancer.J. Drug Deliv. Sci. Technol.20249710582710.1016/j.jddst.2024.105827
    [Google Scholar]
  24. DubeyS.K. ParabS. AchallaV.P.K. NarwariaA. SharmaS. Jaswanth GowdaB.H. KesharwaniP. Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts.J. Biomater. Sci. Polym. Ed.202233121531155410.1080/09205063.2022.206540835404217
    [Google Scholar]
  25. FouadO.A. KhderA.E.R.S. DaiQ. El-ShallM.S. Structural and catalytic properties of ZnO and Al2O3 nanostructures loaded with metal nanoparticles.J. Nanopart. Res.201113127075708310.1007/s11051‑011‑0620‑8
    [Google Scholar]
  26. GuptaA. AggarwalG. SinglaS. AroraR. Transfersomes: A novel vesicular carrier for enhanced transdermal delivery of sertraline: Development, characterization, and performance evaluation.Sci. Pharm.20128041061108010.3797/scipharm.1208‑0223264950
    [Google Scholar]
  27. SharmaA. GuptaN.K. DixitV.K. Complexation with phosphatidyl choline as a strategy for absorption enhancement of boswellic acid.Drug Deliv.201017858759510.3109/10717544.2010.50146120624027
    [Google Scholar]
  28. JadhavS.M. MoreyP. KarpeM. KadamV. Novel vesicular system: An overview.J. Appl. Pharm. Sci.201221193202
    [Google Scholar]
  29. PiumitaliB. NeerajU. JyotivardhanJ. Transfersomes-A nanoscience in transdermal drug delivery and its clinical advancements.Int. J. Nanosci.2020194195003310.1142/S0219581X19500339
    [Google Scholar]
  30. PanditA.P. OmaseS.B. MuteV.M. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis.Drug Deliv. Transl. Res.20201051495150610.1007/s13346‑020‑00708‑531942700
    [Google Scholar]
  31. MillerD.A. KeenJ.M. BroughC. EllenbergerD.J. CisnerosM. WilliamsR.O.III McGinityJ.W. Bioavailability enhancement of a BCS IV compound via an amorphous combination product containing ritonavir.J. Pharm. Pharmacol.201668567869110.1111/jphp.1247826454138
    [Google Scholar]
  32. KhatoonK. RizwanullahM. AminS. MirS.R. AkhterS. Cilnidipine loaded transfersomes for transdermal application: Formulation optimization, in-vitro and in-vivo study.J. Drug Deliv. Sci. Technol.20195410130310.1016/j.jddst.2019.101303
    [Google Scholar]
  33. VariaU. JoshiD. JadejaM. KatariyaH. DetholiaK. SoniV. Development and evaluation of ultradeformable vesicles loaded transdermal film of boswellic acid.Future J Pharmaceut Sci2022813910.1186/s43094‑022‑00428‑2
    [Google Scholar]
  34. VariaU. KhatriR. KatariyaH. DetholiaK. Fabrication, optimization and ex-vivo characterization of Febuxostat loaded Nanostructured Lipid Carrier by 3 square full factorial design.Int. J. Adv. Sci. Res.202213269280
    [Google Scholar]
  35. AL ShuwailiA.H. RasoolB.K.A. AbdulrasoolA.A. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline.Eur. J. Pharm. Biopharm.201610210111410.1016/j.ejpb.2016.02.01326925505
    [Google Scholar]
  36. ParkashV. MaanS. ChaudharyV. JogpalV. MittalG. JainV. Implementation of design of experiments in development and optimization of transfersomal carrier system of tacrolimus for the dermal management of psoriasis in albino wistar rat.J. Bioequivalence Bioavailab.20181059910610.4172/0975‑0851.1000385
    [Google Scholar]
  37. SinghS. VermaD. MirzaM.A. DasA.K. dudejaM. AnwerM.K. SultanaY. TalegaonkarS. IqbalZ. Development and optimization of ketoconazole loaded nano-transfersomal gel for vaginal delivery using Box-Behnken design: In vitro, ex vivocharacterization and antimicrobial evaluation.J. Drug Deliv. Sci. Technol.2017399510310.1016/j.jddst.2017.03.007
    [Google Scholar]
  38. ChaudharyH. KohliK. KumarV. Nano-transfersomes as a novel carrier for transdermal delivery.Int. J. Pharm.2013454136738010.1016/j.ijpharm.2013.07.03123871739
    [Google Scholar]
  39. KumarG.P. RajeshwarraoP. Nonionic surfactant vesicular systems for effective drug delivery—an overview.Acta Pharm. Sin. B20111420821910.1016/j.apsb.2011.09.002
    [Google Scholar]
  40. NagadeviB. KumarK.S. VenkannaP. PrabhakarD. Formulation and characterization of tizanidine hydrochloride loaded ethosomal patch.Int. J. Pharm. Pharm. Sci.20146199205
    [Google Scholar]
  41. BalataG.F. FaisalM.M. ElghamryH.A. SabryS.A. Preparation and characterization of ivabradine hcl transfersomes for enhanced transdermal delivery.J. Drug Deliv. Sci. Technol.20206010192110.1016/j.jddst.2020.101921
    [Google Scholar]
  42. AkhtarN. ArkvanshiS. BhattacharyaS.S. VermaA. PathakK. Preparation and evaluation of a buflomedil hydrochloride niosomal patch for transdermal delivery.J. Liposome Res.201525319120110.3109/08982104.2014.97405825357198
    [Google Scholar]
  43. ShelkeP.S. Formulation and in–vitro evaluation of transdermal patches of anti-arthritic ayurvedic medicinal plants.Biosci. Biotechnol. Res. Commun.202013280380810.21786/bbrc/13.2/63
    [Google Scholar]
  44. MajukarS. DandagiP.M. KurangiB.K. Design and characterization of transfersomal patch of aceclofenac as a carrier for transdermal delivery.Int. J. Pharm. Biol. Sci.20199111381147
    [Google Scholar]
  45. PawarA.Y. Transfersome: A novel technique which improves transdermal permeability.Asian J. Pharm.20161041726
    [Google Scholar]
  46. ReddyY.D. SravaniA.B. RavisankarV. PrakashP.R. ReddyY.S. BhaskarN.V. Transferosomes a novel vesicular carrier for transdermal drug delivery system.J. Innov. Pharm. Biol. Sci.201522193208
    [Google Scholar]
  47. ShuklaT. UpmanyuN. MishraS. ShilpiS. Development and characterization of clopidogrel-loaded ethosomal transdermal patch for antiplatelet effect.Asian J. Pharm.201610417
    [Google Scholar]
  48. AdhyapakA. DesaiB. Formulation and evaluation of liposomal transdermal patch for targeted drug delivery of tamoxifen citrate for breast cancer.Indian J. Health. Sci.2016940
    [Google Scholar]
  49. GhoshA. KhamkatP. Herbosome: A new era of lipid based drug delivery system.J. Sci. Eng. Appl. Sci.202173126140
    [Google Scholar]
  50. SharmaM. SharmaR. JainD.K. Nanotechnology-based approaches for enhancing oral bioavailability of poorly water-soluble antihypertensive drugs.Scientifica (Cairo)2016201611110.1155/2016/852567927239378
    [Google Scholar]
  51. BijuS.S. TalegaonkarS. MishraP.R. KharR.K. Vesicular systems: An overview.Indian J. Pharm. Sci.2006682140150
    [Google Scholar]
  52. BhosaleS.S. AvachatA.M. Design and development of ethosomal transdermal drug delivery system of valsartan with preclinical assessment in Wistar albino rats.J. Liposome Res.201323211912510.3109/08982104.2012.75345723324030
    [Google Scholar]
  53. ShreedeviH.M. NesalinJ.A. ManiT.T. Development and evaluation of stavudine niosome by ether injection method.Int. J. Pharm. Sci. Res.2016713846
    [Google Scholar]
  54. JainS. JainV. MahajanS.C. Lipid based vesicular drug delivery systems.Adv.In. Pharm.201446368
    [Google Scholar]
  55. AsharaK.C. PaunJ.S. SoniwalaM.M. ChavdaJ.R. NathawaniS.V. MoriN.M. MendaparaV.P. Vesicular drug delivery system: A novel approach.Mintage. J. Pharm. Med. Sci.2014314
    [Google Scholar]
  56. Fernández-GarcíaR. LalatsaA. StattsL. Bolás-FernándezF. BallesterosM.P. SerranoD.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale.Int. J. Pharm.202057311881710.1016/j.ijpharm.2019.11881731678520
    [Google Scholar]
  57. KumarM. KumarD. MahmoodS. SinghV. ChopraS. HillesA.R. BhatiaA. Nanotechnology-driven wound healing potential of asiaticoside: A comprehensive review.RSC Pharmaceut20241193610.1039/D3PM00024A
    [Google Scholar]
  58. RajpurA. ReddyS.M. SarangapaniM. Formulation and in vitro evaluation of transferosomal patches for enhanced drug delivery of lisinopril dihydrate.Int. J. Sci. Res.2020643105109
    [Google Scholar]
  59. CevcG. GebauerD. StieberJ. SchätzleinA. BlumeG. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin.Biochim. Biophys. Acta Biomembr.19981368220121510.1016/S0005‑2736(97)00177‑69459598
    [Google Scholar]
  60. TrottaM. PeiraE. DebernardiF. GallarateM. Elastic liposomes for skin delivery of dipotassium glycyrrhizinate.Int. J. Pharm.2002241231932710.1016/S0378‑5173(02)00266‑112100859
    [Google Scholar]
  61. GregoriadisG. FlorenceA.T. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential.Drugs1993451152810.2165/00003495‑199345010‑000037680982
    [Google Scholar]
  62. CevcG. BlumeG. Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, Transfersomes®.Biochim. Biophys. Acta Biomembr.20031614215616410.1016/S0005‑2736(03)00172‑X12896808
    [Google Scholar]
  63. CevcG. BlumeG. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage.Biochim. Biophys. Acta Biomembr.200416631-2617310.1016/j.bbamem.2004.01.00615157608
    [Google Scholar]
  64. AvadhaniK.S. ManikkathJ. TiwariM. ChandrasekharM. GodavarthiA. VidyaS.M. HariharapuraR.C. KalthurG. UdupaN. MutalikS. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage.Drug Deliv.2017241617410.1080/10717544.2016.122871828155509
    [Google Scholar]
  65. JiangT. WangT. LiT. MaY. ShenS. HeB. MoR. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma.ACS Nano201812109693970110.1021/acsnano.8b0380030183253
    [Google Scholar]
  66. WuP.S. LiY.S. KuoY.C. TsaiS.J.J. LinC.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol.Molecules201924360010.3390/molecules2403060030743989
    [Google Scholar]
  67. RasheedM.S. AnsariS.F. ShahzadiI. Formulation, characterization of glucosamine loaded transfersomes and in vivo evaluation using papain induced arthritis model.Sci. Rep.20221211981310.1038/s41598‑022‑23103‑136396950
    [Google Scholar]
  68. ShamimM.A. ShahidA. SardarP.K. YeungS. ReyesJ. KimJ. ParsaC. OrlandoR. WangJ. KellyK.M. MeyskensF.L.Jr AndresenB.T. HuangY. Transfersome encapsulated with the R-carvedilol enantiomer for skin cancer chemoprevention.Nanomaterials (Basel)202313592910.3390/nano1305092936903807
    [Google Scholar]
  69. JiangC. MaR. JiangX. FangR. YeJ. A transfersomes hydrogel patch for cutaneous delivery of propranolol hydrochloride: Formulation, in vitro, ex vivo and in vivo studies.J. Liposome Res.202333325826710.1080/08982104.2022.216253936594110
    [Google Scholar]
  70. Dumitriu BuziaO. PăduraruA.M. StefanC.S. DinuM. CocoșD.I. NwabudikeL.C. TatuA.L. Strategies for improving transdermal administration: New approaches to controlled drug release.Pharmaceutics2023154118310.3390/pharmaceutics1504118337111667
    [Google Scholar]
  71. MajukarS. DandagiP.M. KurangiB.K. Design and characterization of transfersomal patch of aceclofenac as a carrier fortransdermal delivery.IJPBS20199111381147
    [Google Scholar]
  72. HaniU. Jaswanth GowdaB.H. SiddiquaA. WahabS. BegumM.Y. SathishbabuP. UsmaniS. AhmadM.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems.J. Mol. Liq.202339012303710.1016/j.molliq.2023.123037
    [Google Scholar]
  73. KhanM.S. GowdaB.H.J. NasirN. WahabS. PichikaM.R. SahebkarA. KesharwaniP. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer.Int. J. Pharm.202364312327610.1016/j.ijpharm.2023.12327637516217
    [Google Scholar]
  74. AhamedJ. Jaswanth GowdaB.H. AlmalkiW.H. GuptaN. SahebkarA. KesharwaniP. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges.Eur. Polym. J.202319311211110.1016/j.eurpolymj.2023.112111
    [Google Scholar]
  75. GowdaB.H.J. MohantoS. SinghA. BhuniaA. AbdelgawadM.A. GhoshS. AnsariM.J. PramanikS. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  76. DamiriF. GowdaB.J. AndraS. BaluS. Chitosan nanocomposites as scaffolds for bone tissue regeneration.Chitosan NanocompositesChamSpringer2023
    [Google Scholar]
  77. NarayanaS. NasrineA. Gulzar AhmedM. SultanaR. Jaswanth GowdaB.H. SuryaS. AlmuqbilM. AsdaqS.M.B. AlshehriS. Arif HussainS. Potential benefits of using chitosan and silk fibroin topical hydrogel for managing wound healing and coagulation.Saudi Pharm. J.202331346247110.1016/j.jsps.2023.01.01337026047
    [Google Scholar]
  78. HaniU. OsmaniR.A.M. YasminS. GowdaB.H.J. AtherH. AnsariM.Y. SiddiquaA. GhazwaniM. FateaseA.A. AlamriA.H. RahamathullaM. BegumM.Y. WahabS. Novel drug delivery systems as an emerging platform for stomach cancer therapy.Pharmaceutics2022148157610.3390/pharmaceutics1408157636015202
    [Google Scholar]
  79. GowdaB.H.J. AhmedM.G. ChinnamS. PaulK. AshrafuzzamanM. ChavaliM. GahtoriR. PanditS. KesariK.K. GuptaP.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery.J. Drug Deliv. Sci. Technol.20227110330510.1016/j.jddst.2022.103305
    [Google Scholar]
  80. NarayanaS. AhmedM.G. GowdaB.J. ShettyP.K. NasrineA. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review.Future J Pharmaceut Sci20217121
    [Google Scholar]
  81. SanjanaA. AhmedM.G. Gowda BHJ. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo.Mater. Today Proc.20225019720510.1016/j.matpr.2021.04.120
    [Google Scholar]
  82. DahriM. BeheshtizadehN. SeyedpourN. Nakhostin-AnsariA. AghajaniF. SeyedpourS. MasjediM. FarjadianF. MalekiR. AdibkiaK. Biomaterial-based delivery platforms for transdermal immunotherapy.Biomed. Pharmacother.202316511504810.1016/j.biopha.2023.11504837385212
    [Google Scholar]
  83. SimrahA. HafeezA. UsmaniS.A. IzharM.P. Transfersome, an ultra-deformable lipid-based drug nanocarrier: An updated review with therapeutic applications.Naunyn Schmiedebergs Arch. Pharmacol.2024397263967310.1007/s00210‑023‑02670‑837597094
    [Google Scholar]
  84. LeongM.Y. KongY.L. BurgessK. WongW.F. SethiG. LooiC.Y. Recent development of nanomaterials for transdermal drug delivery.Biomedicines2023114112410.3390/biomedicines1104112437189742
    [Google Scholar]
  85. MaxwellA. PriyaS. Nanosized ethosomes-a promising vesicular drug carrier for transdermal drug delivery.Res J. Pharm. Technol.2019122876880
    [Google Scholar]
  86. CilurzoF. MusazziU.M. FranzéS. FedeleG. MinghettiP. Design of in vitro skin permeation studies according to the EMA guideline on quality of transdermal patches.Eur. J. Pharm. Sci.2018125869210.1016/j.ejps.2018.09.01430236552
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010315069240805074205
Loading
/content/journals/cpb/10.2174/0113892010315069240805074205
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bloodstream; lipid bilayer; noninvasive; permeability; Skin; transfersomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test