Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

Nicotinamide Mononucleotide (NMN) has gained attention as a precursor to Nicotinamide Adenine Dinucleotide (NAD+) in recent years, commonly utilized in anti-aging therapies. The anti-aging effects of NMN on muscle and liver functions in middle-aged and elderly people are still unclear.

Objective

Based on available randomized controlled trials, we conducted a meta-analysis to evaluate the impact of NMN on muscle and liver functions in middle-aged and elderly individuals.

Methods

We conducted searches on three electronic databases (PubMed, Embase, Web of Science) for randomized controlled trials involving NMN interventions in middle-aged and elderly populations. Through the Cochrane Handbook, we assessed the specific methodological quality. All statistical analyses were obtained by Stata15, and statistical significance was set as <0.05.

Results

There were 412 participants from 9 studies in this meta-analysis. Based on changes in gait speed (SMD: 0.34 m/s, 95%CI [0.03, 0.66] = 0.033), NMN had significant effects on muscle mass. Moreover, NMN had a better effect on ALT (SMD: -0.29 IU/L, 95%CI [-0.55, -0.03] = 0.028). Subgroup analysis indicated that administering a small dose of NMN exerted the most prominent impact on Homeostasis Model Assessment-Insulin Resistance (HOMA-IR).

Conclusion

NMN has positive efficacy in enhancing muscle function, reducing insulin resistance and lowering aminotransferase levels in middle-aged and elderly individuals. NMN is an encouraging and considerable drug for anti-aging treatment.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010306242240808094303
2025-08-23
2025-12-15
Loading full text...

Full text loading...

References

  1. FangE.F. XieC. SchenkelJ.A. WuC. LongQ. CuiH. AmanY. FrankJ. LiaoJ. ZouH. WangN.Y. WuJ. LiuX. LiT. FangY. NiuZ. YangG. HongJ. WangQ. ChenG. LiJ. ChenH.Z. KangL. SuH. GilmourB.C. ZhuX. JiangH. HeN. TaoJ. LengS.X. TongT. WooJ. A research agenda for ageing in china in the 21st century (2nd edition): Focusing on basic and translational research, long-term care, policy and social networks.Ageing Res Rev.20206410117410.1016/j.arr.2020.101174
    [Google Scholar]
  2. WielandG.D. Health and ageing in international context.Indian J. Med. Res.2012135445145322664489
    [Google Scholar]
  3. FlattT. A new definition of aging?Front. Genet.2012314810.3389/fgene.2012.0014822936945
    [Google Scholar]
  4. ChildsB.G. DurikM. BakerD.J. van DeursenJ.M. Cellular senescence in aging and age-related disease: from mechanisms to therapy.Nat. Med.201521121424143510.1038/nm.400026646499
    [Google Scholar]
  5. JunaidM. LeeA. KimJ. ParkT.J. LimS.B. Transcriptional heterogeneity of cellular senescence in cancer.Mol. Cells202245961061910.14348/molcells.2022.003635983702
    [Google Scholar]
  6. CooperC. DereW. EvansW. KanisJ. A. RizzoliR. SayerA. A. SieberC. C. KaufmanJ. M. Abellan van KanG. BoonenS. AdachiJ. MitlakB. TsouderosY. RollandY. ReginsterJ. Y. Frailty and sarcopenia: Definitions and outcome parameters.Osteoporosis int.20122371839184810.1007/s00198‑012‑1913‑1
    [Google Scholar]
  7. HongS. ChoiK.M. Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences.Int. J. Mol. Sci.202021249410.3390/ijms2102049431941015
    [Google Scholar]
  8. TajiriK. ShimizuY. Liver physiology and liver diseases in the elderly.World J. Gastroenterol.201319468459846710.3748/wjg.v19.i46.845924379563
    [Google Scholar]
  9. ImaiS. GuarenteL. NAD+ and sirtuins in aging and disease.Trends Cell Biol.201424846447110.1016/j.tcb.2014.04.00224786309
    [Google Scholar]
  10. NadeeshaniH. LiJ. YingT. ZhangB. LuJ. Nicotinamide mononucleotide (NMN) as an anti-aging health product – Promises and safety concerns.J. Adv. Res.20223726727810.1016/j.jare.2021.08.00335499054
    [Google Scholar]
  11. YoshinoJ. BaurJ.A. ImaiS. Nad(+) intermediates: The biology and therapeutic potential of nmn and nr.Cell Metab.201827351352810.1016/j.cmet.2017.11.00229249689
    [Google Scholar]
  12. BonkowskiM.S. SinclairD.A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds.Nat. Rev. Mol. Cell Biol.2016171167969010.1038/nrm.2016.9327552971
    [Google Scholar]
  13. ChangH.C. GuarenteL. SIRT1 and other sirtuins in metabolism.Trends Endocrinol. Metab.201425313814510.1016/j.tem.2013.12.00124388149
    [Google Scholar]
  14. CovarrubiasA.J. PerroneR. GrozioA. VerdinE. NAD+ metabolism and its roles in cellular processes during ageing.Nat. Rev. Mol. Cell Biol.202122211914110.1038/s41580‑020‑00313‑x33353981
    [Google Scholar]
  15. SongJ. LiJ. YangF. NingG. ZhenL. WuL. ZhengY. ZhangQ. LinD. XieC. PengL. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow.Cell Death Dis.201910533610.1038/s41419‑019‑1569‑231000692
    [Google Scholar]
  16. PicciottoN.E. GanoL.B. JohnsonL.C. MartensC.R. SindlerA.L. MillsK.F. ImaiS. SealsD.R. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice.Aging Cell201615352253010.1111/acel.1246126970090
    [Google Scholar]
  17. FukamizuY. UchidaY. ShigekawaA. SatoT. KosakaH. SakuraiT. Safety evaluation of β-nicotinamide mononucleotide oral administration in healthy adult men and women.Sci. Rep.20221211444210.1038/s41598‑022‑18272‑y36002548
    [Google Scholar]
  18. MillsK.F. YoshidaS. SteinL.R. GrozioA. KubotaS. SasakiY. RedpathP. MigaudM.E. ApteR.S. UchidaK. YoshinoJ. ImaiS. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice.Cell Metab.201624679580610.1016/j.cmet.2016.09.01328068222
    [Google Scholar]
  19. TarantiniS. Valcarcel-AresM.N. TothP. YabluchanskiyA. KissT. BallabhP. FarkasE. BaurJ. SinclairD. CsiszarA. UngvariZ. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice.FASEB J.202034S1110.1096/fasebj.2020.34.s1.05763
    [Google Scholar]
  20. RuM. WangW. ZhaiZ. WangR. LiY. LiangJ. KothariD. NiuK. WuX. Nicotinamide mononucleotide supplementation protects the intestinal function in aging mice and d -galactose induced senescent cells.Food Funct.202213147507751910.1039/D2FO00525E35678708
    [Google Scholar]
  21. MoherD. LiberatiA. TetzlaffJ. AltmanD.G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.BMJ2009339jul21 1b253510.1136/bmj.b253519622551
    [Google Scholar]
  22. CumpstonM. LiT. PageM.J. ChandlerJ. WelchV.A. HigginsJ.P.T. ThomasJ. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions.Cochrane Libr.20191010ED00014210.1002/14651858.ED00014231643080
    [Google Scholar]
  23. YiL. MaierA.B. TaoR. LinZ. VaidyaA. PendseS. ThasmaS. AndhalkarN. AvhadG. KumbharV. The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial.Geroscience2023451294310.1007/s11357‑022‑00705‑136482258
    [Google Scholar]
  24. HuangH. A multicentre, randomised, double blind, parallel design, placebo controlled study to evaluate the efficacy and safety of uthever (nmn supplement), an orally administered supplementation in middle aged and older adults.Frontiers in aging2022385169810.3389/fragi.2022.851698
    [Google Scholar]
  25. IgarashiM. Nakagawa-NagahamaY. MiuraM. KashiwabaraK. YakuK. SawadaM. SekineR. FukamizuY. SatoT. SakuraiT. SatoJ. InoK. KubotaN. NakagawaT. KadowakiT. YamauchiT. Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle function in healthy older men.NPJ Aging202281510.1038/s41514‑022‑00084‑z
    [Google Scholar]
  26. KatayoshiT. UehataS. NakashimaN. NakajoT. KitajimaN. KageyamaM. Tsuji-NaitoK. Nicotinamide adenine dinucleotide metabolism and arterial stiffness after long-term nicotinamide mononucleotide supplementation: a randomized, double-blind, placebo-controlled trial.Sci. Rep.2023131278610.1038/s41598‑023‑29787‑336797393
    [Google Scholar]
  27. AkasakaH. NakagamiH. SugimotoK. YasunobeY. MinamiT. FujimotoT. YamamotoK. HaraC. ShirakiA. NishidaK. AsanoK. KanouM. YamanaK. ImaiS. RakugiH. Effects of nicotinamide mononucleotide on older patients with diabetes and impaired physical performance: A prospective, placebo‐controlled, double‐blind study.Geriatr. Gerontol. Int.2023231384310.1111/ggi.1451336443648
    [Google Scholar]
  28. KimM. SeolJ. SatoT. FukamizuY. SakuraiT. OkuraT. Effect of 12-week intake of nicotinamide mononucleotide on sleep quality, fatigue, and physical performance in older japanese adults: A randomized, double-blind placebo-controlled study.Nutrients202214475510.3390/nu1404075535215405
    [Google Scholar]
  29. YoshinoM. YoshinoJ. KayserB.D. PattiG.J. FranczykM.P. MillsK.F. SindelarM. PietkaT. PattersonB.W. ImaiS.I. KleinS. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women.Science202137265471224122910.1126/science.abe998533888596
    [Google Scholar]
  30. LiaoB. ZhaoY. WangD. ZhangX. HaoX. HuM. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study.J. Int. Soc. Sports Nutr.20211815410.1186/s12970‑021‑00442‑434238308
    [Google Scholar]
  31. HongW. MoF. ZhangZ. HuangM. WeiX. Nicotinamide mononucleotide: A promising molecule for therapy of diverse diseases by targeting nad+ metabolism.Front. Cell Dev. Biol.2020824610.3389/fcell.2020.0024632411700
    [Google Scholar]
  32. GomesA.P. PriceN.L. LingA.J.Y. MoslehiJ.J. MontgomeryM.K. RajmanL. WhiteJ.P. TeodoroJ.S. WrannC.D. HubbardB.P. MerckenE.M. PalmeiraC.M. de CaboR. RoloA.P. TurnerN. BellE.L. SinclairD.A. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging.Cell201315571624163810.1016/j.cell.2013.11.03724360282
    [Google Scholar]
  33. FletcherR.S. RatajczakJ. DoigC.L. OakeyL.A. CallinghamR. Da Silva XavierG. GartenA. ElhassanY.S. RedpathP. MigaudM.E. PhilpA. BrennerC. CantoC. LaveryG.G. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells.Mol. Metab.20176881983210.1016/j.molmet.2017.05.01128752046
    [Google Scholar]
  34. GulshanM. YakuK. OkabeK. MahmoodA. SasakiT. YamamotoM. HikosakaK. UsuiI. KitamuraT. TobeK. NakagawaT. Overexpression of Nmnat3 efficiently increases NAD and NGD levels and ameliorates age‐associated insulin resistance.Aging Cell2018174e1279810.1111/acel.1279829901258
    [Google Scholar]
  35. YoshinoJ. MillsK.F. YoonM.J. ImaiS. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice.Cell Metab.201114452853610.1016/j.cmet.2011.08.01421982712
    [Google Scholar]
  36. DoddsR.M. MurrayJ.C. GranicA. HurstC. UwimpuhweG. RichardsonS. BrayneC. MatthewsF.E. SayerA.A. Prevalence and factors associated with poor performance in the 5‐chair stand test: findings from the Cognitive Function and Ageing Study II and proposed Newcastle protocol for use in the assessment of sarcopenia.J. Cachexia Sarcopenia Muscle202112230831810.1002/jcsm.1266033463015
    [Google Scholar]
  37. LeeH. LeeS.J.V. Recent progress in regulation of aging by insulin/igf-1 signaling in caenorhabditis elegans.Mol. Cells2022451176377010.14348/molcells.2022.009736380728
    [Google Scholar]
  38. WernerH. LaronZ. Insulin-like growth factors and aging: lessons from Laron syndrome.Front. Endocrinol. (Lausanne)202314129181210.3389/fendo.2023.129181237941907
    [Google Scholar]
  39. FinkR.I. KoltermanO.G. GriffinJ. OlefskyJ.M. Mechanisms of insulin resistance in aging.J. Clin. Invest.19837161523153510.1172/JCI1109086345584
    [Google Scholar]
  40. DistefanoG. GoodpasterB.H. Effects of exercise and aging on skeletal muscle.Cold Spring Harb. Perspect. Med.201883a02978510.1101/cshperspect.a02978528432116
    [Google Scholar]
  41. ZongZ. LiuJ. WangN. YangC. WangQ. ZhangW. ChenY. LiuX. DengH. Nicotinamide mononucleotide inhibits hepatic stellate cell activation to prevent liver fibrosis via promoting PGE2 degradation.Free Radic. Biol. Med.202116257158110.1016/j.freeradbiomed.2020.11.01433220424
    [Google Scholar]
  42. LuoC. DingW. YangC. ZhangW. LiuX. DengH. Nicotinamide mononucleotide administration restores redox homeostasis via the sirt3-nrf2 axis and protects aged mice from oxidative stress-induced liver injury.J. Proteome Res.20222171759177010.1021/acs.jproteome.2c0016735699728
    [Google Scholar]
  43. PorterS.A. PedleyA. MassaroJ.M. VasanR.S. HoffmannU. FoxC.S. Aminotransferase levels are associated with cardiometabolic risk above and beyond visceral fat and insulin resistance: the Framingham Heart Study.Arterioscler. Thromb. Vasc. Biol.201333113914610.1161/ATVBAHA.112.30007523162012
    [Google Scholar]
  44. AllenS.L. QuinlanJ.I. DhaliwalA. ArmstrongM.J. ElsharkawyA.M. GreigC.A. LordJ.M. LaveryG.G. BreenL. Sarcopenia in chronic liver disease: mechanisms and countermeasures.Am. J. Physiol. Gastrointest. Liver Physiol.20213203G241G25710.1152/ajpgi.00373.202033236953
    [Google Scholar]
  45. StahlE.C. HaschakM.J. PopovicB. BrownB.N. Macrophages in the aging liver and age-related liver disease.Front. Immunol.20189279510.3389/fimmu.2018.0279530555477
    [Google Scholar]
  46. HeY. SuY. DuanC. WangS. HeW. ZhangY. AnX. HeM. Emerging role of aging in the progression of NAFLD to HCC.Ageing Res. Rev.20238410183310.1016/j.arr.2022.10183336565959
    [Google Scholar]
  47. HuntN.J. KangS.W.S. LockwoodG.P. Le CouteurD.G. CoggerV.C. Hallmarks of aging in the liver.Comput. Struct. Biotechnol. J.2019171151116110.1016/j.csbj.2019.07.02131462971
    [Google Scholar]
  48. SomaM. LalamS.K. The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions.Mol. Biol. Rep.202249109737974810.1007/s11033‑022‑07459‑135441939
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010306242240808094303
Loading
/content/journals/cpb/10.2174/0113892010306242240808094303
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test