Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Plant fibers are strong, robust, flexible, versatile, renewable, and sustainable, making them valuable for many applications. Fibers from plants are now utilized in biomedical appli-cations as reinforcements for biological composites to enhance the mechanical characteristics of composite biological materials including rigidity, tensile strength, and endurance. Reinforcement composites with hybrid components were explored in biodevices for prospective utilization in orthopedics, prosthetics, tissue fabrication, and surgical dressings. This review presents an overview of plant fibers, including their characteristics, influencing variables, and numerous applications. The text explores several methods for creating synthetic composites using common, sustainable fibers and the distinct characteristics of the resulting biological materials. The text also analyses many instances of composite hybrids and their application in the biological field. The results are summarised and suggestions for potential improvements are presented. The current research primarily examines the concept, specifications, efficiency, and potential advancements of composites with hybrid characteristics made from plant fibers.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010314833240815113622
2024-08-23
2026-02-01
Loading full text...

Full text loading...

References

  1. KiruthikaA. A review on physico-mechanical properties of bast fibre reinforced polymer composites.J. Build. Eng.20179919910.1016/j.jobe.2016.12.003
    [Google Scholar]
  2. VigneshN.J. Rajesh Jesudoss HynesN. A survey on characterization of natural Fibers. AIP. Conf. Proc.20192019214210.1063/1.51225
    [Google Scholar]
  3. DeshmukhD. KulkarniH. SrivatsD.S. BhanushaliS. MoreA.P. Recycling of acrylonitrile butadiene styrene (ABS): a review.Polym. Bull.2024202413810.1007/s00289‑024‑05269‑y
    [Google Scholar]
  4. AhmadF. ChoiH.S. ParkM.K. A review: natural Fiber composites selection in view of mechanical, lightweight, and economic properties.Macromol. Mater. Eng.2020300102410.1002/mame.201400089
    [Google Scholar]
  5. SabaN. ParidahM.T. AbdanK. IbrahimN.A. Dynamic mechanical properties of oil palm nano filler/ kenaf/epoxy hybrid nanocomposites.Constr. Build. Mater.201612413313810.1016/j.conbuwildcat.2016.07.059
    [Google Scholar]
  6. RangappaS.M. SiengchinS. ParameswaranpillaiJ. JawaidM. OzbakkalogluT. Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives.Polym. Compos.202243264569110.1002/pc.26413
    [Google Scholar]
  7. AliS. Abdul RaniA.M. BaigZ. AhmedS.W. HussainG. SubramaniamK. HastutyS. RaoT.V.V.L.N. Biocompatibility and corrosion resistance of metallic biomaterials.Corros. Rev.202038538140210.1515/corrrev‑2020‑0001
    [Google Scholar]
  8. TripathiS. MandalS.S. BauriS. MaitiP. 3D bioprinting and its innovative approach for biomedical applications.MedComm202341e19410.1002/mco2.19436582305
    [Google Scholar]
  9. SahooN.K. AnandS.C. BhardwajJ.R. SachdevaV.P. SapruB.L. Bone response to stainless steel and titanium bone plates.Med. J. Armed Forces India1994501101410.1016/S0377‑1237(17)31029‑828769152
    [Google Scholar]
  10. MohammedM. JawadA.J.M. MohammedA.M. OleiwiJ.K. AdamT. OsmanA.F. DahhamO.S. BetarB.O. GopinathS.C.B. JaafarM. Challenges and advancement in water absorption of natural fiber-reinforced polymer composites.Polym. Test.202312410808310.1016/j.polymertesting.2023.108083
    [Google Scholar]
  11. El NemrA. 2012
  12. ThapliyalD. VermaS. SenP. KumarR. ThakurA. TiwariA.K. SinghD. VerrosG.D. AryaR.K. Natural fibers composites: origin, importance, consumption pattern, and challenges.J. Composit. Sci.202371250610.3390/jcs7120506
    [Google Scholar]
  13. ElfalehI. AbbassiF. HabibiM. AhmadF. GuedriM. NasriM. GarnierC. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials.Resul. Engin.20231910127110.1016/j.rineng.2023.101271
    [Google Scholar]
  14. AlshahraniA. KulasegaramS. Effect of fibre diameter and tensile strength on the mechanical, fracture, and fibre distribution properties of eco-friendly high-strength self-compacting concrete.Constr. Build. Mater.202340313316110.1016/j.conbuildmat.2023.133161
    [Google Scholar]
  15. AlmssadA. AlmusaedA. HomodR.Z. Masonry in the context of sustainable buildings: a review of the brick role in architecture.Sustainability202214221473410.3390/su142214734
    [Google Scholar]
  16. Domínguez-RoblesJ. LarrañetaE. FongM.L. MartinN.K. IrwinN.J. MutjéP. TarrésQ. Delgado-AguilarM. Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications.Int. J. Biol. Macromol.2020145929910.1016/j.ijbiomac.2019.12.14631870868
    [Google Scholar]
  17. Introduction to Composite Materials.Ngo, T.D., Ed.; Composite and Nanocomposite Materials—From Knowledge to Industrial ApplicationsIntechOpen: London, UK2020
    [Google Scholar]
  18. GruppH. SchubertT. Review and new evidence on composite innovation indicators for evaluating national performance.Res. Policy2010391677810.1016/j.respol.2009.10.002
    [Google Scholar]
  19. EffingM. Expert insights in Europe’s booming composites market.Reinf. Plast.201862421922310.1016/j.repl.2017.06.086
    [Google Scholar]
  20. Al-EniziA.M. ZaghoM.M. ElzatahryA.A. Polymer-based electrospun nanofibers for biomedical applications.Nanomaterials20188425910.3390/nano804025929677145
    [Google Scholar]
  21. ChuaC.Y.X. LiuH.C. Di TraniN. SusnjarA. HoJ. ScorranoG. RhudyJ. SizovsA. LolliG. HernandezN. NucciM.C. CicaloR. FerrariM. GrattoniA. Carbon fiber reinforced polymers for implantable medical devices.Biomaterials202127112071910.1016/j.biomaterials.2021.12071933652266
    [Google Scholar]
  22. LauA.K. CheungK.H.Y. Natural fiber-reinforced polymer-based composites.Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites.Amsterdam, The NetherlandsElsevier201711810.1016/B978‑0‑08‑100656‑6.00001‑7
    [Google Scholar]
  23. RoederR.K. ConverseG.L. KaneR.J. YueW. Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes.J. Miner. Met. Mater. Soc.2008603384510.1007/s11837‑008‑0030‑2
    [Google Scholar]
  24. RoederR.K. Bioactive Polyaryletherketone Composites.PEEK Biomaterials Handbook.Amsterdam, The NetherlandsElsevier201920322710.1016/B978‑0‑12‑812524‑3.00012‑0
    [Google Scholar]
  25. MaoD. LiQ. LiD. ChenY. ChenX. XuX. Fabrication of 3D porous poly(lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering.Mater. Des.201814211010.1016/j.matdes.2018.01.016
    [Google Scholar]
  26. SinghM.K. TewariR. ZafarS. RangappaS.M. SiengchinS. A comprehensive review of various factors for application feasibility of natural fiber-reinforced polymer composites.Resul. Mat.20231710035510.1016/j.rinma.2022.100355
    [Google Scholar]
  27. SivakanthanS. RajendranS. GamageA. MadhujithT. ManiS. Antioxidant and antimicrobial applications of biopolymers: A review.Food Res. Int.202013610932710.1016/j.foodres.2020.10932732846526
    [Google Scholar]
  28. HartA. SummerscalesJ. Effect of time at temperature for natural fibres.Procedia Eng.201720026927510.1016/j.proeng.2017.07.038
    [Google Scholar]
  29. MaduekeC.I. MbahO.M. UmunakweR. A review on the limitations of natural fibres and natural fibre composites with emphasis on tensile strength using coir as a case study.Polym. Bull.20238043489350610.1007/s00289‑022‑04241‑y35574237
    [Google Scholar]
  30. Djafari PetroudyS.R. Physical and mechanical properties of natural fibers.Advanced High Strength Natural Fibre Composites in Construction.Amsterdam, The NetherlandsElsevier2017598310.1016/B978‑0‑08‑100411‑1.00003‑0
    [Google Scholar]
  31. RanaA.K. PotluriP. ThakurV.K. Cellulosic Grewia Optiva fibres: Towards chemistry, surface engineering and sustainable materials.J. Environ. Chem. Eng.20219510605910.1016/j.jece.2021.106059
    [Google Scholar]
  32. Zamora-MendozaL. GuambaE. MiñoK. RomeroM.P. LevoyerA. Alvarez-BarretoJ.F. MachadoA. AlexisF. Antimicrobial properties of plant fibers.Molecules20222722799910.3390/molecules2722799936432099
    [Google Scholar]
  33. ShesanO. AgwunchaC. AnusionwuG. NeerishR. RotimiS. Improving the Mechanical Properties of Natural Fiber Composites for Structural and Biomedical Applications.Renewable and Sustainable Composites. PereiraA.B. FernandesF.A.O. London, UKIntechOpen201910.5772/intechopen.85252
    [Google Scholar]
  34. CaoX. DingB. YuJ. Al-DeyabS.S. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers.Carbohydr. Polym.20129021075108010.1016/j.carbpol.2012.06.04622840042
    [Google Scholar]
  35. OrasughJ.T. SahaN.R. RanaD. SarkarG. MollickM.M.R. ChattoapadhyayA. MitraB.C. MondalD. GhoshS.K. ChattopadhyayD. Jute cellulose nano-fibrils/hydroxypropylmethylcellulose nanocomposite: A novel material with potential for application in packaging and transdermal drug delivery system.Ind. Crops Prod.201811263364310.1016/j.indcrop.2017.12.069
    [Google Scholar]
  36. DiarsaM. GupteA. Preparation, characterization and its potential applications in Isoniazid drug delivery of porous microcrystalline cellulose from banana pseudostem fibers.3 Biotech202111334
    [Google Scholar]
  37. KumarR. KumariS. SurahS.S. RaiB. KumarR. SirohiS. KumarG. A simple approach for the isolation of cellulose nanofibers from banana fibers.Mater. Res. Express201961010560110.1088/2053‑1591/ab3511
    [Google Scholar]
  38. LiuH. GengS. HuP. QinQ. WeiC. LvJ. Study of Pickering emulsion stabilized by sulfonated cellulose nanowhiskers extracted from sisal fiber.Colloid Polym. Sci.2015293396397410.1007/s00396‑014‑3484‑5
    [Google Scholar]
  39. EichhornS.J. EtaleA. WangJ. BerglundL.A. LiY. CaiY. ChenC. CranstonE.D. JohnsM.A. FangZ. LiG. HuL. KhandelwalM. LeeK-Y. OksmanK. PinitsoontornS. QueroF. SebastianA. TitiriciM.M. XuZ. VignoliniS. Frka-PetesicB. Current international research into cellulose as a functional nanomaterial for advanced applications.J. Mater. Sci.202257105697576710.1007/s10853‑022‑06903‑8
    [Google Scholar]
  40. EhsanimehrS. SonnierR. NajafiP. DucosF. BadawiM. FormelaK. SaebM.R. VahabiH. Layer-by-layer polymer deposited fabrics with superior flame retardancy and electrical conductivity.React. Funct. Polym.202217310522110.1016/j.reactfunctpolym.2022.105221
    [Google Scholar]
  41. MichelS.A.A.X. KnetschM.L.W. KooleL.H. Adsorption of albumin on flax fibers increases endothelial cell adhesion and blood compatibility in vitro.J. Biomater. Sci. Polym. Ed.201425769871210.1080/09205063.2014.89663324641207
    [Google Scholar]
  42. KandimallaR. KalitaS. ChoudhuryB. DeviD. KalitaD. KalitaK. DashS. KotokyJ. Fiber from ramie plant (Boehmeria nivea): A novel suture biomaterial.Mater. Sci. Eng. C20166281682210.1016/j.msec.2016.02.04026952488
    [Google Scholar]
  43. Kusmono ListyandaR.F. WildanM.W. IlmanM.N. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis.Heliyon2020611e0548610.1016/j.heliyon.2020.e0548633235939
    [Google Scholar]
  44. MuhamadI.I. ZahanK.A. Pa’eN. SalehudinM.H. KhairuddinN. MarsinA.M. SallehE. Accelerated testing methodology for long-term life prediction of cellulose-based polymeric composite materials.Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites.Amsterdam, The NetherlandsElsevier201914917110.1016/B978‑0‑08‑102290‑0.00008‑8
    [Google Scholar]
  45. RaoC.V.S. SabithaR. MuruganP. RaoS.R. AnithaK. RaoY.S. A Novel Study of Synthesis and Experimental Investigation on Hybrid Biocomposites for Biomedical Orthopedic Application.Int. J. Polym. Sci.2021202111010.1155/2021/7549048
    [Google Scholar]
  46. AkhilU.V. RadhikaN. SalehB. Aravind KrishnaS. NobleN. RajeshkumarL. A comprehensive review on plant‐based natural fiber reinforced polymer composites: Fabrication, properties, and applications.Polym. Compos.20234452598263310.1002/pc.27274
    [Google Scholar]
  47. StoyanovaN. SpasovaM. ManolovaN. RashkovI. Kamenova-NachevaM. StalevaP. Tavlinova-KirilovaM. Electrospun PLA-based biomaterials loaded with Melissa officinalis extract with strong antioxidant activity.Polymers (Basel)2023155107010.3390/polym1505107036904311
    [Google Scholar]
  48. UdhayakumarA. MayandiK. RajiniN. DeviR.K. MuthukannanM. MuraliM. Extraction and characterization of novel natural fiber from cryptostegia grandiflora as a potential reinforcement in biocomposites.J. Nat. Fibers2023201215960710.1080/15440478.2022.2159607
    [Google Scholar]
  49. LiD. WangY. HuangW. GongH. Biomass-derived fiber materials for biomedical applications.Front. Mater.202310105805010.3389/fmats.2023.1058050
    [Google Scholar]
  50. HongJ.K. CookeS.L. WhittingtonA.R. RomanM. Bioactive cellulose nanocrystal-poly(ε-caprolactone) nanocomposites for bone tissue engineering applications.Front. Bioeng. Biotechnol.2021960592410.3389/fbioe.2021.60592433718336
    [Google Scholar]
  51. EhsaniA. AsefnejadA. SadeghianmaryanA. RajabinejadH. ChenX. Fabrication of wound dressing cotton nano-composite coated with tragacanth/polyvinyl alcohol: characterization and in vitro studies.ECS J. Solid State Sci. Technol.202110101300210.1149/2162‑8777/abdc4c
    [Google Scholar]
  52. LuziF. PugliaD. TorreL. Natural fiber biodegradable composites and nanocomposites.Biomass, Biopolymer-Based Materials, and Bioenergy.Amsterdam, The NetherlandsElsevier201917920110.1016/B978‑0‑08‑102426‑3.00010‑2
    [Google Scholar]
  53. RanganathanN. OksmanK. NayakS.K. SainM. Regenerated cellulose fibers as impact modifier in long jute fiber reinforced polypropylene composites: Effect on mechanical properties, morphology, and fiber breakage.J. Appl. Polym. Sci.20151323app.4130110.1002/app.41301
    [Google Scholar]
  54. RenD. LiK. ChenL. ChenS. HanM. XuM. LiuX. Modification on glass fiber surface and their improved properties of fiber-reinforced composites via enhanced interfacial properties.Compos., Part B Eng.201917710741910.1016/j.compositesb.2019.107419
    [Google Scholar]
  55. ChenQ. JingJ. QiH. AhmedI. YangH. LiuX. LuT.L. BoccacciniA.R. Electric field-assisted orientation of short phosphate glass fibers on stainless steel for biomedical applications.ACS Appl. Mater. Interfaces20181014115291153810.1021/acsami.8b0137829504741
    [Google Scholar]
  56. MansourA. RomaniM. AcharyaA.B. RahmanB. VerronE. BadranZ. Drug delivery systems in regenerative medicine: an updated review.Pharmaceutics202315269510.3390/pharmaceutics1502069536840018
    [Google Scholar]
  57. KamalT. Ul-IslamM. KhanS.B. BakhshE.M. ChaniM.T.S. Development of plant extract impregnated bacterial cellulose as a green antimicrobial composite for potential biomedical applications.Ind. Crops Prod.202218711533710.1016/j.indcrop.2022.115337
    [Google Scholar]
  58. KhanA.K. KaleemS. PervaizF. SheraziT.A. KhanS.A. KhanF.A. JamshaidT. UmarM.I. HassanW. IjazM. MurtazaG. Antibacterial and wound healing potential of electrospun PVA/MMT nanofibers containing root extract of Berberis lycium.J. Drug Deliv. Sci. Technol.20237910398710.1016/j.jddst.2022.103987
    [Google Scholar]
  59. BiX. HuangR. 3D printing of natural fiber and composites: A state-of-the-art review.Mater. Des.202222211106510.1016/j.matdes.2022.111065
    [Google Scholar]
  60. MachaI.J. MunaM.M. MagereJ.L. In vitro study and characterization of cotton fabric PLA composite as a slow antibiotic delivery device for biomedical applications.J. Drug Deliv. Sci. Technol.20184317217710.1016/j.jddst.2017.10.005
    [Google Scholar]
  61. ZhangX. ChenX. HongH. HuR. LiuJ. LiuC. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering.Bioact. Mater.202210153110.1016/j.bioactmat.2021.09.01434901526
    [Google Scholar]
  62. AwadS. SiakengR. KhalafE.M. MahmoudM.H. FouadH. JawaidM. SainM. Evaluation of characterisation efficiency of natural fibre-reinforced polylactic acid biocomposites for 3D printing applications.Sustain. Mater. Technol.202336e0062010.1016/j.susmat.2023.e00620
    [Google Scholar]
  63. OrtegaF. VersinoF. LópezO.V. GarcíaM.A. Biobased composites from agro-industrial wastes and by-products.Emergent Mate.20225387392110.1007/s42247‑021‑00319‑x34849454
    [Google Scholar]
  64. IgbaI.O. NwigboS.C. Development of natural fibres reinforced composites for the production of orthopaedic cast.J. Med. Eng. Technol.202044849850710.1080/03091902.2020.183163133170073
    [Google Scholar]
  65. ChandramohanD. MarimuthuK. Characterization of natural fibers and their application in bone grafting substitutes.Acta Bioeng. Biomech.2011131778421500767
    [Google Scholar]
  66. CampbellA.I. SextonS. SchaschkeC.J. KinsmanH. McLaughlinB. BoyleM. Prosthetic limb sockets from plant-based composite materials.Prosthet. Orthot. Int.201236218118910.1177/030936461143456822307862
    [Google Scholar]
  67. Vijaya KumarN. BanapurmathN.R. GanachariS.V. SajjanA.M. PatilA.Y. Feasibility studies on bio composites using PLA and Epoxy for structural applications.IOP Conf. Series: Mater. Sci. Engin.2021107001204810.1088/1757‑899X/1070/1/012048
    [Google Scholar]
  68. Zamora-MendozaL. GushqueF. YanezS. JaraN. Álvarez-BarretoJ.F. Zamora-LedezmaC. DahoumaneS.A. AlexisF. Plant fibers as composite reinforcements for biomedical applications.Bioengineering202310780410.3390/bioengineering1007080437508831
    [Google Scholar]
  69. ArefinA.M.E. KhatriN.R. KulkarniN. EganP.F. Polymer 3D printing review: Materials, process, and design strategies for medical applications.Polymers2021139149910.3390/polym1309149934066639
    [Google Scholar]
  70. MishraT. MandalP. RoutA.K. SahooD. A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle.Compos. Part C Open Access2022910029810.1016/j.jcomc.2022.100298
    [Google Scholar]
  71. VasconcelosC. EleutérioT. MeirellesM. SérioS. TiO2 Nanocoatings on Natural Fibers by DC Reactive Magnetron Sputtering.Updates on Titanium Dioxide.Working TitleLondon, UKIntechOpen202310.5772/intechopen.110673
    [Google Scholar]
  72. NamvarF. JawaidM. TanirP.M. MohamadR. AziziS. KhodavandiA. RahmanH.S. NayeriM.D. Potential use of plant fibres and their composites for biomedical applications.BioResources2014935688570610.15376/biores.9.3.
    [Google Scholar]
  73. PhutaneP. TelangeD. AgrawalS. GundeM. KotkarK. PetheA. Biofunctionalization and applications of polymeric nanofibers in tissue engineering and regenerative medicine.Polymers (Basel)2023155120210.3390/polym1505120236904443
    [Google Scholar]
  74. FadilahN. IsaI. ZamanW. TabataY. FauziM. The effect of nanoparticle-incorporated natural-based biomaterials towards cells on activated pathways: a systematic review.Polymers (Basel)202214347610.3390/polym1403047635160466
    [Google Scholar]
  75. LiH. ChengQ. DongY. Antibacterial activity and biocompatibility of bamboo fiber-based wound dressings.J. Biomater. Appl.2019343289299
    [Google Scholar]
  76. FuQ. SaizE. TomsiaA.P. Bioinspired strong and highly porous hydroxyapatite-based scaffolds with an embedded cellulose nanofiber network.ACS Appl. Mater. Interfaces201351994169424
    [Google Scholar]
  77. AltmanG.H. DiazF. JakubaC. CalabroT. HoranR.L. ChenJ. LuH. RichmondJ. KaplanD.L. Silk-based biomaterials.Biomaterials200324340141610.1016/S0142‑9612(02)00353‑812423595
    [Google Scholar]
  78. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: problems and promises.Mol. Pharm.20074680781810.1021/mp700113r17999464
    [Google Scholar]
  79. BergerJ. ReistM. MayerJ.M. FeltO. PeppasN.A. GurnyR. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications.Eur. J. Pharm. Biopharm.2004571193410.1016/S0939‑6411(03)00161‑914729078
    [Google Scholar]
  80. ParkS.B. YoonT.H. YoonS.M. KimH.K. KimH.S. Development of Reed-Fiber-Reinforced Dental Composite Resins for Optimal Mechanical Properties.J. Dent. Res.20209917885
    [Google Scholar]
  81. JenaP.K. MohantyJ.R. NayakS. Effect of surface modification of vetiver fibers on their physical and thermal properties.J. Nat. Fibers2022191253610.1080/15440478.2020.1726249
    [Google Scholar]
  82. AhadN. RozaliF. HanifN. RosliN. Oils and water absorption behavior of natural fibers filled TPU composites for biomedical applications.J. Eng. Res. Educ.2018101621
    [Google Scholar]
  83. GoyalA. SharmaV. UpadhyayN. GillS. SihagM. Flax and flaxseed oil: an ancient medicine & modern functional food.J. Food Sci. Technol.20145191633165310.1007/s13197‑013‑1247‑925190822
    [Google Scholar]
  84. KulmaA. Skórkowska-TelichowskaK. KostynK. SzatkowskiM. SkałaJ. Drulis-KawaZ. PreisnerM. ŻukM. SzperlikJ. WangY.F. SzopaJ. New flax producing bioplastic fibers for medical purposes.Ind. Crops Prod.201568808910.1016/j.indcrop.2014.09.013
    [Google Scholar]
  85. SongJ. ChenZ. LiuZ. YiY. TsigkouO. LiJ. LiY. Controllable release of vascular endothelial growth factor (VEGF) by wheel spinning alginate/silk fibroin fibers for wound healing.Mater. Des.202121211023110.1016/j.matdes.2021.110231
    [Google Scholar]
  86. CherianB.M. LeãoA.L. de SouzaS.F. ThomasS. PothanL.A. KottaisamyM. Isolation of nanocellulose from pineapple leaf fibres by steam explosion.Carbohydr. Polym.201081372072510.1016/j.carbpol.2010.03.046
    [Google Scholar]
  87. GiriJ. AdhikariR. CampusT. A brief review on extraction of nanocellulose and its application.Nepal J. Online201398187
    [Google Scholar]
  88. AlharbiM.A.H. HiraiS. TuanH.A. AkiokaS. ShojiW. Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderless lignocellulosic biopolymers prepared by hot-pressing raw microfibrillated Phoenix dactylifera and Cocos nucifera fibers and leaves.Polym. Test.20208410638410.1016/j.polymertesting.2020.106384
    [Google Scholar]
  89. DauntonC. KothariS. A history of materials and practices for wound management.Wound Manag.201220174186
    [Google Scholar]
  90. KumarS. PrasadL. PatelV.K. KumarV. KumarA. YadavA. WinczekJ. Physical and Mechanical Properties of Natural Leaf Fiber-Reinforced Epoxy Polyester Composites.Polymers2021139136910.3390/polym1309136933922169
    [Google Scholar]
  91. NazirM.H. Al-MarzouqiA.H. AhmedW. ZaneldinE. The potential of adopting natural fibers reinforcements for fused deposition modeling: Characterization and implications.Heliyon202394e1502310.1016/j.heliyon.2023.e1502337089374
    [Google Scholar]
  92. HussainM. LevacherD. LeblancN. ZmamouH. Djeran-MaigreI. RazakamanantsoaA. SaoutiL. Properties of Mexican Tropical Palm Oil Flower and Fruit Fibers for Their Prospective Use in Eco-Friendly Construction Material.Fibers (Basel)20219116310.3390/fib9110063
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010314833240815113622
Loading
/content/journals/cpb/10.2174/0113892010314833240815113622
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test