Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Fungal infections contribute to over 1.5 million fatalities each year, with cutaneous mycoses standing as prominent global infections. The spectrum of these mycoses varies widely, encompassing enduring afflictions like ringworm, localized infections such as tinea capitis, recurrent instances like vaginal candidiasis, and potentially fatal systemic infections impacting multiple organ systems. The escalating recognition of the health and socioeconomic ramifications associated with fungal pathogens underscores their importance in contemporary discourse. On a global scale, projections indicate that over 300 million individuals experience significant fungal infections annually, resulting in a mortality rate exceeding 1.5 million deaths per year. Alarmingly, resistance to commonly used antifungal drugs was on the rise, with some reports suggesting that over 10% of Candida bloodstream isolates worldwide were resistant to fluconazole, a commonly prescribed antifungal medication. Therefore, there is an immediate need to increase the accessibility of new antifungal medications while minimizing their costs and adverse effects. Fungi, as heterotrophic organisms, acquire nutrients through absorption. Their filamentous structure, composed of hyphae, facilitates efficient nutrient uptake by secreting enzymes that break down complex organic matter into simpler compounds. These organisms exhibit remarkable adaptability in responding to environmental cues, adjusting growth rates, and altering morphological features. Fungi regulate their metabolism intricately, undergoing various metabolic pathways for energy production and utilizing diverse substrates for respiration. Additionally, they exhibit distinctive reproductive strategies, employing both sexual and asexual modes of reproduction, contributing to their genetic diversity and resilience in diverse ecosystems. We now have more information than ever on the origins of infection as well as the physiology of fungi cells, giving us the chance to use it to produce new generations of antifungals. This review includes various novel antifungal drug targets showing their possible effects different mechanisms aiming at vital functions like GPI synthesis, cell wall synthesis, hyphal growth, and other essential pathways responsible for fungal growth.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010304880240828075411
2024-09-13
2025-12-19
Loading full text...

Full text loading...

References

  1. SeagleE.E. WilliamsS.L. ChillerT.M. Recent trends in the epidemiology of fungal infections.Infect. Dis. Clin. North Am.202135223726010.1016/j.idc.2021.03.00134016277
    [Google Scholar]
  2. Mota FernandesC. DasilvaD. HaranahalliK. McCarthyJ.B. MallamoJ. OjimaI. Del PoetaM. The future of antifungal drug therapy: Novel compounds and targets.Antimicrob. Agents Chemother.2021652e01719-2010.1128/AAC.01719‑2033229427
    [Google Scholar]
  3. Homoserine dehydrogenase.2023Available from: https://www.creative-biolabs.com/drug-discovery/therapeutics/homoserine-dehydrogenase.htm
  4. TsaiP.W. ChienC.Y. YehY.C. TungL. ChenH.F. ChangT.H. LanC.Y. Candida albicans Hom6 is a homoserine dehydrogenase involved in protein synthesis and cell adhesion.J. Microbiol. Immunol. Infect.201750686387110.1016/j.jmii.2016.03.00127089825
    [Google Scholar]
  5. JacquesS.L. MirzaI.A. EjimL. KotevaK. HughesD.W. GreenK. KinachR. HonekJ.F. LaiH.K. BerghuisA.M. WrightG.D. Enzyme-assisted suicide.Chem. Biol.2003101098999510.1016/j.chembiol.2003.09.01514583265
    [Google Scholar]
  6. KuplińskaA. RządK. Molecular targets for antifungals in amino acid and protein biosynthetic pathways.Amino Acids202153796199110.1007/s00726‑021‑03007‑634081205
    [Google Scholar]
  7. SkwareckiA.S. SchielmannM. MartynowD. KawczyńskiM. WiśniewskaA. MilewskaM.J. MilewskiS. Antifungal dipeptides incorporating an inhibitor of homoserine dehydrogenase.J. Pept. Sci.2018241e306010.1002/psc.306029322651
    [Google Scholar]
  8. JastrzębowskaK. GabrielI. Inhibitors of amino acids biosynthesis as antifungal agents.Amino Acids201547222724910.1007/s00726‑014‑1873‑125408465
    [Google Scholar]
  9. SchroederA.C. ZhuC. YanamadalaS.R. CahoonR.E. ArkusK.A. WachsstockL. BleekeJ. KrishnanH.B. JezJ.M. Threonine-insensitive homoserine dehydrogenase from soybean: genomic organization, kinetic mechanism, and in vivo activity.J. Biol. Chem.2010b285282783410.1074/jbc.M109.06888219897476
    [Google Scholar]
  10. SanglardD. WhiteT. C. Molecular principles of antifungal drug resistance.Molecular Principles of fungal pathogenesisASM Press EBooks201419721210.1128/9781555815776.ch14
    [Google Scholar]
  11. AndesD. NettJ. OschelP. AlbrechtR. MarchilloK. PitulaA. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model.Infect. Immun.200472106023603110.1128/IAI.72.10.6023‑6031.200415385506
    [Google Scholar]
  12. LiW. ShrivastavaM. LuH. JiangY. Calcium-calcineurin signaling pathway in Candida albicans: A potential drug target.Microbiol. Res.202124912678612678610.1016/j.micres.2021.12678633989979
    [Google Scholar]
  13. NishimotoA.T. SharmaC. RogersP.D. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J. Antimicrob. Chemother.201975225727010.1093/jac/dkz40031603213
    [Google Scholar]
  14. JuvvadiP.R. LeeS.C. HeitmanJ. SteinbachW.J. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach.Virulence20178218619710.1080/21505594.2016.120125027325145
    [Google Scholar]
  15. LiD. SheX. CalderoneR. Functional diversity of complex I subunits in Candida albicans mitochondria.Curr. Genet.2016621879510.1007/s00294‑015‑0518‑626373419
    [Google Scholar]
  16. AntonickaH. OgilvieI. TaivassaloT. AnitoriR.P. HallerR.G. VissingJ. KennawayN.G. ShoubridgeE.A. Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency.J. Biol. Chem.200327844430814308810.1074/jbc.M30499820012941961
    [Google Scholar]
  17. GrahlN. DemersE.G. LindsayA.K. HartyC.E. WillgerS.D. PiispanenA.E. HoganD.A. Mitochondrial activity and cyr1 are key regulators of ras1 activation of C. albicans Virulence Pathways.PLoS Pathog.2015118e100513310.1371/journal.ppat.100513326317337
    [Google Scholar]
  18. PetersB.M. PalmerG.E. NashA.K. LillyE.A. FidelP.L.Jr NoverrM.C. Fungal morphogenetic pathways are required for the hallmark inflammatory response during Candida albicans vaginitis.Infect. Immun.201482253254310.1128/IAI.01417‑1324478069
    [Google Scholar]
  19. LiD. CalderoneR. Exploiting mitochondria as targets for the development of new antifungals.Virulence20178215916810.1080/21505594.2016.118823527191707
    [Google Scholar]
  20. CalderoneR. LiD. TravenA. System-level impact of mitochondria on fungal virulence: to metabolism and beyond.FEMS Yeast Res.2015154fov02710.1093/femsyr/fov02726002841
    [Google Scholar]
  21. QuY. JelicicB. PettolinoF. PerryA. LoT.L. HewittV.L. BantunF. BeilharzT.H. PelegA.Y. LithgowT. DjordjevicJ.T. TravenA. Mitochondrial sorting and assembly machinery subunit Sam37 in Candida albicans: insight into the roles of mitochondria in fitness, cell wall integrity, and virulence.Eukaryot. Cell201211453254410.1128/EC.05292‑1122286093
    [Google Scholar]
  22. NeubauerM. ZhuZ. PenkaM. HelmschrottC. WagenerN. WagenerJ. Mitochondrial dynamics in the pathogenic mold A spergillus fumigatus : therapeutic and evolutionary implications.Mol. Microbiol.201598593094510.1111/mmi.1316726272083
    [Google Scholar]
  23. GuanG. WangH. LiangW. CaoC. TaoL. NaseemS. KonopkaJ.B. WangY. HuangG. The mitochondrial protein Mcu1 plays important roles in carbon source utilization, filamentation, and virulence in Candida albicans. Fungal Genet. Biol.20158115015910.1016/j.fgb.2015.01.00625626172
    [Google Scholar]
  24. CalderoneR.A. FonziW.A. Virulence factors of Candida albicans. Trends Microbiol.20019732733510.1016/S0966‑842X(01)02094‑711435107
    [Google Scholar]
  25. NaseemS. GunasekeraA. ArayaE. KonopkaJ.B. N-acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism.J. Biol. Chem.201128633286712868010.1074/jbc.M111.24985421700702
    [Google Scholar]
  26. LiuN. TuJ. DongG. WangY. ShengC. Emerging new targets for the treatment of resistant fungal infections.J. Med. Chem.201861135484551110.1021/acs.jmedchem.7b0141329294275
    [Google Scholar]
  27. YaoP. FoxP.L. Aminoacyl‐tRNA synthetases in medicine and disease.EMBO Mol. Med.20135333234310.1002/emmm.20110062623427196
    [Google Scholar]
  28. Aminoacyl-tRNA Synthetases - Creative Biolabs.2020Available from: https://www.creative-biolabs.com/drug-discovery/therapeutics/aminoacyl-trna-synthetases.htm
  29. BrownV. SextonJ.A. JohnstonM. A glucose sensor in Candida albicans.Eukaryot. Cell20065101726173710.1128/EC.00186‑0617030998
    [Google Scholar]
  30. ChenX. ZhangZ. ChenZ. LiY. SuS. SunS. Potential antifungal targets based on glucose metabolism pathways of Candida albicans. Front. Microbiol.20201129610.3389/fmicb.2020.0029632256459
    [Google Scholar]
  31. BramonoK. TsuboiR. OgawaH. A carbohydrate‐degrading enzyme from Candida albicans: correlation between aT‐glucosidase activity and fungal growth.Mycoses1995389-1034935310.1111/j.1439‑0507.1995.tb00063.x8569808
    [Google Scholar]
  32. Mora-MontesH.M. BatesS. NeteaM.G. Díaz-JiménezD.F. López-RomeroE. ZinkerS. Ponce-NoyolaP. KullbergB.J. BrownA.J.P. OddsF.C. Flores-CarreónA. GowN.A.R. Endoplasmic reticulum α-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction.Eukaryot. Cell20076122184219310.1128/EC.00350‑0717933909
    [Google Scholar]
  33. Van EndeM. WijnantsS. Van DijckP. Sugar sensing and signaling in Candida albicans and Candida glabrata. Front. Microbiol.2019109910.3389/fmicb.2019.0009930761119
    [Google Scholar]
  34. KimJ. Ha Quang BaoT. ShinY.K. KimK.Y. Antifungal activity of magnoflorine against Candida strains.World J. Microbiol. Biotechnol.2018341116710.1007/s11274‑018‑2549‑x30382403
    [Google Scholar]
  35. Mohit NavaleA. Glucose transporter and sensor mechanisms in fungal pathogens as potential drug targets.Cur. Rev. Clinic. Exper. Pharma.202419325025810.2174/012772432826305023092315432637861001
    [Google Scholar]
  36. ListonS.D. WhitesellL. McLellanC.A. MazitschekR. PetraitisV. PetraitieneR. KavaliauskasP. WalshT.J. CowenL.E. Antifungal activity of gepinacin scaffold glycosylphosphatidylinositol anchor biosynthesis inhibitors with improved metabolic stability.Antimicrob. Agents Chemother.20206410e008992010.1128/AAC.00899‑2032661007
    [Google Scholar]
  37. WatanabeN. MiyazakiM. HoriiT. SaganeK. TsukaharaK. HataK. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis.Antimicrob. Agents Chemother.201256296097110.1128/AAC.00731‑1122143530
    [Google Scholar]
  38. TsukaharaK. HataK. NakamotoK. SaganeK. WatanabeN. KuromitsuJ. KaiJ. TsuchiyaM. OhbaF. JigamiY. YoshimatsuK. NagasuT. Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly.Mol. Microbiol.20034841029104210.1046/j.1365‑2958.2003.03481.x12753194
    [Google Scholar]
  39. LiuY. FillerS.G. Candida albicans Als3, a multifunctional adhesin and invasin.Eukaryot. Cell201110216817310.1128/EC.00279‑1021115738
    [Google Scholar]
  40. OhS.H. ChengG. NuessenJ.A. JajkoR. YeaterK.M. ZhaoX. PujolC. SollD.R. HoyerL.L. Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain.Microbiology2005151367368110.1099/mic.0.27680‑015758214
    [Google Scholar]
  41. RamageG. SavilleS.P. ThomasD.P. López-RibotJ.L. Candida biofilms: an update.Eukaryot. Cell20054463363810.1128/EC.4.4.633‑638.200515821123
    [Google Scholar]
  42. ChandraJ. KuhnD.M. MukherjeeP.K. HoyerL.L. McCormickT. GhannoumM.A. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance.J. Bacteriol.2001183185385539410.1128/JB.183.18.5385‑5394.200111514524
    [Google Scholar]
  43. NobileC.J. AndesD.R. NettJ.E. SmithF.J. YueF. PhanQ.T. EdwardsJ.E. FillerS.G. MitchellA.P. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo.PLoS Pathog.200627e6310.1371/journal.ppat.002006316839200
    [Google Scholar]
  44. FengQ. SummersE. GuoB. FinkG. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans.J. Bacteriol.1999181206339634610.1128/JB.181.20.6339‑6346.199910515923
    [Google Scholar]
  45. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae.Proc Natl Acad Sci U S A.199693115352535610.1073/pnas.93.11.5352
    [Google Scholar]
  46. Ras-mediated signal transduction and virulence in human pathogenic fungi.2012Available from: https://www.longdom.org/open-access/rasmediated-signal-transduction-and-virulence-in-human-pathogenic-fungi-6650.html#64
  47. RuppS. SummersE. LoH.J. MadhaniH. FinkG. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene.EMBO J.19991851257126910.1093/emboj/18.5.125710064592
    [Google Scholar]
  48. FortwendelJ.R. JuvvadiP.R. RoggL.E. AsfawY.G. BurnsK.A. RandellS.H. SteinbachW.J. Plasma membrane localization is required for RasA-mediated polarized morphogenesis and virulence of Aspergillus fumigatus.Eukaryot. Cell201211896697710.1128/EC.00091‑1222562470
    [Google Scholar]
  49. LatgéJ.P. The cell wall: a carbohydrate armour for the fungal cell.Mol. Microbiol.200766227929010.1111/j.1365‑2958.2007.05872.x17854405
    [Google Scholar]
  50. KeniyaM.V. FleischerE. KlingerA. CannonR.D. MonkB.C. Inhibitors of the Candida albicans Major Facilitator Superfamily Transporter Mdr1p Responsible for Fluconazole Resistance.PLoS One2015105e012635010.1371/journal.pone.012635025951180
    [Google Scholar]
  51. PrasadR. RawalM.K. Efflux pump proteins in antifungal resistance.Front. Pharmacol.2014520210.3389/fphar.2014.0020225221515
    [Google Scholar]
  52. SinghK. ABC and MFS Transporters: A reason for Antifungal drug resistance.Arch Biotechnol Biomed20182001007
    [Google Scholar]
  53. GuillonJ. NimS. MoreauS. RongaL. SavrimoutouS. ThivetE. MarchivieM. Di PietroA. PrasadR. Le BorgneM. Synthesis of new piperazinyl-pyrrolo[1,2- a ]quinoxaline derivatives as inhibitors of Candida albicans multidrug transporters by a Buchwald–Hartwig cross-coupling reaction.RSC Advances20201052915293110.1039/C9RA09348F35496110
    [Google Scholar]
  54. PasrijaR. BanerjeeD. PrasadR. Structure and function analysis of CaMdr1p, a major facilitator superfamily antifungal efflux transporter protein of Candida albicans: identification of amino acid residues critical for drug/H+ transport.Eukaryot. Cell20076344345310.1128/EC.00315‑0617209122
    [Google Scholar]
  55. Miguel-RojasC. HeraC. Proteomic identification of potential target proteins regulated by the SCF F bp1 ‐mediated proteolysis pathway in F usarium oxysporum.Mol. Plant Pathol.201314993494510.1111/mpp.1206023855991
    [Google Scholar]
  56. MadshusI.H. Ubiquitin binding in endocytosis--how tight should it be and where does it happen?Traffic20067325826110.1111/j.1600‑0854.2006.00393.x16497221
    [Google Scholar]
  57. HarrisS.D. ReadN.D. RobersonR.W. ShawB. SeilerS. PlamannM. MomanyM. Polarisome meets spitzenkörper: microscopy, genetics, and genomics converge.Eukaryot. Cell20054222522910.1128/EC.4.2.225‑229.200515701784
    [Google Scholar]
  58. Miguel-RojasC. HeraC. The F‐box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen‐activated protein kinase (MAPK) pathways in Fusarium oxysporum.Mol. Plant Pathol.2016171556410.1111/mpp.1225925808603
    [Google Scholar]
  59. WesselD. FlüggeU.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids.Anal. Biochem.1984138114114310.1016/0003‑2697(84)90782‑66731838
    [Google Scholar]
  60. LiX. ZhangC. LuL. Fungal calcineurin complex as an antifungal target: From past to present to future.Fungal Biol. Rev.20234310029010.1016/j.fbr.2022.10.003
    [Google Scholar]
  61. ZhangT. ChenW. The Candida albicans inhibitory activity of the extract from papaya (carica papaya l.) seed relates to mitochondria dysfunction.Int. J. Mol. Sci.2017189185810.3390/ijms1809185828841152
    [Google Scholar]
  62. KwonN.H. FoxP.L. KimS. Aminoacyl-tRNA synthetases as therapeutic targets.Nat. Rev. Drug Discov.201918862965010.1038/s41573‑019‑0026‑331073243
    [Google Scholar]
  63. JothiR. SangaviR. KumarP. PandianS.K. GowrishankarS. Catechol thwarts virulent dimorphism in Candida albicans and potentiates the antifungal efficacy of azoles and polyenes.Sci. Rep.20211112104910.1038/s41598‑021‑00485‑234702898
    [Google Scholar]
  64. WangY. WangK. Masso-SilvaJ.A. RiveraA. XueC. A heat-killed cryptococcus mutant strain induces host protection against multiple invasive mycoses in a murine vaccine model.MBio2019106e021451910.1128/mBio.02145‑1931772051
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010304880240828075411
Loading
/content/journals/cpb/10.2174/0113892010304880240828075411
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test