Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Skin cancer is one of the most common and complex types of the disease, resulting in a high mortality rate worldwide. Skin cancer can be treated with chemotherapy, surgery, radiotherapy, . In most cases, a patient's condition and the type of skin cancer determine the recommended treatment options. As a result of poor penetration of the drug into stratum corneum or lesions, low efficacy, and higher concentrations of active pharmaceutical ingredients required to achieve a therapeutic effect, the efficacy of skin cancer therapy has been limited. The high dose requirement, as well as poor bioavailability at the site of action, causes skin inflammation, which greatly hinders drug absorption. This review mainly focuses on research on nanocarriers for site-specific and controlled delivery of therapeutics for skin cancer treatment. The information related to various nanocarriers systems for skin cancer will be illustrated. This also focused on patents, clinical trials, and research carried out in the field of liposomes, niosomes, ethosomes, nanoparticles, microemulsion, nanoemulsions, gels, nanogels, hydrogels, dendrimers, and nanofibers for treating skin cancer. Nanotechnology-based therapy has shown great promise in controlling skin cancer and can be used to deliver drugs more effectively.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010312939240704141630
2024-07-15
2025-09-13
Loading full text...

Full text loading...

References

  1. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine.Molecules201925111210.3390/molecules25010112 31892180
    [Google Scholar]
  2. AhireSA BachhavAA PawarTB JagdaleBS PatilAV KoliPB The augmentation of nanotechnology era: A concise review on fundamental concepts of nanotechnology and applications in material science and technology.Results Chem.2022410063310.1016/j.rechem.2022.100633
    [Google Scholar]
  3. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  4. SimS. WongN. Nanotechnology and its use in imaging and drug delivery. (Review)Biomed. Rep.20211454210.3892/br.2021.1418 33728048
    [Google Scholar]
  5. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  6. MazayenZM GhoneimAM ElbatanonyRS BasaliousEB Bendas, ER Pharmaceutical nanotechnology: From the bench to the market.Future J. Pharmaceut Sci.20228112
    [Google Scholar]
  7. MamalisA.G. Recent advances in nanotechnology.J. Mater. Process. Technol.20071811-3525810.1016/j.jmatprotec.2006.03.052
    [Google Scholar]
  8. HeathJ.R. DavisM.E. Nanotechnology and Cancer.Annu. Rev. Med.200859125126510.1146/annurev.med.59.061506.185523 17937588
    [Google Scholar]
  9. YuB. TaiH.C. XueW. LeeL.J. LeeR.J. Receptor-targeted nanocarriers for therapeutic delivery to cancer.Mol. Membr. Biol.201027728629810.3109/09687688.2010.521200 21028937
    [Google Scholar]
  10. KaushikN. BorkarS.B. NandanwarS.K. PandaP.K. ChoiE.H. KaushikN.K. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms.J. Nanobiotechnology202220115210.1186/s12951‑022‑01364‑2 35331246
    [Google Scholar]
  11. ZhangM. GaoS. YangD. FangY. LinX. JinX. LiuY. LiuX. SuK. ShiK. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo.Acta Pharm. Sin. B20211182265228510.1016/j.apsb.2021.03.033 34522587
    [Google Scholar]
  12. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  13. WickiA. WitzigmannD. BalasubramanianV. HuwylerJ. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications.J. Control. Release201520013815710.1016/j.jconrel.2014.12.030 25545217
    [Google Scholar]
  14. ParkJ.H. LeeS. KimJ.H. ParkK. KimK. KwonI.C. Polymeric nanomedicine for cancer therapy.Prog. Polym. Sci.200833111313710.1016/j.progpolymsci.2007.09.003
    [Google Scholar]
  15. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  16. LabaniS. AsthanaS. RathoreK. SardanaK. Incidence of melanoma and nonmelanoma skin cancers in Indian and the global regions.J. Cancer Res. Ther.202117490691110.4103/jcrt.JCRT_785_19 34528540
    [Google Scholar]
  17. MaX. YuH. Global burden of cancer.Yale J. Biol. Med.2006793-48594 17940618
    [Google Scholar]
  18. KauvarA.N.B. CroninT.Jr RoenigkR. HruzaG. BennettR. Consensus for nonmelanoma skin cancer treatment: Basal cell carcinoma, including a cost analysis of treatment methods.Dermatol. Surg.201541555057110.1097/DSS.0000000000000296 25868035
    [Google Scholar]
  19. Bio Render.Create professional science figures in minutes.2023Available from: https://www.biorender.com/
    [Google Scholar]
  20. SainiA. KumarM. BhattS. SainiV. MalikA. Cancer causes and treatments.Int. J. Pharm. Sci. Res.202011731213134
    [Google Scholar]
  21. ThankiK. GangwalR.P. SangamwarA.T. JainS. Oral delivery of anticancer drugs: Challenges and opportunities.J. Control. Release20131701154010.1016/j.jconrel.2013.04.020 23648832
    [Google Scholar]
  22. HomayunB. LinX. ChoiH.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals.Pharmaceutics201911312910.3390/pharmaceutics11030129 30893852
    [Google Scholar]
  23. LouJ. DuanH. QinQ. TengZ. GanF. ZhouX. ZhouX. Advances in oral drug delivery systems: Challenges and opportunities.Pharmaceutics202315248410.3390/pharmaceutics15020484 36839807
    [Google Scholar]
  24. BasakD. ArrighiS. DarwicheY. DebS. Comparison of anticancer drug toxicities: Paradigm shift in adverse effect profile.Life20211214810.3390/life12010048 35054441
    [Google Scholar]
  25. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  26. C-443/17 - Abraxis Bioscience: Main proceedings, Judgment of the Court (Fourth Chamber) of 21 March 2019.2019Available From: https://curia.europa.eu/juris/liste.jsf?language=en&jur=C,T,F&num=C-443/17&td=ALL
    [Google Scholar]
  27. TrieuV. D’CruzO. DesaiN. Comparison of antitumor activity of three cremophor-free paclitaxel formulations, Abraxane, Nanoxel, and Genexol PM.Cancer Res.2008689Suppl.5619
    [Google Scholar]
  28. HariM MacDonaldJ FriedmanJ KendallT MulliganG JakubowiakA Gene Expression Profiles (GEP) to predict at least very good partial response to velcade, doxil, and dexamethasone in newly diagnosed patients with multiple myeloma.Blood2007110111489
    [Google Scholar]
  29. OwenR.R. SellsR.A. GilmoreI.T. NewR.R. StringerR.E. A phase I clinical evaluation of liposome-entrapped doxorubicin (Lip-Dox) in patients with primary and metastatic hepatic malignancy.Anticancer Drugs19923210110810.1097/00001813‑199204000‑00005 1525387
    [Google Scholar]
  30. O’BrienM.E.R. WiglerN. InbarM. RossoR. GrischkeE. SantoroA. CataneR. KiebackD.G. TomczakP. AcklandS.P. OrlandiF. MellarsL. AllandL. TendlerC. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer.Ann. Oncol.200415344044910.1093/annonc/mdh097 14998846
    [Google Scholar]
  31. LeonardR.C.F. WilliamsS. TulpuleA. LevineA.M. OliverosS. Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet™).Breast200918421822410.1016/j.breast.2009.05.004 19656681
    [Google Scholar]
  32. ChaoT.C. WangW.S. YenC.C. ChiouT.J. LiuJ.H. ChenP.M. A dose-escalating pilot study of sterically stabilized, pegylated liposomal doxorubicin (Lipo-Dox) in patients with metastatic breast cancer.Cancer Invest.200321683784710.1081/CNV‑120025086 14735687
    [Google Scholar]
  33. GoyalR. MacriL.K. KaplanH.M. KohnJ. Nanoparticles and nanofibers for topical drug delivery.J. Control. Release2016240779210.1016/j.jconrel.2015.10.049 26518723
    [Google Scholar]
  34. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  35. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  36. WangS. ChenY. GuoJ. HuangQ. Liposomes for tumor targeted therapy: A review.Int. J. Mol. Sci.2023243264310.3390/ijms24032643 36768966
    [Google Scholar]
  37. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  38. ShatalebiM.A. MostafaviS.A. MoghaddasA. Niosome as a drug carrier for topical delivery of N-acetyl glucosamine.Res. Pharm. Sci.201052107117 21589799
    [Google Scholar]
  39. HamishehkarH. RahimpourY. KouhsoltaniM. Niosomes as a propitious carrier for topical drug delivery.Expert Opin. Drug Deliv.201310226127210.1517/17425247.2013.746310 23252629
    [Google Scholar]
  40. MarwahM. PerrieY. BadhanR.K.S. LowryD. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer.J. Liposome Res.202030213614910.1080/08982104.2019.1604746 31010367
    [Google Scholar]
  41. VermaN. SarafS. Development and characterization of mannosylated quercetin loaded liposomes for skin carcinoma.Int. J. Pharm. Sci. Res.20191047534759
    [Google Scholar]
  42. JoseA. LabalaS. NinaveK.M. GadeS.K. VenugantiV.V.K. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes.AAPS PharmSciTech201819116617510.1208/s12249‑017‑0833‑y 28639178
    [Google Scholar]
  43. SinghS. Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells.Int. J. Nanomedicine201819111310.2147/IJN.S124701
    [Google Scholar]
  44. SoniK. MujtabaA. AkhterM.H. ZafarA. KohliK. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy.J. Microencapsul.20203729110810.1080/02652048.2019.1701114 31810417
    [Google Scholar]
  45. PeramMR JalalpureS KumbarV PatilS JoshiS BhatK DiwanP Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery.J. Liposome Res.29329131110.1080/08982104.2018.1556292
    [Google Scholar]
  46. PurushothamanB. SuganthiN. JothiA. ShanmugamK. Molecular Docking Studies of potential anticancer agents from Ocimum basilicum L. against human colorectal cancer regulating genes: An in silico approach.Res J Pharm Technol20191273423342710.5958/0974‑360X.2019.00579.1
    [Google Scholar]
  47. KhanNR WongTW 5-Fluorouracil ethosomes - skin deposition and melanoma permeation synergism with microwave. Artif Cells Nanomed Biotechnol201846(sup1)568577
    [Google Scholar]
  48. AmnuaikitT. LimsuwanT. KhongkowP. BoonmeP. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes.Asian J. Pharmaceut Sci.201813547248410.1016/j.ajps.2018.02.004 32104421
    [Google Scholar]
  49. LimsuwanT. BoonmeP. KhongkowP. AmnuaikitT. Ethosomes of phenylethyl resorcinol as vesicular delivery system for skin lightening applications.BioMed Res. Int.2017201711210.1155/2017/8310979 28804723
    [Google Scholar]
  50. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  51. AbdelbaryA. SalemH.F. KhallafR.A. Niosomal 5-flourouracil gel for effective treatment of skin cancer; in-vitro and in-vivo evaluation.Int. J. Drug Deliv.201674223232
    [Google Scholar]
  52. RungphanichkulN. NimmannitU. MuangsiriW. RojsitthisakP. Preparation of curcuminoid niosomes for enhancement of skin permeation.Pharmazie2011668570575 21901978
    [Google Scholar]
  53. SinghR. LillardJ.W. Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986215223
    [Google Scholar]
  54. RizviS.A.A. SalehA.M. Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.2018261647010.1016/j.jsps.2017.10.012 29379334
    [Google Scholar]
  55. Brannon-PeppasL. BlanchetteJ.O. Nanoparticle and targeted systems for cancer therapy.Adv. Drug Deliv. Rev.200456111649165910.1016/j.addr.2004.02.014 15350294
    [Google Scholar]
  56. HaoY. ChenY. HeX. YangF. HanR. YangC. LiW. QianZ. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy.Bioact. Mater.20205354255210.1016/j.bioactmat.2020.04.002 32346657
    [Google Scholar]
  57. SundaramurthyN. ParthibanC. Biosynthesis of copper oxide nanoparticles using Pyrus pyrifolia leaf extract and evolve the catalytic activity.Int Res J Eng Technol.201526332338
    [Google Scholar]
  58. HafeezA. KazmiI. Dacarbazine nanoparticle topical delivery system for the treatment of melanoma.Sci. Rep.2017711651710.1038/s41598‑017‑16878‑1 29184162
    [Google Scholar]
  59. KhallafR.A. SalemH.F. AbdelbaryA. 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment.Drug Deliv.20162393452346010.1080/10717544.2016.1194498 27240935
    [Google Scholar]
  60. HuberL.A. PereiraT.A. RamosD.N. RezendeL.C.D. EmeryF.S. SobralL.M. LeopoldinoA.M. LopezR.F.V. Topical skin cancer therapy using doxorubicin-loaded cationic lipid nanoparticles and iontophoresis.J. Biomed. Nanotechnol.201511111975198810.1166/jbn.2015.2139 26554156
    [Google Scholar]
  61. BharadwajR. DasP.J. PalP. MazumderB. Topical delivery of paclitaxel for treatment of skin cancer.Drug Dev. Ind. Pharm.20164291482149410.3109/03639045.2016.1151028 26850463
    [Google Scholar]
  62. SubediR.K. KangK.W. ChoiH.K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin.Eur. J. Pharm. Sci.2009373-450851310.1016/j.ejps.2009.04.008 19406231
    [Google Scholar]
  63. TaveiraS.F. de Campos AraújoL.M.P. de SantanaD.C.A.S. NomizoA. de FreitasL.A.P. LopezR.F.V. Development of cationic solid lipid nanoparticles with factorial design-based studies for topical administration of doxorubicin.J. Biomed. Nanotechnol.20128221922810.1166/jbn.2012.1383 22515073
    [Google Scholar]
  64. GuptaA. EralH.B. HattonT.A. DoyleP.S. Nanoemulsions: Formation, properties and applications.Soft Matter201612112826284110.1039/C5SM02958A 26924445
    [Google Scholar]
  65. WilsonR.J. LiY. YangG. ZhaoC.X. Nanoemulsions for drug delivery.Particuology2021
    [Google Scholar]
  66. ShanmugapriyaK. KimH. LeeY.W. KangH.W. Cellulose nanocrystals/nanofibrils loaded astaxanthin nanoemulsion for the induction of apoptosis via ROS-dependent mitochondrial dysfunction in cancer cells under photobiomodulation.Int. J. Biol. Macromol.202014916517710.1016/j.ijbiomac.2020.01.243 31987944
    [Google Scholar]
  67. Ugur KaplanA.B. CetinM. OrgulD. TaghizadehghalehjoughiA. HacımuftuogluA. HekimogluS. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein.J. Drug Deliv. Sci. Technol.20195218920310.1016/j.jddst.2019.04.027
    [Google Scholar]
  68. WangC. WangJ. ZengL. QiaoZ. LiuX. LiuH. ZhangJ. DingJ. Fabrication of electrospun polymer nanofibers with diverse morphologies.Molecules201924583410.3390/molecules24050834 30813599
    [Google Scholar]
  69. WillerthS.M. Electrospun nanofibers for diverse applications.Compr. Nanosci. Nanotechnol.20191127528610.1016/B978‑0‑12‑803581‑8.10417‑5
    [Google Scholar]
  70. P, B.; G, S.; S, A.M.; A, T.S. Efficacy of biopolymeric PVA-AuNPs and PCL-Curcumin loaded electrospun nanofibers and their anticancer activity against A431 skin cancer cell line.Mater. Today Commun.20202510127610.1016/j.mtcomm.2020.101276
    [Google Scholar]
  71. PatelG. YadavB.K.N. Formulation, characterization and in vitro cytotoxicity of 5-fluorouracil loaded polymeric electrospun nanofibers for the treatment of skin cancer.Recent Pat. Nanotechnol.201913211412810.2174/1872210513666190314095643 30868972
    [Google Scholar]
  72. GuoM. ZhouG. LiuZ. LiuJ. TangJ. XiaoY. XuW. LiuY. ChenC. Direct site-specific treatment of skin cancer using doxorubicin-loaded nanofibrous membranes.Sci. Bull.20186329210010.1016/j.scib.2017.11.018 36658930
    [Google Scholar]
  73. YuanC. LongX. LiJ. CaiQ. Coaxially electrospun 5-fluorouracil-loaded PLGA/PVP fibrous membrane for skin tumor treatment.Biomed. Mater.202116606501410.1088/1748‑605X/ac2887 34544064
    [Google Scholar]
  74. MouthuyP.A. Somogyi ŠkocM. Čipak GašparovićA. MilkovićL. CarrA.J. ŽarkovićN. Investigating the use of curcumin-loaded electrospun filaments for soft tissue repair applications.Int. J. Nanomedicine2017123977399110.2147/IJN.S133326 28579781
    [Google Scholar]
  75. RavananS. PremaA.A. XavierR.J. SahayarajP.A. Anti-cancer activity (A431 cancer cells) and cytotoxic efficiency (HaCaT skin cells) of Curcumin/Neem loaded polycaprolactone (PCL) nanofibres.Der Pharma Chem.20168104111
    [Google Scholar]
  76. KesharwaniP. JainK. JainN.K. Dendrimer as nanocarrier for drug delivery.Prog. Polym. Sci.201439226830710.1016/j.progpolymsci.2013.07.005
    [Google Scholar]
  77. KlajnertB. BryszewskaM. Dendrimers: Properties and applications.Acta Biochim. Pol.200148119920810.18388/abp.2001_5127 11440170
    [Google Scholar]
  78. UramŁ. FilipowiczA. MisiorekM. PieńkowskaN. MarkowiczJ. Wałajtys-RodeE. WołowiecS. Biotinylated PAMAM G3 dendrimer conjugated with celecoxib and/or Fmoc-l-Leucine and its cytotoxicity for normal and cancer human cell lines.Eur. J. Pharm. Sci.20181241910.1016/j.ejps.2018.08.019 30118847
    [Google Scholar]
  79. VenugantiV.V.K. SaraswathyM. DwivediC. KaushikR.S. PerumalO.P. Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide–dendrimer nanocomplex: The proof of concept in a skin cancer mouse model.Nanoscale2015793903391410.1039/C4NR05241B 25436837
    [Google Scholar]
  80. KaroyoA. WilsonL. Physicochemical properties and the gelation process of supramolecular hydrogels: A review.Gels201731110.3390/gels3010001 30920498
    [Google Scholar]
  81. PriyaP. Mohan RajR. VasanthakumarV. RajV. Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer.Arab. J. Chem.202013169470810.1016/j.arabjc.2017.07.010
    [Google Scholar]
  82. SahuP. KashawS.K. SauS. KushwahV. JainS. AgrawalR.K. IyerA.K. pH responsive 5-fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma.Colloids Surf. B Biointerfaces201917423224510.1016/j.colsurfb.2018.11.018 30465998
    [Google Scholar]
  83. CapanemaN.S.V. CarvalhoI.C. MansurA.A.P. CarvalhoS.M. LageA.P. MansurH.S. Hybrid hydrogel composed of carboxymethylcellulose–silver nanoparticles–doxorubicin for anticancer and antibacterial therapies against melanoma skin cancer cells.ACS Appl. Nano Mater.20192117393740810.1021/acsanm.9b01924
    [Google Scholar]
  84. HuangJ. WangQ. LiT. XiaN. XiaQ. Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: Preparation and in vitro characterization studies.J. Food Eng.201721511210.1016/j.jfoodeng.2017.07.002
    [Google Scholar]
  85. MahajanK. RojekarS. DesaiD. KulkarniS. BapatG. ZinjardeS. VaviaP. Layer-by-layer assembled nanostructured lipid carriers for CD-44 receptor–based targeting in HIV-infected macrophages for efficient HIV-1 inhibition.AAPS PharmSciTech202122517110.1208/s12249‑021‑01981‑4 34100170
    [Google Scholar]
  86. NorouziM. NazariB. MillerD.W. Injectable hydrogel-based drug delivery systems for local cancer therapy.Drug Discov. Today201621111835184910.1016/j.drudis.2016.07.006 27423369
    [Google Scholar]
  87. KroonH.A. HenryW. Vesicular formulations. US Patent 9452179B22016
    [Google Scholar]
  88. DamiriF. RojekarS. BachraY. VarmaR.S. AndraS. BaluS. PardeshiC.V. PatelP.J. PatelH.M. Paiva-SantosA.C. BerradaM. GarcíaM.C. Polysaccharide-based nanogels for biomedical applications: A comprehensive review.J. Drug Deliv. Sci. Technol.20238410444710.1016/j.jddst.2023.104447
    [Google Scholar]
  89. TakeyamaT. Pharmaceutical preparation containing magnetic vesicular particles, manufacturing method thereof and diagnostic therapeutic system. US Patent 7560097B22009
    [Google Scholar]
  90. KurzrockR. LiL. MehtaK. AggarwalB.B. HelsonL. Liposomal curcumin for treatment of diseases. US Patent 20180318217A12018
    [Google Scholar]
  91. GeallA. VermaA. Pegylated liposomes for delivery of immunogen- encoding rna. US Patent 20130202684A12013
    [Google Scholar]
  92. TanJ JiangL ChangR ZhouZ Paclitaxel ethosome gel and preparation method thereof.CN Patent 102579323A2012
    [Google Scholar]
  93. Aguilar-MendozaG. SunF. ChoiB. Assisting transdermal drug delivery by means of tissue freezing, vacuum pressure and photoheating procedures.US Patent 12753785,2011
    [Google Scholar]
  94. HarrisT.J. KimA.A. Thermal treatment of the skin surface with metal nanoparticles in surfactant containing solutions.US Patent 94399652016
    [Google Scholar]
  95. DiZeregaG. Topical therapy for the treatment of skin malignancies using nanoparticles of taxanesUS Patent 10555898B22020
    [Google Scholar]
  96. HarrisT.J. KimA.A. Delivery of nanoparticlesUS Patent 166979822020
    [Google Scholar]
  97. ZhangB Venenum bufonis extractive and application of preparation of venenum bufonis extractive to preparing medicines for treating melanomaCN Patent 104337844A2013
    [Google Scholar]
  98. KimY.D. ParkK.J. KimJ.S. KimJ.S. Nano-emulsion, the use thereof, and preparation method thereofUS Patent 116822792010
    [Google Scholar]
  99. FinkielszteinS. VournakisJ.N. Treatment of disease with poly-nacetylglucosamine nanofibersUS Patent 142100542015
    [Google Scholar]
  100. KhanO.F. ChahalJ.S. AndersonD.G. PloeghH. LangerR.S. JacksT.E. CannerD.A. Compositions and methods for modified dendrimer nanoparticle delivery. US Patent 10548959B22020
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010312939240704141630
Loading
/content/journals/cpb/10.2174/0113892010312939240704141630
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test