Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

In the current scenario, obesity is a stimulating health problem and is growing very rapidly in the world. It is a complex disease caused by the imbalance between the energy intake and the energy expenditure. There are various diseases associated with obesity, ., diabetes, hypertension, cancer, atherosclerosis, and other cardiovascular problems, which produce a serious impact on the social and financial system of the population. Moreover, changing the lifestyle and other behavioral changes might help in decreasing weight loss, but it is quite challenging to achieve. Nearly 10-20% of males and 20-30% of females come under the obese condition. The most convenient therapy for treating obesity is the use of synthetic drugs available in the markets, like orlistat and sibutramine, but these drugs have serious side effects, along with this surgical procedure, and are also not safe. Various herbal medicines and bioactives are preferred as game changers. Many herbal plants and their bioactive compounds have recently demonstrated promising effects in treating obesity. They achieve this by acting on various signaling pathways, reducing the levels of hormones associated with obesity, and regulating the abundance and composition of gut microbiota. This review concludes by highlighting the potential role of various herbal plants in managing obesity.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010311549240627104313
2024-07-15
2025-09-14
Loading full text...

Full text loading...

References

  1. Pi-SunyerX. AstrupA. FujiokaK. GreenwayF. HalpernA. KrempfM. LauD.C.W. le RouxC.W. Violante OrtizR. JensenC.B. WildingJ.P.H. A randomized, controlled trial of 3.0 mg of liraglutide in weight management.N. Engl. J. Med.20153731112210.1056/NEJMoa1411892 26132939
    [Google Scholar]
  2. JamesW.P.T. CatersonI.D. CoutinhoW. FinerN. Van GaalL.F. MaggioniA.P. Torp-PedersenC. SharmaA.M. ShepherdG.M. RodeR.A. RenzC.L. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects.N. Engl. J. Med.20103631090591710.1056/NEJMoa1003114 20818901
    [Google Scholar]
  3. WenX. ZhangB. WuB. XiaoH. LiZ. LiR. XuX. LiT. Signaling pathways in obesity: mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.20227129810.1038/s41392‑022‑01149‑x 36031641
    [Google Scholar]
  4. LinX. LiH. Obesity: epidemiology, pathophysiology, and therapeutics.Front. Endocrinol.20211270697810.3389/fendo.2021.706978 34552557
    [Google Scholar]
  5. HrubyA. HuF.B. The epidemiology of obesity: A big picture.PharmacoEconomics201533767368910.1007/s40273‑014‑0243‑x 25471927
    [Google Scholar]
  6. AzizM.A. MillatM.S. AkterT. HossainM.S. IslamM.M. MohsinS. AnsariF. KabirA. AminM.N. IslamM.S. A comprehensive review on clinically proven medicinal plants in the treatment of overweight and obesity, with mechanistic insights.Heliyon202392e1349310.1016/j.heliyon.2023.e13493 36816319
    [Google Scholar]
  7. JiaW. LiuF. Obesity: causes, consequences, treatments, and challenges.J. Mol. Cell Biol.202113746346510.1093/jmcb/mjab056 34673982
    [Google Scholar]
  8. NatesanV. KimS.J. Lipid metabolism, disorders, and therapeutic drugs–review.Biomol. Ther.202129659660410.4062/biomolther.2021.122 34697272
    [Google Scholar]
  9. HuttonB. FergussonD. Changes in body weight and serum lipid profile in obese patients treated with orlistat in addition to a hypocaloric diet: A systematic review of randomized clinical trials.Am. J. Clin. Nutr.20048061461146810.1093/ajcn/80.6.1461 15585756
    [Google Scholar]
  10. ThurairajahP.H. SynW.K. NeilD.A.H. StellD. HaydonG. Orlistat (Xenical)-induced subacute liver failure.Eur. J. Gastroenterol. Hepatol.200517121437143810.1097/01.meg.0000187680.53389.88 16292105
    [Google Scholar]
  11. SharmaC. RajendarK. KumariT. AryaK.R. Indian traditional therapies and bio-prospecting: their role in drug development research.Int. J. Pharm. Life Sci.201453
    [Google Scholar]
  12. SonJ.W. KimS. Comprehensive review of current and upcoming anti-obesity drugs.Diabetes Metab. J.202044680281810.4093/dmj.2020.0258 33389955
    [Google Scholar]
  13. JakabJ. MiškićB. MikšićŠ. JuranićB. ĆosićV. SchwarzD. VčevA. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products.Diabetes Metab. Syndr. Obes.202114678310.2147/DMSO.S281186 33447066
    [Google Scholar]
  14. MontaigneD. ButruilleL. StaelsB. PPAR control of metabolism and cardiovascular functions.Nat. Rev. Cardiol.2021181280982310.1038/s41569‑021‑00569‑6 34127848
    [Google Scholar]
  15. ShimanoH. SatoR. SREBP-regulated lipid metabolism: convergent physiology — divergent pathophysiology.Nat. Rev. Endocrinol.2017131271073010.1038/nrendo.2017.91 28849786
    [Google Scholar]
  16. Amemiya-KudoM. ShimanoH. HastyA.H. YahagiN. YoshikawaT. MatsuzakaT. OkazakiH. TamuraY. IizukaY. OhashiK. OsugaJ. HaradaK. GotodaT. SatoR. KimuraS. IshibashiS. YamadaN. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes.J. Lipid Res.20024381220123510.1194/jlr.M100417‑JLR200 12177166
    [Google Scholar]
  17. GanjayiM.S. MerigaB. HariB. OrugantiL. DasariS. MopuriR. PolyPhenolic rich fraction of Terminalia paniculata attenuates obesity through inhibition of pancreatic amylase, lipase and 3T3-L1 adipocyte differentiation.J. Nutr. Intermed. Metab.201710192510.1016/j.jnim.2017.11.003
    [Google Scholar]
  18. HanL.K. ZhengY.N. YoshikawaM. OkudaH. KimuraY. Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes.BMC Complement. Altern. Med.200551910.1186/1472‑6882‑5‑9 15811191
    [Google Scholar]
  19. KasabriV. Al-HallaqE.K. BustanjiY.K. Abdul-RazzakK.K. AbazaI.F. AfifiF.U. Antiobesity and antihyperglycaemic effects of Adiantum capillus-veneris extracts: in vitro and in vivo evaluations.Pharm. Biol.201755116417210.1080/13880209.2016.1233567 27663206
    [Google Scholar]
  20. KumarS. AlagawadiK.R. Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats.Pharm. Biol.201351560761310.3109/13880209.2012.757327 23363068
    [Google Scholar]
  21. LeiF. ZhangX.N. WangW. XingD.M. XieW.D. SuH. DuL.J. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice.Int. J. Obes.20073161023102910.1038/sj.ijo.0803502 17299386
    [Google Scholar]
  22. HassanH.M. Inhibitory effects of red grape seed extracts on pancreatic-amylase and lipase.Glob J Biotechnol Biochem.201494130136
    [Google Scholar]
  23. YuniartoA. KurniaI. RamadhanM. Anti-obesity effect of ethanolic extract of jasmine flowers (jasminumsambac (l) Ait) in high-fat diet-induced mice: a potent inhibitor of pancreatic lipase enzyme.Change2015411822
    [Google Scholar]
  24. VelusamiC.C. AgarwalA. MookambeswaranV. Effect of Nelumbo nucifera petal extracts on lipase, adipogenesis, adipolysis, and central receptors of obesity.Evid. Based Complement. Alternat. Med.20132013145925
    [Google Scholar]
  25. BirariR. RoyS.K. SinghA. BhutaniK.K. Pancreatic lipase inhibitory alkaloids of Murraya koenigii leaves. Nat. Prod. Commun.2009481934578X0900400814.
    [Google Scholar]
  26. LaovitthayanggoonS. SiriarchavatanaP. ChaithongsriK. BanchonglikitkulC. Anti-lipase activity of Quercus infectoria G. Olivier extract.Thaiphesatchasan201338106108
    [Google Scholar]
  27. ChenT.Y. WangM.M.C. HsiehS.K. HsiehM.H. ChenW.Y. TzenJ.T.C. Pancreatic lipase inhibition of strictinin isolated from Pu’er tea (Cammelia sinensis) and its anti-obesity effects in C57BL6 mice.J. Funct. Foods2018481810.1016/j.jff.2018.06.020
    [Google Scholar]
  28. LiY. ChenB. CaoH.Y. LiJ.E. ChenL.L. ZhangQ.F. Pancreatic lipase inhibitory activity of Bambusa multiplex cv. Fern leaf extract in vitro and in vivo Food Funct.202112167440744710.1039/D1FO01168E 34195734
    [Google Scholar]
  29. MarrelliM. MorroneF. ArgentieriM. GambacortaL. ConfortiF. AvatoP. Phytochemical and biological profile of Moricandia arvensis (L.) DC.: an inhibitor of pancreatic lipase.Molecules20182311282910.3390/molecules23112829 30384448
    [Google Scholar]
  30. KimS.H. JoS.H. KwonY.I. HwangJ.K. Effects of onion (Allium cepa L.) extract administration on intestinal α-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model.Int. J. Mol. Sci.20111263757376910.3390/ijms12063757 21747704
    [Google Scholar]
  31. KwonC.S. SohnH.Y. KimS.H. KimJ.H. SonK.H. LeeJ.S. LimJ.K. KimJ.S. Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents.Biosci. Biotechnol. Biochem.20036771451145610.1271/bbb.67.1451 12913286
    [Google Scholar]
  32. ChanmeeW. ChaicharoenpongC. PetsomA. Lipase inhibitor from fruits of Solanum stramonifolium Jacq.Food Nutr. Sci.201345554558
    [Google Scholar]
  33. BustanjiY. Al-MasriI.M. MohammadM. HudaibM. TawahaK. TaraziH. AlKhatibH.S. Pancreatic lipase inhibition activity of trilactone terpenes of Ginkgo biloba.J. Enzyme Inhib. Med. Chem.201126445345910.3109/14756366.2010.525509 21028941
    [Google Scholar]
  34. MayasankaravalliC. DeepikaK. Esther LydiaD. AgadaR. ThagrikiD. GovindasamyC. ChinnaduraiV. Othman GatarO.M. KhusroA. KimY.O. KimH.J. Profiling the phyto-constituents of Punica granatum fruits peel extract and accessing its in-vitro antioxidant, anti-diabetic, anti-obesity, and angiotensin-converting enzyme inhibitory properties.Saudi J. Biol. Sci.202027123228323410.1016/j.sjbs.2020.09.046 33304128
    [Google Scholar]
  35. IghodaroO.M. AkinloyeO.A. UgbajaR.N. OmotainseS.O. FaokunlaO. FT-IR analysis of Sapium ellipticum (Hochst) pax ethanol leaf extract and its inhibitory effects on pancreatic α- amylase and intestinal α-glucosidase activities in vitro. Egypt. j. basic. appl. sci.201634343349
    [Google Scholar]
  36. ChaeH.S. KimE.Y. HanL. KimN.R. LamB. PaikJ.H. YoonK.D. ChoiY.H. ChinY.W. Xanthones with pancreatic lipase inhibitory activity from the pericarps of Garcinia mangostana L. (Guttiferae).Eur. J. Lipid Sci. Technol.201611891416142110.1002/ejlt.201500516
    [Google Scholar]
  37. KawaguchiK. MizunoT. AidaK. UchinoK. Hesperidin as an inhibitor of lipases from porcine pancreas and Pseudomonas.Biosci. Biotechnol. Biochem.199761110210410.1271/bbb.61.102 9028038
    [Google Scholar]
  38. SharmaS. ChaudharyM. SharmaD. RaniA. Evaluation of anti-obesity activity of n-hexane and methanolic extracts of Cajanus cajan Linn. seeds using enzymatic methods.Indian J. Pharm. Edu. Res.2023573ss718s72310.5530/ijper.57.3s.81
    [Google Scholar]
  39. AnigboroA.A. AvwiorokoO.J. AkeghwareO. TonukariN.J. Anti-obesity, antioxidant and in silico evaluation of Justicia carnea bioactive compounds as potential inhibitors of an enzyme linked with obesity: Insights from kinetics, semi-empirical quantum mechanics and molecular docking analysis.Biophys. Chem.202127410660710.1016/j.bpc.2021.106607 33957576
    [Google Scholar]
  40. GwonSoYoung GS Lithospermum erythrorhizon suppresses high-fat diet-induced obesity, and acetylshikonin, a main compound of Lithospermum erythrorhizon, inhibits adipocyte differentiation.J. Agric. Food Chem.603690899096
    [Google Scholar]
  41. WooS. YoonM. KimJ. HongY. KimM.Y. ShinS.S. YoonM. The anti-angiogenic herbal extract from Melissa officinalis inhibits adipogenesis in 3T3-L1 adipocytes and suppresses adipocyte hypertrophy in high fat diet-induced obese C57BL/6J mice.J. Ethnopharmacol.201617823825010.1016/j.jep.2015.12.015 26702505
    [Google Scholar]
  42. KimD.Y. KimM.S. SaB.K. KimM.B. HwangJ.K. Boesenbergia pandurata attenuates diet-induced obesity by activating AMP-activated protein kinase and regulating lipid metabolism.Int. J. Mol. Sci.2012131994100510.3390/ijms13010994 22312299
    [Google Scholar]
  43. LeeS.J. KimJ.E. ChoiY.J. GongJ.E. JinY.J. LeeD.W. ChoiY.W. HwangD.Y. Anti-obesity effect of α-cubebenol isolated from Schisandra chinensis in 3T3-L1 adipocytes.Biomolecules20211111165010.3390/biom11111650 34827648
    [Google Scholar]
  44. KwonT.H. WuY.X. KimJ.S. WooJ.H. ParkK.T. 6,6′-Bieckol inhibits adipocyte differentiation through downregulation of adipogenesis and lipogenesis in 3T3-L1 cells.J. Sci. Food Agric.201595918301837
    [Google Scholar]
  45. AtheshK. Agnel Arul JohnN. SridharanG. BrindhaP. AlanaziA.M. RengasamyK.R.R. BalamuralikrishnanB. LiuW.C. Vijaya AnandA. Protective effect of Dolichos biflorus seed extract on 3t3-l1 preadipocyte differentiation and high-fat diet-induced obesity in rats.Evid. Based Complement. Alternat. Med.2023202311410.1155/2023/6251200
    [Google Scholar]
  46. HadrichF. MahmoudiA. ChamkhaM. IsodaH. SayadiS. Olive leaves extract and oleuropein improve insulin sensitivity in 3T3-L1 cells and high-fat diet-treated rats via PI3K/Akt signaling pathway.Oxid. Med. Cell. Longev.2023202311410.1155/2023/6828230 36647430
    [Google Scholar]
  47. Vishnu PrasadC.N. AnjanaT. BanerjiA. GopalakrishnapillaiA. Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3‐L1 cells.FEBS Lett.2010584353153610.1016/j.febslet.2009.11.092 19962377
    [Google Scholar]
  48. KimN.H. JegalJ. KimY. HeoJ.D. RhoJ.R. YangM. JeongE. Chokeberry extract and its active polyphenols suppress adipogenesis in 3T3-L1 adipocytes and modulates fat accumulation and insulin resistance in diet-induced obese mice.Nutrients20181011173410.3390/nu10111734 30424495
    [Google Scholar]
  49. KarriS. SharmaS. HatwareK. PatilK. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective.Biomed. Pharmacother.201911022423810.1016/j.biopha.2018.11.076 30481727
    [Google Scholar]
  50. NadeemS. DhoreP. QuaziM. PawarS. RajN. Lagenaria siceraria fruit extract ameliorate fat amassment and serum TNF–in high–fat diet–induced obese rats.Asian Pac. J. Trop. Med.20125969870210.1016/S1995‑7645(12)60109‑6 22805720
    [Google Scholar]
  51. EzzatS.M. El BishbishyM.H. AborehabN.M. SalamaM.M. HasheeshA. MotaalA.A. RashadH. MetwallyF.M. Upregulation of MC4R and PPAR-α expression mediates the anti-obesity activity of Moringa oleifera Lam. in high-fat diet-induced obesity in rats.J. Ethnopharmacol.202025111254110.1016/j.jep.2020.112541 31911179
    [Google Scholar]
  52. SanhuezaS. TobarN. CifuentesM. QuentiD. VarìR. ScazzocchioB. MasellaR. HerreraK. ParedesA. MoralesG. OrmazabalP. Lampaya Medicinalis Phil. decreases lipid-induced triglyceride accumulation and proinflammatory markers in human hepatocytes and fat body of Drosophila melanogaster.Int. J. Obes.20214571464147510.1038/s41366‑021‑00811‑8 33895783
    [Google Scholar]
  53. YangY. ChangY. WuY. LiuH. LiuQ. KangZ. WuM. YinH. DuanJ. A homogeneous polysaccharide from Lycium barbarum: Structural characterizations, anti-obesity effects and impacts on gut microbiota.Int. J. Biol. Macromol.20211832074208710.1016/j.ijbiomac.2021.05.209 34097961
    [Google Scholar]
  54. CloutierF. RoumaudP. Ayoub-CharetteS. ChowdhuryS. MartinL.J. The intake of an extract from seeds of Tamarindus indica L. modulates the endocrine function of adult male mice under a high fat diet.Heliyon202061e0331010.1016/j.heliyon.2020.e03310 32051875
    [Google Scholar]
  55. MokiranNN. IsmailA. AzlanA. HamidM. HassanFA. Effect of dabai (Canarium odontophyllum) fruit extract on biochemical parameters of induced obese–diabetic rats.j. funct. foods.20148139149
    [Google Scholar]
  56. Macho-GonzálezA. López-OlivaM.E. MerinoJ.J. García-FernándezR.A. GarcimartínA. Redondo-CastillejoR. BastidaS. Sánchez-MunizF.J. BenedíJ. Carob fruit extract-enriched meat improves pancreatic beta-cell dysfunction, hepatic insulin signaling and lipogenesis in late-stage type 2 diabetes mellitus model.J. Nutr. Biochem.20208410846110.1016/j.jnutbio.2020.108461 32739787
    [Google Scholar]
  57. MushtaqZ. KausarS. KousarN. ChiraghS. Effect of Ajwa date seed on lipid profile of diet-induced hyperlipidemic rabbits.Khyber Medical University Journal.201793135139
    [Google Scholar]
  58. BencheikhN. BouhrimM. MerrouniI.A. BoutahiriS. KharchoufaL. AddiM. TungmunnithumD. HanoC. EtoB. LegssyerA. ElachouriM. Antihyperlipidemic and antioxidant activities of flavonoid-rich extract of Ziziphus lotus (L.) lam. fruits.Appl. Sci.20211117778810.3390/app11177788
    [Google Scholar]
  59. HarnafiM. BekkouchO. TouissI. KhatibS. MokhtariI. MilenkovicD. HarnafiH. AmraniS. Phenolic-rich extract from almond (Prunus dulcis) hulls improves lipid metabolism in triton WR-1339 and high-fat diet-induced hyperlipidemic mice and prevents lipoprotein oxidation: a comparison with fenofibrate and butylated hydroxyanisole.Prev. Nutr. Food Sci.202025325426210.3746/pnf.2020.25.3.254 33083374
    [Google Scholar]
  60. MokwenaM.A.M. EngwaG.A. Nkeh-ChungagB.N. Sewani-RusikeC.R. Athrixia phylicoides tea infusion (bushman tea) improves adipokine balance, glucose homeostasis and lipid parameters in a diet-induced metabolic syndrome rat model.BMC Complement. Med. Ther.202121129210.1186/s12906‑021‑03459‑z 34844584
    [Google Scholar]
  61. YunusogluO. TürkmenÖ. BerkozM. YıldırımM. YalınS. In vitro anti-obesity effect of Aloe vera extract through transcription factors and lipolysis-associated genes.East. J. Med.202227451952810.5505/ejm.2022.13285
    [Google Scholar]
  62. LuoZ. HuangJ. LiZ. LiuZ. FuL. HuY. ShenX. Cajanolactone A, a Stilbenoid From Cajanus canjan (L.) Millsp, Prevents High-Fat Diet-Induced Obesity via Suppressing Energy Intake.Front. Pharmacol.20211269556110.3389/fphar.2021.695561 34135763
    [Google Scholar]
  63. Od-EkP. DeeninW. MalakulW. PhoungpetcharaI. TunsophonS. Anti obesity effect of Carica papaya in high fat diet fed rats.Biomed. Rep.20201343010.3892/br.2020.1337 32802327
    [Google Scholar]
  64. Rebecca RoyJ. JanakiC.S. JayaramanS. PeriyasamyV. BalajiT. VijayamalathiM. VeeraraghavanV.P. KrishnamoorthyK. PrasadM. Carica Papaya reduces high fat diet and streptozotocin-induced development of inflammation in adipocyte via IL-1β/IL-6/TNF-α mediated signaling mechanisms in type-2 diabetic rats.Curr. Issues Mol. Biol.202345285288410.3390/cimb45020056 36826001
    [Google Scholar]
  65. MoruzziM. KlötingN. BlüherM. MartinelliI. TayebatiS.K. GabrielliM.G. RoyP. Micioni Di BonaventuraM.V. CifaniC. LupidiG. AmentaF. TomassoniD. Tart cherry juice and seeds affect pro-inflammatory markers in visceral adipose tissue of high-fat diet obese rats.Molecules2021265140310.3390/molecules26051403 33807712
    [Google Scholar]
  66. RenX. WangL. ChenZ. HouD. XueY. DiaoX. ShenQ. Foxtail millet improves blood glucose metabolism in diabetic rats through pi3k/akt and nf-κb signaling pathways mediated by gut microbiota.Nutrients2021136183710.3390/nu13061837 34072141
    [Google Scholar]
  67. ShokouhP. JeppesenP.B. ChristiansenC.B. MellbyeF.B. HermansenK. GregersenS. Efficacy of arabica versus robusta coffee in improving weight, insulin resistance, and liver steatosis in a rat model of type-2 diabetes.Nutrients2019119207410.3390/nu11092074 31484373
    [Google Scholar]
  68. KowalskaK. OlejnikA. Zielińska-WasielicaJ. OlkowiczM. Raspberry (Rubus idaeus L.) fruit extract decreases oxidation markers, improves lipid metabolism and reduces adipose tissue inflammation in hypertrophied 3T3-L1 adipocytes.J. Funct. Foods20196210356810.1016/j.jff.2019.103568
    [Google Scholar]
  69. GhanbariM. LamukiM.S. HabibiE. SadeghimahalliF. Artemisia annua L. extracts improved insulin resistance via changing adiponectin, leptin and resistin production in HFD/STZ diabetic mice.J. Pharmacopuncture202225213013710.3831/KPI.2022.25.2.130 35837139
    [Google Scholar]
  70. OthmanM.S. KhaledA.M. Al-BagawiA.H. FareidM.A. GhanyR.A. HabottaO.A. Abdel MoneimA.E. Hepatorenal protective efficacy of flavonoids from Ocimum basilicum extract in diabetic albino rats: A focus on hypoglycemic, antioxidant, anti-inflammatory and anti-apoptotic activities.Biomed. Pharmacother.202114411228710.1016/j.biopha.2021.112287 34649220
    [Google Scholar]
  71. AnsariS. BariA. UllahR. MathanmohunM. VeeraraghavanV.P. SunZ. Gold nanoparticles synthesized with Smilax glabra rhizome modulates the anti-obesity parameters in high-fat diet and streptozotocin induced obese diabetes rat model.J. Photochem. Photobiol. B201920111164310.1016/j.jphotobiol.2019.111643 31698218
    [Google Scholar]
  72. SoltaniR. AsgaryS. BarzegarN. SarrafzadeganN. Evaluation on the effects of Tamarindus Indica L. fruit on body weight and several cardiometabolic risk factors in obese and overweight adult patients: A randomized controlled clinical trial.Int. J. Prev. Med.20201112410.4103/ijpvm.IJPVM_558_18 32175064
    [Google Scholar]
  73. BhandariU. ChaudhariH.S. BisnoiA.N. KumarV. KhannaG. JavedK. Anti-obesity effect of standardized ethanol extract of Embelia ribes in murine model of high fat diet-induced obesity.PharmaNutrition201312505710.1016/j.phanu.2013.01.001
    [Google Scholar]
  74. SongM. YangG. HoaT.Q. HieuH.D. AminA.S.M. ChoeW. KangI. KimS.S. HaJ. Anti-obesity effect of fermented persimmon extracts via activation of AMP-activated protein kinase.Biol. Pharm. Bull.202043344044910.1248/bpb.b19‑00777 32115502
    [Google Scholar]
  75. HouD. ZhaoQ. YousafL. XueY. ShenQ. Whole mung bean (Vigna radiata L.) supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice.Eur. J. Nutr.20205983617363410.1007/s00394‑020‑02196‑2 32048004
    [Google Scholar]
  76. ArikaW.M. KibitiC.M. NjagiJ.M. NgugiM.P. Anti-obesity effects of dichloromethane leaf extract of Gnidia glauca in high fat diet-induced obese rats.Heliyon2019511e0280010.1016/j.heliyon.2019.e02800 31844729
    [Google Scholar]
  77. Bruce-KellerA.J. RichardA.J. Fernandez-KimS.O. RibnickyD.M. SalbaumJ.M. NewmanS. CarmoucheR. StephensJ.M. Fenugreek counters the effects of high-fat diet on gut microbiota in mice: Links to metabolic benefit.Sci. Rep.2020101124510.1038/s41598‑020‑58005‑7 31988303
    [Google Scholar]
  78. NagammaT. KonuriA. BhatK.M. UdupaP.E. NayakY. Trigonella foenum-graecum L. seed extract modulates biochemical and histomorphological changes in therapeutic model of high-fat diet-fed ovariectomized rats. 3 Biotech.2023138285
    [Google Scholar]
  79. LiX. PengX. GuoK. TanZ. Bacterial diversity in the intestinal mucosa of mice fed with Dendrobium officinale and high-fat diet. 3 Biotech.2021112
    [Google Scholar]
  80. YuanY. LiuQ. ZhaoF. CaoJ. ShenX. LiC. Holothuria leucospilota polysaccharides ameliorate hyperlipidemia in high-fat diet-induced rats via short-chain fatty acids production and lipid metabolism regulation.Int. J. Mol. Sci.20192019473810.3390/ijms20194738 31554265
    [Google Scholar]
  81. ShimadaT. NagaiE. HarasawaY. AkaseT. AburadaT. IizukaS. MiyamotoK. AburadaM. Metabolic disease prevention and suppression of fat accumulation by Salacia reticulata.J. Nat. Med.201064326627410.1007/s11418‑010‑0401‑1 20225078
    [Google Scholar]
  82. OgawaT. TabataH. KatsubeT. OhtaY. YamasakiY. YamasakiM. ShiwakuK. Suppressive effect of hot water extract of wasabi (Wasabia japonica Matsum.) leaves on the differentiation of 3T3-L1 preadipocytes.Food Chem.2010118223924410.1016/j.foodchem.2009.04.113
    [Google Scholar]
  83. CarolineO.B. EbuehiO.A.T. CeciliaO.A. KayodeO.A. Effect of Allium sativum extract in combination -with orlistat on insulin resistance and disrupted metabolic hormones in high fat diet induced obese rats.Sci. Afr.202114e00994
    [Google Scholar]
  84. AgboolaAR. ItamAH. EkelemeCM. AgwupuyeEI. AhmedZO. IgiakongGP. AgborGB. AbubakarAN. AdamuZ. David-OkuE. Ameliorative effects of Alchornea cordifolia extract on bisphenol a-induced obesity in wistar rats. Posted Date: November 10th202310.21203/rs.3.rs‑3504686/v1
  85. ParkY.J. KimH.Y. ShinS. LeeJ. HeoI. ChaY.Y. AnH.J. Anti-obesity effect of Lythri herba water extracts in vitro and in vivo. J. Ethnopharmacol.202331711678910.1016/j.jep.2023.116789 37328083
    [Google Scholar]
  86. CaiX. WangS. WangH. LiuS. LiuG. ChenH. KangJ. WangH. Naringenin inhibits lipid accumulation by activating the AMPK pathway in vivo and vitro.Food Sci. Hum. Wellness20231241174118310.1016/j.fshw.2022.10.043
    [Google Scholar]
  87. HosodaS. KawazoeY. ShibaT. NumazawaS. ManabeA. Anti-obesity effect of ginkgo vinegar, a fermented product of ginkgo seed coat, in mice fed a high-fat diet and 3T3-L1 preadipocyte cells.Nutrients202012123010.3390/nu12010230 31963184
    [Google Scholar]
  88. LiuD. JiY. GuoY. WangH. WuZ. LiH. WangH. Dietary supplementation of apple phlorizin attenuates the redox state related to gut microbiota homeostasis in c57bl/6j mice fed with a high-fat diet.J. Agric. Food Chem.202169119821110.1021/acs.jafc.0c06426 33350821
    [Google Scholar]
  89. LiuD. JiY. ZhaoJ. WangH. GuoY. WangH. Black rice (Oryza sativa L.) reduces obesity and improves lipid metabolism in C57BL/6J mice fed a high-fat diet.J. Funct. Foods20206410360510.1016/j.jff.2019.103605
    [Google Scholar]
  90. WanY. LiuL.Y. HongZ.F. PengJ. Ethanol extract of Cirsium japonicum attenuates hepatic lipid accumulation via AMPK activation in human HepG2 cells.Exp. Ther. Med.201481798410.3892/etm.2014.1698 24944601
    [Google Scholar]
  91. Zar KalaiF. HanJ. KsouriR. El OmriA. AbdellyC. IsodaH. Antiobesity effects of an edible halophyte Nitraria retusa Forssk in 3T3-L1 preadipocyte differentiation and in C57B6J/L Mice fed a high fat diet-induced obesity.Evid. Based Complement. Alternat. Med.20132013368658
    [Google Scholar]
  92. MaM. GuF. YueZ. GaoL. ChenC. LinQ. HuangK. LiX. DaiJ. HanB. Dendrobium huoshanense improves lipid metabolism disorder by restoring gut flora and metabolites in mice fed a high-fat diet.J. Food Biochem.2024202411610.1155/2024/6245499
    [Google Scholar]
  93. XiaoM. HuangM. HuanW. DongJ. XiaoJ. WuJ. WangD. SongL. Effects of Torreya grandis kernel oil on lipid metabolism and intestinal flora in C57BL/6J mice.Oxid. Med. Cell. Longev.2022202212010.1155/2022/4472751 35464771
    [Google Scholar]
  94. ParkH.J. RhieS.J. ShimI. Neuronal mechanisms of ginseng on antiobesity effects: Implication of its synergistic benefits with physical exercise.J. Exerc. Rehabil.202117638839410.12965/jer.2142668.334 35036387
    [Google Scholar]
  95. KimN.Y. ThomasS.S. HwangD.I. LeeJ.H. KimK.A. ChaY.S. Anti-obesity effects of Morus alba L. and Aronia melanocarpa in a high-fat diet-induced obese C57BL/6J mouse model.Foods2021108191410.3390/foods10081914 34441691
    [Google Scholar]
  96. ChengJ. LiuY. LiuY. LiuD. LiuY. GuoY. WuZ. LiH. WangH. Ursolic acid alleviates lipid accumulation by activating the AMPK signaling pathway in vivo and in vitro. J. Food Sci.202085113998400810.1111/1750‑3841.15475 33001454
    [Google Scholar]
  97. BortA. SánchezB. Mateos-GómezP. Díaz-LaviadaI. Rodríguez-HencheN. Capsaicin targets lipogenesis in HepG2 cells through AMPK activation, AKT inhibition and PPARs regulation.Int. J. Mol. Sci.2019207166010.3390/ijms20071660 30987128
    [Google Scholar]
  98. TsudukiT. KikuchiI. KimuraT. NakagawaK. MiyazawaT. Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice.Food Chem.20131391-4162310.1016/j.foodchem.2013.02.025 23561072
    [Google Scholar]
  99. ThomasS.S. KimM. LeeS.J. ChaY.S. Antiobesity effects of purple perilla (Perilla frutescens var. acuta) on adipocyte differentiation and mice fed a high‐fat diet.J. Food Sci.20188392384239310.1111/1750‑3841.14288 30070698
    [Google Scholar]
  100. ChoiH.I. LeeD.H. ParkS.H. JangY.J. AhnJ. HaT.Y. JungC.H. Antiobesity effects of the combination of Patrinia scabiosaefolia root and Hippophae rhamnoides leaf extracts.J. Food Biochem.2020446e1321410.1111/jfbc.13214 32232876
    [Google Scholar]
  101. LeeH.S. JeonY.E. AwaR. YoshinoS. KimE.J. Kaempferia parviflora rhizome extract exerts anti-obesity effect in high-fat diet-induced obese C57BL/6N mice.Food Nutr. Res.2023676710.29219/fnr.v67.9413 37691744
    [Google Scholar]
  102. WangZ. KimJ.H. JangY.S. KimC.H. LeeJ.Y. LimS.S. Anti-obesity effect of Solidago virgaurea var. gigantea extract through regulation of adipogenesis and lipogenesis pathways in high-fat diet-induced obese mice (C57BL/6N).Food Nutr. Res.2017611127347910.1080/16546628.2016.1273479 28326002
    [Google Scholar]
  103. LimS.M. LeeH.S. JungJ.I. KimS.M. KimN.Y. SeoT.S. BaeJ.S. KimE.J. Cyanidin-3-O-galactoside-enriched Aronia melanocarpa extract attenuates weight gain and adipogenic pathways in high-fat diet-induced obese C57BL/6 mice.Nutrients2019115119010.3390/nu11051190 31137884
    [Google Scholar]
  104. MaQ. CuiY. XuS. ZhaoY. YuanH. PiaoG. Synergistic inhibitory effects of acacetin and 11 other flavonoids isolated from Artemisia sacrorum on lipid accumulation in 3T3-L1 cells.J. Agric. Food Chem.20186649129311294010.1021/acs.jafc.8b04683 30381943
    [Google Scholar]
  105. ParkS.H. LeeD.H. KimM.J. AhnJ. JangY.J. HaT.Y. JungC.H. Inula japonica Thunb. flower ethanol extract improves obesity and exercise endurance in mice fed a high-fat diet.Nutrients20181111710.3390/nu11010017 30577560
    [Google Scholar]
  106. HirakiE. FurutaS. KuwaharaR. TakemotoN. NagataT. AkasakaT. ShirouchiB. SatoM. OhnukiK. ShimizuK. Anti-obesity activity of Yamabushitake (Hericium erinaceus) powder in ovariectomized mice, and its potentially active compounds.J. Nat. Med.201771348249110.1007/s11418‑017‑1075‑8 28181079
    [Google Scholar]
  107. Abdul KadirN.A. RahmatA. JaafarH.Z. Protective effects of tamarillo (Cyphomandra betacea) extract against high fat diet induced obesity in Sprague-Dawley rats.J. Obes.20152015846041
    [Google Scholar]
  108. KimS.J. BangC.Y. GuoY.R. ChoungS.Y. Anti-obesity effects of Aster spathulifolius extract in high-fat diet-induced obese rats.J. Med. Food201619435336410.1089/jmf.2015.3566 26908215
    [Google Scholar]
  109. JambocusN.G. SaariN. IsmailA. KhatibA. MahomoodallyM.F. HamidA.A. An investigation into the antiobesity effects of Morinda citrifolia L. leaf extract in high fat diet induced obese rats using a 1H NMR metabolomics approach.J. Diabetes Res.20162016239159210.1155/2016/2391592 26798649
    [Google Scholar]
  110. ParkH.J. LeeS. YeM. HanB.H. ShimH.S. JangD. ShimI. Anti-obesity effect of chitoglucan in high-fat-induced obesity mice.Int. J. Environ. Res. Public Health202220128110.3390/ijerph20010281 36612600
    [Google Scholar]
  111. HuR. Grifola frondosa may play an anti-obesity role by affecting intestinal microbiota to increase the production of short-chain fatty acids.Front. Endocrinol.202313110507310.3389/fendo.2022.1105073 36733799
    [Google Scholar]
  112. XieY. ZhangH. LiuH. XiongL. GaoX. JiaH. LianZ. TongN. HanT. Hypocholesterolemic effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rat.Braz. J. Microbiol.201546238939510.1590/S1517‑838246220131278 26273253
    [Google Scholar]
  113. YoonK.N. LeeJ.S. KimH.Y. LeeK.R. ShinP.G. CheongJ.C. YooY.B. AlamN. HaT.M. LeeT.S. Appraisal of antihyperlipidemic activities of Lentinus lepideus in hypercholesterolemic rats.Mycobiology201139428328910.5941/MYCO.2011.39.4.283 22783117
    [Google Scholar]
  114. LiH. ZhangM. MaG. Hypolipidemic effect of the polysaccharide from Pholiota nameko.Nutrition201026555656210.1016/j.nut.2009.06.009 19815391
    [Google Scholar]
  115. ZhengJ. YangB. YuY. ChenQ. HuangT. LiD. Ganoderma lucidum polysaccharides exert anti-hyperglycemic effect on streptozotocin-induced diabetic rats through affecting β-cells.Comb. Chem. High Throughput Screen.201215754255010.2174/138620712801619168 22329512
    [Google Scholar]
  116. WangS. ChenL. YangH. GuJ. WangJ. RenF. Regular intake of white kidney beans extract (Phaseolus vulgaris L.) induces weight loss compared to placebo in obese human subjects.Food Sci. Nutr.2020831315132410.1002/fsn3.1299 32180941
    [Google Scholar]
  117. AnJ.P. DangL.H. HaT.K.Q. PhamH.T.T. LeeB.W. LeeC.H. OhW.K. Flavone glycosides from Sicyos angulatus and their inhibitory effects on hepatic lipid accumulation.Phytochemistry2019157536310.1016/j.phytochem.2018.10.013 30368219
    [Google Scholar]
  118. ZagaykoA.L. KolisnykT.Y. ChumakO.I. RubanO.A. KoshovyiO.M. Evaluation of anti-obesity and lipid-lowering properties of Vaccinium myrtillus leaves powder extract in a hamster model.J. Basic Clin. Physiol. Pharmacol.201829669770310.1515/jbcpp‑2017‑0161 30052516
    [Google Scholar]
  119. KravchenkoG. KrasilnikovaO. RaalA. MazenM. ChaikaN. KireyevI. GrytsykA. KoshovyiO. Arctostaphylos uva-ursi L. leaves extract and its modified cysteine preparation for the management of insulin resistance: Chemical analysis and bioactivity.Nat. Prod. Bioprospect.20221213010.1007/s13659‑022‑00352‑1 35953755
    [Google Scholar]
  120. El-shiekhR.A. Al-MahdyD.A. MouneirS.M. HifnawyM.S. Abdel-SattarE.A. Anti-obesity effect of argel (Solenostemma argel) on obese rats fed a high fat diet.J. Ethnopharmacol.201923811189310.1016/j.jep.2019.111893 30999011
    [Google Scholar]
  121. ChoY.R. LeeJ.A. KimY.Y. KangJ.S. LeeJ.H. AhnE.K. Anti-obesity effects of Clausena excavata in high-fat diet-induced obese mice.Biomed. Pharmacother.20189925326010.1016/j.biopha.2018.01.069 29334669
    [Google Scholar]
  122. KimJ. ChoiJ.H. OhT. AhnB. UnnoT. Codium fragile ameliorates high-fat diet-induced metabolism by modulating the gut microbiota in mice.Nutrients2020126184810.3390/nu12061848 32575855
    [Google Scholar]
  123. JeongY.J. SohnE.H. JungY.H. YoonW.J. ChoY.M. KimI. LeeS.R. KangS.C. Anti-obesity effect of Crinum asiaticum var. japonicum Baker extract in high-fat diet-induced and monogenic obese mice.Biomed. Pharmacother.201682354310.1016/j.biopha.2016.04.067 27470336
    [Google Scholar]
  124. WuY. TanF. ZhangT. XieB. RanL. ZhaoX. The anti-obesity effect of lotus leaves on high-fat-diet-induced obesity by modulating lipid metabolism in C57BL/6J mice.Appl. Biol. Chem.20206316110.1186/s13765‑020‑00541‑x
    [Google Scholar]
  125. Coronado-CáceresL.J. Rabadán-ChávezG. MojicaL. Hernández-LedesmaB. Quevedo-CoronaL. Lugo CervantesE. Cocoa (Theobroma cacao L.) seed proteins’ anti-obesity potential through lipase inhibition using in silico, in vitro and in vivo models.Foods2020910135910.3390/foods9101359 32992701
    [Google Scholar]
  126. GoyalA. KaurR. SharmaD. SharmaM. Protective effect of Betula utilis bark extract on high fat diet induced obesity in Wistar rats.Obes. Med.20191510012310.1016/j.obmed.2019.100123
    [Google Scholar]
  127. SongJ.H. KimH. JeongM. KongM.J. ChoiH.K. JunW. KimY. ChoiK.C. In vivo evaluation of Dendropanax morbifera leaf extract for anti-obesity and cholesterol-lowering activity in mice.Nutrients2021135142410.3390/nu13051424 33922621
    [Google Scholar]
  128. OjulariO.V. LeeS.G. NamJ.O. Beneficial effects of natural bioactive compounds from Hibiscus sabdariffa L. on obesity.Molecules201924121010.3390/molecules24010210 30626104
    [Google Scholar]
  129. YouH. HaoR. LiR. ZhangL. ZhuY. LuoY. The effect of radish sourced 4-(Methylthio)-3-butenyl isothiocyanate on ameliorating the severity of high fat diet inducted nonalcoholic fatty liver disease in rats.Int. J. Clin. Exp. Med.2015891591015919 26629094
    [Google Scholar]
  130. EzzM. AtefA. HassaneinN. Protective and curative antiobesity potential of lemon peel extract in rats fed on high fat diet: Mechanism of action.Int J Biochem Res.2016124117
    [Google Scholar]
  131. ChinnalaM.N. ElsaniM.M. MekalaK.S. Evaluation of anti-obesity activity of Sesamum indicum Linn. In high fat diet induced obesity rats.Int. J Phytopharmacol.201453179182
    [Google Scholar]
  132. AvciG. KüçükkurtI. Küpeli AkkolE. YeşiladaE. Effects of escin mixture from the seeds of Aesculus hippocastanum on obesity in mice fed a high fat diet.Pharm. Biol.201048324725210.3109/13880200903085466 20645808
    [Google Scholar]
  133. ShuY.H. YuanH.H. XuM.T. HongY.T. GaoC.C. WuZ.P. A novel Diels–Alder adduct of mulberry leaves exerts anticancer effect through autophagy-mediated cell death.Acta Pharmacologica Sinica20204278079010.1038/s41401‑020‑0492‑5
    [Google Scholar]
  134. MengQ. QiX. FuY. ChenQ. ChengP. YuX. SunX. WuJ. LiW. ZhangQ. LiY. WangA. BianH. Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes.J. Ethnopharmacol.202024811232610.1016/j.jep.2019.112326 31639486
    [Google Scholar]
  135. ChenJ. LiX. Hypolipidemic effect of flavonoids from mulberry leaves in triton WR-1339 induced hyperlipidemic mice.Asia Pac. J. Clin. Nutr.200716Suppl. 129029410.6133/apjcn.2007.16.s1.55 17392121
    [Google Scholar]
  136. ZhongY. SongB. ZhengC. ZhangS. YanZ. TangZ. KongX. DuanY. LiF. Flavonoids from mulberry leaves alleviate lipid dysmetabolism in high fat diet fed mice: involvement of gut microbiota.Microorganisms20208686010.3390/microorganisms8060860 32517288
    [Google Scholar]
  137. HsuL.S. HoH.H. LinM.C. ChyauC.C. PengJ.S. WangC.J. Mulberry water extracts (MWEs) ameliorated carbon tetrachloride-induced liver damages in rat.Food Chem. Toxicol.20125093086309310.1016/j.fct.2012.05.055 22705329
    [Google Scholar]
  138. AzizF. XinM. GaoY. ChakrobortyA. KhanI. MontsJ. Induction and prevention of gastric cancer with combined and capsaicin administration and DFMO treatment, respectively.Cancers20201281610.3390/cancers12040816 32231118
    [Google Scholar]
  139. ChiangC. ZhangM. WangD. XiaoT. ZhuL. ChenK. HuangJ. HuangJ. ZhuJ. LiL. ChenC. ChenY. HuH. JiangW. ZouY. WangT. ZhengD. Therapeutic potential of targeting MKK3-p38 axis with Capsaicin for Nasopharyngeal Carcinoma.Theranostics202010177906792010.7150/thno.45191 32685028
    [Google Scholar]
  140. ChenJ. LiL. LiY. LiangX. SunQ. YuH. ZhongJ. NiY. ChenJ. ZhaoZ. GaoP. WangB. LiuD. ZhuZ. YanZ. Activation of TRPV1 channel by dietary capsaicin improves visceral fat remodeling through connexin43-mediated Ca2+ Influx.Cardiovasc. Diabetol.20151412210.1186/s12933‑015‑0183‑6 25849380
    [Google Scholar]
  141. RaufA. ImranM. ButtM.S. NadeemM. PetersD.G. MubarakM.S. Resveratrol as an anti-cancer agent: A review.Crit. Rev. Food Sci. Nutr.20185891428144710.1080/10408398.2016.1263597 28001084
    [Google Scholar]
  142. YanY. YangH. XieY. DingY. KongD. YuH. Research progress on alzheimer’s disease and resveratrol.Neurochem. Res.2020455989100610.1007/s11064‑020‑03007‑0 32162143
    [Google Scholar]
  143. HuiS. LiuY. HuangL. ZhengL. ZhouM. LangH. WangX. YiL. MiM. Resveratrol enhances brown adipose tissue activity and white adipose tissue browning in part by regulating bile acid metabolism via gut microbiota remodeling.Int. J. Obes.20204481678169010.1038/s41366‑020‑0566‑y 32203111
    [Google Scholar]
  144. ChenF. WangH. ZhaoJ. YanJ. MengH. ZhanH. ChenL. YuanL. Grape seed proanthocyanidin inhibits monocrotaline-induced pulmonary arterial hypertension via attenuating inflammation: in vivo and in vitro studies.J. Nutr. Biochem.201967727710.1016/j.jnutbio.2019.01.013 30856466
    [Google Scholar]
  145. XuM. ChenX. HuangZ. ChenD. YuB. ChenH. LuoY. ZhengP. YuJ. HeJ. Grape seed proanthocyanidin extract promotes skeletal muscle fiber type transformation via AMPK signaling pathway.J. Nutr. Biochem.20208410846210.1016/j.jnutbio.2020.108462 32738732
    [Google Scholar]
  146. DowningL.E. HeidkerR.M. CaiozziG.C. WongB.S. RodriguezK. Del ReyF. RickettsM.L. A grape seed procyanidin extract ameliorates fructose-induced hypertriglyceridemia in rats via enhanced fecal bile acid and cholesterol excretion and inhibition of hepatic lipogenesis.PLoS One20151010e014026710.1371/journal.pone.0140267 26458107
    [Google Scholar]
  147. PajueloD. QuesadaH. DíazS. Fernández-IglesiasA. Arola-ArnalA. BladéC. SalvadóJ. ArolaL. Chronic dietary supplementation of proanthocyanidins corrects the mitochondrial dysfunction of brown adipose tissue caused by diet-induced obesity in Wistar rats.Br. J. Nutr.2012107217017810.1017/S0007114511002728 21733324
    [Google Scholar]
  148. Pascual-SerranoA. BladéC. SuárezM. Arola-ArnalA. Grape seed proanthocyanidins improve white adipose tissue expansion during diet-induced obesity development in rats.Int. J. Mol. Sci.2018199263210.3390/ijms19092632 30189642
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010311549240627104313
Loading
/content/journals/cpb/10.2174/0113892010311549240627104313
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioactive; epidermalogy; herbals; hormones; Obesity; orlistat
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test