Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Inflammation serves as a protective response to combat cellular and tissue damage. There is currently a wide array of synthetic and traditional therapies available for the treatment of inflammatory diseases. However, it is necessary to create a drug delivery system based on nanotechnology that can improve the solubility, permeability, and bioavailability of current treatments. Mesoporous silica nanoparticles (MSNPs) are inorganic materials known for their organised porous interiors, high pore volumes, substantial surface area, exceptional selectivity, permeability, low refractive index, and customisable pore sizes.

Objective

This review offers concise insights into the progression of the pathophysiology of inflammation, as well as the inducers, mediators, and effectors that are involved in the inflammatory pathway. This study focuses on the growing significance of MSNPs in the treatment of neuroinflammation, inflammatory bowel disease, arthritic inflammation, lung inflammation, and wound healing applications. This review also presents the latest information on the crucial role of MSNPs in delivering herbal medicines for the treatment of inflammation.

Methods

A comprehensive literature search was conducted for this aim, utilising the Google Scholar, PubMed, and ScienceDirect databases. A systematic review was undertaken utilising scholarly articles published in peer-reviewed journals from 2000 to 2024.

Results

The inflammatory mediators involved in the pathophysiology of inflammation include platelet-activating factor, lipoxygenase, cyclooxygenase, Interferon-α, interleukin-6, interleukin-1β, matrix metalloproteinases, inducible nitric oxide synthase, nuclear factor-κB, prostaglandins, nitric oxide, and phospholipase A2. MSNPs have the potential to be used in the treatment of neuroinflammation, inflammatory bowel disease, arthritic inflammation, lung inflammation, and wound healing. The investigation of the MSNPs of plant-based compounds such as berberine, tetrahydrocannabinol, curcumin, and resveratrol has shown successful results in recent years for the purpose of managing inflammation.

Conclusion

This review demonstrates that MSNPs have a strong potential to play a positive role in delivering synthetic and plant-based therapies for the treatment of inflammatory illnesses.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010310578240926051158
2024-10-08
2025-09-13
Loading full text...

Full text loading...

References

  1. SullivanG.W. SarembockI.J. LindenJ. The role of inflammation in vascular diseases.J. Leukoc. Biol.200067559160210.1002/jlb.67.5.591 10810997
    [Google Scholar]
  2. IsailovicN. DaigoK. MantovaniA. SelmiC. Interleukin-17 and innate immunity in infections and chronic inflammation.J. Autoimmun.20156011110.1016/j.jaut.2015.04.006 25998834
    [Google Scholar]
  3. SerhanC.N. DalliJ. ColasR.A. WinklerJ.W. ChiangN. Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20151851439741310.1016/j.bbalip.2014.08.006 25139562
    [Google Scholar]
  4. MatsudaM. HuhY. JiR.R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain.J. Anesth.201933113113910.1007/s00540‑018‑2579‑4 30448975
    [Google Scholar]
  5. BartonG.M. A calculated response: Control of inflammation by the innate immune system.J. Clin. Invest.2008118241342010.1172/JCI34431 18246191
    [Google Scholar]
  6. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.23208 29467962
    [Google Scholar]
  7. BallantyneC.M. NambiV. Markers of inflammation and their clinical significance.Atheroscler. Suppl.200562212910.1016/j.atherosclerosissup.2005.02.005 15823493
    [Google Scholar]
  8. MackM. Inflammation and fibrosis.Matrix Biol.201868-6910612110.1016/j.matbio.2017.11.010 29196207
    [Google Scholar]
  9. MamaevaV. SahlgrenC. LindénM. Mesoporous silica nanoparticles in medicine—Recent advances.Adv. Drug Deliv. Rev.201365568970210.1016/j.addr.2012.07.018 22921598
    [Google Scholar]
  10. Vivero-EscotoJ.L. SlowingI.I. TrewynB.G. LinV.S.Y. Mesoporous silica nanoparticles for intracellular controlled drug delivery.Small20106181952196710.1002/smll.200901789 20690133
    [Google Scholar]
  11. Johnson-LégerC. ImhofB.A. Forging the endothelium during inflammation: Pushing at a half-open door?Cell Tissue Res.200331419310510.1007/s00441‑003‑0775‑4 12955495
    [Google Scholar]
  12. MoniczewskiA. GawlikM. SmagaI. NiedzielskaE. KrzekJ. PrzegalińskiE. PeraJ. FilipM. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 1. Chemical aspects and biological sources of oxidative stress in the brain.Pharmacol. Rep.201567356056810.1016/j.pharep.2014.12.014 25933970
    [Google Scholar]
  13. HiranoT. IL-6 in inflammation, autoimmunity and cancer.Int. Immunol.202133312714810.1093/intimm/dxaa078 33337480
    [Google Scholar]
  14. KumarR. ClermontG. VodovotzY. ChowC.C. The dynamics of acute inflammation.J. Theor. Biol.2004230214515510.1016/j.jtbi.2004.04.044 15321710
    [Google Scholar]
  15. AnjaniG. VigneshP. JoshiV. ShandilyaJ.K. BhattaraiD. SharmaJ. RawatA. Recent advances in chronic granulomatous disease.Genes Dis.202071849210.1016/j.gendis.2019.07.010 32181279
    [Google Scholar]
  16. WilsonJ.L. MayrH.K. WeichhartT. Metabolic programming of macrophages: Implications in the pathogenesis of granulomatous disease.Front. Immunol.201910226510.3389/fimmu.2019.02265 31681260
    [Google Scholar]
  17. SehgalA. BehlT. KaurI. SinghS. SharmaN. AleyaL. Targeting NLRP3 inflammasome as a chief instigator of obesity, contributing to local adipose tissue inflammation and insulin resistance.Environ. Sci. Pollut. Res. Int.20212832431024311310.1007/s11356‑021‑14904‑4 34145545
    [Google Scholar]
  18. HolgateS.T. Peters-GoldenM. PanettieriR.A. HendersonW.R.Jr Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling.J. Allergy Clin. Immunol.20031111Suppl.S18S3610.1067/mai.2003.25 12532084
    [Google Scholar]
  19. HinzB. BruneK. PahlA. Prostaglandin E(2) upregulates cyclooxygenase-2 expression in lipopolysaccharide-stimulated RAW 264.7 macrophages.Biochem. Biophys. Res. Commun.2000272374474810.1006/bbrc.2000.2859 10860826
    [Google Scholar]
  20. ThangamE.B. JemimaE.A. SinghH. BaigM.S. KhanM. MathiasC.B. ChurchM.K. SalujaR. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: The hunt for new therapeutic targets.Front. Immunol.20189187310.3389/fimmu.2018.01873 30150993
    [Google Scholar]
  21. Ben-ShmuelS. DanonA. Fleisher-BerkovichS. Bradykinin decreases nitric oxide release from microglia via inhibition of cyclic adenosine monophosphate signaling.Peptides20134013314010.1016/j.peptides.2013.01.006 23340021
    [Google Scholar]
  22. DrenichevM.S. OslovskyV.E. MikhailovS.N. Cytokinin nucleosides-natural compounds with a unique spectrum of biological activities.Curr. Top. Med. Chem.201616232562257610.2174/1568026616666160414123717 27086793
    [Google Scholar]
  23. HofmanZ. de MaatS. HackC.E. MaasC. Bradykinin: Inflammatory product of the coagulation system.Clin. Rev. Allergy Immunol.201651215216110.1007/s12016‑016‑8540‑0 27122021
    [Google Scholar]
  24. BandawaneA. SaudagarR. A review on novel drug delivery system: A recent trend.J. Drug Deliv. Ther.20199351752110.22270/jddt.v9i3.2610
    [Google Scholar]
  25. RajithaP. GopinathD. BiswasR. SabithaM. JayakumarR. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases.Expert Opin. Drug Deliv.20161381177119410.1080/17425247.2016.1178232 27087148
    [Google Scholar]
  26. KimH. KimB.H. HuhB.K. YooY.C. HeoC.Y. ChoyY.B. ParkJ.H. Surgical suture releasing macrophage-targeted drug-loaded nanoparticles for an enhanced anti-inflammatory effect.Biomater. Sci.2017581670167710.1039/C7BM00345E 28715515
    [Google Scholar]
  27. StevensonR. HueberA.J. HuttonA. McInnesI.B. GrahamD. Nanoparticles and Inflammation.ScientificWorldJournal20111111300131210.1100/tsw.2011.106 21666995
    [Google Scholar]
  28. SurS. RathoreA. DaveV. ReddyK.R. ChouhanR.S. SadhuV. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct.Nano-Objects20192010039710.1016/j.nanoso.2019.100397
    [Google Scholar]
  29. ZahinN. AnwarR. TewariD. KabirM.T. SajidA. MathewB. UddinM.S. AleyaL. Abdel-DaimM.M. Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery.Environ. Sci. Pollut. Res. Int.20202716191511916810.1007/s11356‑019‑05211‑0 31079299
    [Google Scholar]
  30. Bakhshian NikA. ZareH. RazaviS. MohammadiH. Torab AhmadiP. YazdaniN. BayandoriM. RabieeN. Izadi MobarakehJ. Smart drug delivery: Capping strategies for mesoporous silica nanoparticles.Microporous Mesoporous Mater.202029911011510.1016/j.micromeso.2020.110115
    [Google Scholar]
  31. GhaferiM. Koohi Moftakhari EsfahaniM. RazaA. Al HarthiS. Ebrahimi ShahmabadiH. AlaviS.E. Mesoporous silica nanoparticles: Synthesis methods and their therapeutic use-recent advances.J. Drug Target.202129213115410.1080/1061186X.2020.1812614 32815741
    [Google Scholar]
  32. LiT. ShiS. GoelS. ShenX. XieX. ChenZ. ZhangH. LiS. QinX. YangH. WuC. LiuY. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer.Acta Biomater.20198911310.1016/j.actbio.2019.02.031 30797106
    [Google Scholar]
  33. TangF. LiL. ChenD. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery.Adv. Mater.201224121504153410.1002/adma.201104763 22378538
    [Google Scholar]
  34. ManzanoM. Vallet-RegíM. Mesoporous silica nanoparticles for drug delivery.Adv. Funct. Mater.2020302190263410.1002/adfm.201902634
    [Google Scholar]
  35. Gisbert-GarzaránM. ManzanoM. Vallet-RegíM. Mesoporous silica nanoparticles for the treatment of complex bone diseases: Bone cancer, bone infection and osteoporosis.Pharmaceutics20201218310.3390/pharmaceutics12010083 31968690
    [Google Scholar]
  36. SarojS. RajputS.J. Composite smart mesoporous silica nanoparticles as promising therapeutic and diagnostic candidates: Recent trends and applications.J. Drug Deliv. Sci. Technol.20184434936510.1016/j.jddst.2018.01.014
    [Google Scholar]
  37. HuY. WangJ. ZhiZ. JiangT. WangS. Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug.J. Colloid Interface Sci.2011363141041710.1016/j.jcis.2011.07.022 21820127
    [Google Scholar]
  38. ManzanoM. AinaV. AreánC.O. BalasF. CaudaV. ColillaM. DelgadoM.R. Vallet-RegíM. Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization.Chem. Eng. J.20081371303710.1016/j.cej.2007.07.078
    [Google Scholar]
  39. MirzaeiM. ZarchM.B. DarroudiM. SayyadiK. KeshavarzS.T. SayyadiJ. FallahA. MalekiH. Silica mesoporous structures: Effective nanocarriers in drug delivery and nanocatalysts.Appl. Sci. (Basel)20201021753310.3390/app10217533
    [Google Scholar]
  40. JiY. SongS. LiX. LvR. WuL. WangH. CaoM. Facile fabrication of nanocarriers with yolk-shell mesoporous silica nanoparticles for effective drug delivery.J. Drug Deliv. Sci. Technol.20216310253110.1016/j.jddst.2021.102531
    [Google Scholar]
  41. MehmoodY. ShahidH. RashidM.A. AlhamhoomY. KaziM. Developing of SiO2 nanoshells loaded with fluticasone propionate for potential nasal drug delivery: Determination of pro-inflammatory cytokines through mRNA expression.J. Funct. Biomater.202213422910.3390/jfb13040229 36412870
    [Google Scholar]
  42. LiewS.S. QinX. ZhouJ. LiL. HuangW. YaoS.Q. Smart Design of Nanomaterials for Mitochondria‐Targeted Nanotherapeutics.Angew. Chem. Int. Ed.20216052232225610.1002/anie.201915826 32128948
    [Google Scholar]
  43. StewartC.A. FinerY. HattonB.D. Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles.Sci. Rep.20188189510.1038/s41598‑018‑19166‑8 29343729
    [Google Scholar]
  44. SlowingI.I. TrewynB.G. GiriS. LinV.S.Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications.Adv. Funct. Mater.20071781225123610.1002/adfm.200601191
    [Google Scholar]
  45. SayedE. Haj-AhmadR. RupareliaK. ArshadM.S. ChangM.W. AhmadZ. Porous inorganic drug delivery systems-a review.AAPS PharmSciTech20171851507152510.1208/s12249‑017‑0740‑2 28247293
    [Google Scholar]
  46. JafariS. DerakhshankhahH. AlaeiL. FattahiA. VarnamkhastiB.S. SabouryA.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications.Biomed. Pharmacother.20191091100111110.1016/j.biopha.2018.10.167 30551360
    [Google Scholar]
  47. RizziF. CastaldoR. LatronicoT. LasalaP. GentileG. LavorgnaM. StriccoliM. AgostianoA. ComparelliR. DepaloN. CurriM.L. FanizzaE. High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: Insights on the size and porosity control mechanisms.Molecules20212614424710.3390/molecules26144247 34299522
    [Google Scholar]
  48. RámilaA. MuñozB. Pérez-ParienteJ. Vallet-RegíM. Mesoporous MCM-41 as drug host system.J. Sol-Gel Sci. Technol.2003261/31199120210.1023/A:1020764319963
    [Google Scholar]
  49. LeeJ.W. ShimW.G. MoonH. Adsorption equilibrium and kinetics for capillary condensation of trichloroethylene on MCM-41 and MCM-48.Microporous Mesoporous Mater.200473310911910.1016/j.micromeso.2004.04.020
    [Google Scholar]
  50. YanX. KomarneniS. YanZ. CO2 adsorption on Santa Barbara Amorphous-15 (SBA-15) and amine-modified Santa Barbara Amorphous-15 (SBA-15) with and without controlled microporosity.J. Colloid Interface Sci.2013390121722410.1016/j.jcis.2012.09.038 23084869
    [Google Scholar]
  51. TanB. RankinS.E. Dual latex/surfactant templating of hollow spherical silica particles with ordered mesoporous shells.Langmuir200521188180818710.1021/la050618s 16114920
    [Google Scholar]
  52. NagesettiA. McGoronA.J. Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hyperthermia and near infrared imaging.Colloids Surf. B Biointerfaces201614749250010.1016/j.colsurfb.2016.07.048 27614237
    [Google Scholar]
  53. DashS. MishraS. PatelS. MishraB.K. Organically modified silica: Synthesis and applications due to its surface interaction with organic molecules.Adv. Colloid Interface Sci.20081402779410.1016/j.cis.2007.12.006 18321464
    [Google Scholar]
  54. ParkSS Santha MoorthyM HaCS Periodic mesoporous organosilicas for advanced applications.NPG Asia Mater.201464e9610.1038/am.2014.13
    [Google Scholar]
  55. MizoshitaN. TaniT. InagakiS. Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors.Chem. Soc. Rev.201140278980010.1039/C0CS00010H 21135951
    [Google Scholar]
  56. XiaH.S. ZhouC.H.C. TongD.S. LinC.X. Synthesis chemistry and application development of periodic mesoporous organosilicas.J. Porous Mater.201017222525210.1007/s10934‑009‑9284‑5
    [Google Scholar]
  57. García-FernándezA. SanchoM. BisbalV. AmorósP. MarcosM.D. OrzáezM. SancenónF. Martínez-MáñezR. Targeted-lung delivery of dexamethasone using gated mesoporous silica nanoparticles. A new therapeutic approach for acute lung injury treatment.J. Control. Release2021337142610.1016/j.jconrel.2021.07.010 34265332
    [Google Scholar]
  58. BaruiS. CaudaV. Multimodal decorations of mesoporous silica nanoparticles for improved cancer therapy.Pharmaceutics202012652710.3390/pharmaceutics12060527 32521802
    [Google Scholar]
  59. YoudimM.B.H. BuccafuscoJ.J. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders.Trends Pharmacol. Sci.2005261273510.1016/j.tips.2004.11.007 15629202
    [Google Scholar]
  60. YangQ. ZhouJ. Neuroinflammation in the central nervous system: Symphony of glial cells.Glia20196761017103510.1002/glia.23571 30548343
    [Google Scholar]
  61. Vaquer-AliceaJ. DiamondM.I. Propagation of protein aggregation in neurodegenerative diseases.Annu. Rev. Biochem.201988178581010.1146/annurev‑biochem‑061516‑045049 30917002
    [Google Scholar]
  62. NieslerB. KuertenS. DemirI.E. SchäferK.H. Disorders of the enteric nervous system — a holistic view.Nat. Rev. Gastroenterol. Hepatol.202118639341010.1038/s41575‑020‑00385‑2 33514916
    [Google Scholar]
  63. DiSabatoD.J. QuanN. GodboutJ.P. Neuroinflammation: The devil is in the details.J. Neurochem.2016139S2Suppl. 213615310.1111/jnc.13607 26990767
    [Google Scholar]
  64. Díaz-GonzálezF. Sánchez-MadridF. NSAIDs: Learning new tricks from old drugs.Eur. J. Immunol.201545367968610.1002/eji.201445222 25523026
    [Google Scholar]
  65. ShababT. KhanabdaliR. MoghadamtousiS.Z. KadirH.A. MohanG. Neuroinflammation pathways: A general review.Int. J. Neurosci.2017127762463310.1080/00207454.2016.1212854 27412492
    [Google Scholar]
  66. MendirattaS. HusseinM. NasserH.A. AliA.A.A. Multidisciplinary role of mesoporous silica nanoparticles in brain regeneration and cancers: From crossing the blood–brain barrier to treatment.Part. Part. Syst. Charact.2019369190019510.1002/ppsc.201900195
    [Google Scholar]
  67. NigroA. PellegrinoM. GrecoM. ComandèA. SisciD. PasquaL. LeggioA. MorelliC. Dealing with skin and blood-brain barriers: The unconventional challenges of mesoporous silica nanoparticles.Pharmaceutics201810425010.3390/pharmaceutics10040250 30513731
    [Google Scholar]
  68. RastegariE. HsiaoY.J. LaiW.Y. LaiY.H. YangT.C. ChenS.J. HuangP.I. ChiouS.H. MouC.Y. ChienY. An update on mesoporous silica nanoparticle applications in nanomedicine.Pharmaceutics2021137106710.3390/pharmaceutics13071067 34371758
    [Google Scholar]
  69. WangY. ZhaoQ. HanN. BaiL. LiJ. LiuJ. CheE. HuL. ZhangQ. JiangT. WangS. Mesoporous silica nanoparticles in drug delivery and biomedical applications.Nanomedicine201511231332710.1016/j.nano.2014.09.014 25461284
    [Google Scholar]
  70. KooA.N. RimH.P. ParkD.J. KimJ.H. JeongS.Y. LeeS.C. Glutathione-mediated intracellular release of anti-inflammatory N-acetyl-L-cysteine from mesoporous silica nanoparticles.Macromol. Res.201321780981410.1007/s13233‑013‑1082‑x
    [Google Scholar]
  71. AdolphT.E. MeyerM. SchwärzlerJ. MayrL. GrabherrF. TilgH. The metabolic nature of inflammatory bowel diseases.Nat. Rev. Gastroenterol. Hepatol.2022191275376710.1038/s41575‑022‑00658‑y 35906289
    [Google Scholar]
  72. RoglerG. SinghA. KavanaughA. RubinD.T. Extraintestinal manifestations of inflammatory bowel disease: Current concepts, treatment, and implications for disease management.Gastroenterology202116141118113210.1053/j.gastro.2021.07.042 34358489
    [Google Scholar]
  73. YonchevaK. PopovaM. SzegediA. MihályJ. TzankovB. LambovN. KonstantinovS. TzankovaV. PessinaF. ValotiM. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide.J. Solid State Chem.201421115416110.1016/j.jssc.2013.12.020
    [Google Scholar]
  74. LeeC.H. LoL.W. MouC.Y. YangC.S. Synthesis and characterization of positive‐charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti‐inflammatory drug.Adv. Funct. Mater.200818203283329210.1002/adfm.200800521
    [Google Scholar]
  75. QuZ. WongK.Y. MoniruzzamanM. BegunJ. SantosH.A. HasnainS.Z. KumeriaT. McGuckinM.A. PopatA. One‐Pot Synthesis of pH‐Responsive Eudragit‐Mesoporous Silica Nanocomposites Enable Colonic Delivery of Glucocorticoids for the Treatment of Inflammatory Bowel Disease.Adv. Ther. (Weinh.)202142200016510.1002/adtp.202000165
    [Google Scholar]
  76. NguyenC.T.H. WebbR.I. LambertL.K. StrouninaE. LeeE.C. ParatM.O. McGuckinM.A. PopatA. CabotP.J. RossB.P. Bifunctional succinylated ε-polylysine-coated mesoporous silica nanoparticles for pH-responsive and intracellular drug delivery targeting the colon.ACS Appl. Mater. Interfaces20179119470948310.1021/acsami.7b00411 28252278
    [Google Scholar]
  77. GouK. WangY. GuoX. WangY. BianY. ZhaoH. GuoY. PangY. XieL. LiS. LiH. Carboxyl-functionalized mesoporous silica nanoparticles for the controlled delivery of poorly water-soluble non-steroidal anti-inflammatory drugs.Acta Biomater.202113457659210.1016/j.actbio.2021.07.023 34280558
    [Google Scholar]
  78. PooresmaeilM. JavanbakhtS. Behzadi NiaS. NamaziH. Carboxymethyl cellulose/mesoporous magnetic graphene oxide as a safe and sustained ibuprofen delivery bio-system: Synthesis, characterization, and study of drug release kinetic.Colloids Surf. A Physicochem. Eng. Asp.202059412466210.1016/j.colsurfa.2020.124662
    [Google Scholar]
  79. SchererH.U. HäuplT. BurmesterG.R. The etiology of rheumatoid arthritis.J. Autoimmun.202011010240010.1016/j.jaut.2019.102400 31980337
    [Google Scholar]
  80. KimS.J. ChoiY. MinK.T. HongS. Dexamethasone-loaded radially mesoporous silica nanoparticles for sustained anti-inflammatory effects in rheumatoid arthritis.Pharmaceutics202214598510.3390/pharmaceutics14050985 35631571
    [Google Scholar]
  81. Gulin-SarfrazT. JonassonS. WigenstamE. von HaartmanE. BuchtA. RosenholmJ.M. Feasibility study of mesoporous silica particles for pulmonary drug delivery: Therapeutic treatment with dexamethasone in a mouse model of airway inflammation.Pharmaceutics201911414910.3390/pharmaceutics11040149 30939753
    [Google Scholar]
  82. MokraD. MikolkaP. KosutovaP. MokryJ. Corticosteroids in acute lung injury: The dilemma continues.Int. J. Mol. Sci.20192019476510.3390/ijms20194765 31557974
    [Google Scholar]
  83. Camoretti-MercadoB. LockeyR.F. Airway smooth muscle pathophysiology in asthma.J. Allergy Clin. Immunol.202114761983199510.1016/j.jaci.2021.03.035 34092351
    [Google Scholar]
  84. SelvakumarB. EladhamM.W. HafeziS. RamakrishnanR. HachimI.Y. BayramO.S. Sharif-AskariN.S. Sharif-AskariF.S. IbrahimS.M. HalwaniR. Allergic airway inflammation emerges from gut inflammation and leakage in mouse model of asthma.Adv. Biol.202481230035010.1002/adbi.202300350 37752729
    [Google Scholar]
  85. RaduA.F. BungauS.G. Management of rheumatoid arthritis: An overview.Cells20211011285710.3390/cells10112857 34831081
    [Google Scholar]
  86. YuR. ZhangH. GuoB. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering.Nano-Micro Lett.202214114610.1007/s40820‑021‑00751‑y 34859323
    [Google Scholar]
  87. EmingS.A. KriegT. DavidsonJ.M. Inflammation in wound repair: Molecular and cellular mechanisms.J. Invest. Dermatol.2007127351452510.1038/sj.jid.5700701 17299434
    [Google Scholar]
  88. BrownA. Phases of the wound healing process.Nurs. Times2015111461213 26689053
    [Google Scholar]
  89. MurphyP.S. EvansG.R.D. Advances in wound healing: A review of current wound healing products.Plast. Surg. Int.2012201211810.1155/2012/190436 22567251
    [Google Scholar]
  90. ChenL. ZhouX. HeC. Mesoporous silica nanoparticles for tissue‐engineering applications.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2019116e157310.1002/wnan.1573 31294533
    [Google Scholar]
  91. QuignardS. CoradinT. PowellJ.J. JugdaohsinghR. Silica nanoparticles as sources of silicic acid favoring wound healing in vitro.Colloids Surf. B Biointerfaces201715553053710.1016/j.colsurfb.2017.04.049 28494431
    [Google Scholar]
  92. ZengQ. HanK. ZhengC. BaiQ. WuW. ZhuC. ZhangY. CuiN. LuT. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing.J. Colloid Interface Sci.2022607Pt 21239125210.1016/j.jcis.2021.09.092 34583031
    [Google Scholar]
  93. HooshmandS. MollazadehS. AkramiN. GhanadM. El-FiqiA. BainoF. NazarnezhadS. KargozarS. Mesoporous silica nanoparticles and mesoporous bioactive glasses for wound management: From skin regeneration to cancer therapy.Materials (Basel)20211412333710.3390/ma14123337 34204198
    [Google Scholar]
  94. XueL. DengT. GuoR. PengL. GuoJ. TangF. LinJ. JiangS. LuH. LiuX. DengL. A composite hydrogel containing mesoporous silica nanoparticles loaded with artemisia argyi extract for improving chronic wound healing.Front. Bioeng. Biotechnol.20221082533910.3389/fbioe.2022.825339 35402406
    [Google Scholar]
  95. AremuA.O. PendotaS.C. Medicinal plants for mitigating pain and inflammatory-related conditions: An appraisal of ethnobotanical uses and patterns in South Africa.Front. Pharmacol.20211275858310.3389/fphar.2021.758583 34744737
    [Google Scholar]
  96. ChandanS. MohanB.P. ChandanO.C. AhmadR. ChallaA. TummalaH. SinghS. DhawanP. PonnadaS. SinghA.B. AdlerD.G. Curcumin use in ulcerative colitis: Is it ready for prime time? A systematic review and meta-analysis of clinical trials.Ann. Gastroenterol.2019331535810.20524/aog.2019.0439 31892798
    [Google Scholar]
  97. ChaachouayN. DouiraA. ZidaneL. Herbal medicine used in the treatment of human diseases in the Rif, Northern Morocco.Arab. J. Sci. Eng.202247113115310.1007/s13369‑021‑05501‑1 33842189
    [Google Scholar]
  98. MonikaP. ChandraprabhaM.N. RangarajanA. WaikerP.V. Chidambara MurthyK.N. Challenges in healing wound: Role of complementary and alternative medicine.Front. Nutr.2022879189910.3389/fnut.2021.791899 35127787
    [Google Scholar]
  99. Aleebrahim-DehkordiE SoveyziF ArianAS HamedanchiNF Hasanpour-DehkordiA Rafieian-Kopaei, M Quercetin and Its Role in Reducing the Expression of Pro-inflammatory Cytokines in Osteoarthritis.Antiinflamm. Antiallergy Agents Med. Chem.202321315316510.2174/1871523022666221213155905
    [Google Scholar]
  100. AldahlawiA.M. AlzahraniA.T. ElshalM.F. Evaluation of immunomodulatory effects of Boswellia sacra essential oil on T-cells and dendritic cells.BMC Complement. Med. Ther.202020135210.1186/s12906‑020‑03146‑5 33213426
    [Google Scholar]
  101. LiC.L. TanL.H. WangY.F. LuoC.D. ChenH.B. LuQ. LiY.C. YangX.B. ChenJ.N. LiuY.H. XieJ.H. SuZ.R. Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhizoma Coptidis in vitro and in vivo.Phytomedicine20195227228310.1016/j.phymed.2018.09.228 30599908
    [Google Scholar]
  102. JyotirmayeeB. MahalikG. A review on selected pharmacological activities of Curcuma longa L.Int. J. Food Prop.20222511377139810.1080/10942912.2022.2082464
    [Google Scholar]
  103. TanwarA. ChawlaR. AnsariM.M. Neha; Thakur, P.; Chakotiya, A.S.; Goel, R.; Ojha, H.; Asif, M.; Basu, M.; Arora, R.; Khan, H.A. In vivo anti-arthritic efficacy of Camellia sinensis (L.) in collagen induced arthritis model.Biomed. Pharmacother.2017879210110.1016/j.biopha.2016.12.089 28049097
    [Google Scholar]
  104. BallesterP. CerdáB. ArcusaR. MarhuendaJ. YamedjeuK. ZafrillaP. Effect of ginger on inflammatory diseases.Molecules20222721722310.3390/molecules27217223 36364048
    [Google Scholar]
  105. AlanaziH.H. ElfakiE. The immunomodulatory role of withania somnifera (L.) dunal in inflammatory diseases.Front. Pharmacol.202314108475710.3389/fphar.2023.1084757 36909188
    [Google Scholar]
  106. ChenC.P. LinY.C. PengY.H. ChenH.M. LinJ.T. KaoS.H. Rosmarinic acid attenuates the lipopolysaccharide-provoked inflammatory response of vascular smooth muscle cell via inhibition of MAPK/NF-κB cascade.Pharmaceuticals (Basel)202215443710.3390/ph15040437 35455434
    [Google Scholar]
  107. ChangH.C. WangS.W. ChenC.Y. HwangT.L. ChengM.J. SungP.J. LiaoK.W. ChenJ.J. Secoiridoid glucosides and anti-inflammatory constituents from the stem bark of Fraxinus chinensis.Molecules20202524591110.3390/molecules25245911 33327368
    [Google Scholar]
  108. WangM. WangS. HuW. WangZ. YangB. KuangH. Asparagus cochinchinensis: A review of its botany, traditional uses, phytochemistry, pharmacology, and applications.Front. Pharmacol.202213106885810.3389/fphar.2022.1068858 36532772
    [Google Scholar]
  109. NasirB. KhanA.U. BaigM.W. AlthobaitiY.S. FaheemM. HaqI.U. Datura stramonium Leaf Extract Exhibits Anti-inflammatory Activity in CCL4-Induced Hepatic Injury Model by Modulating Oxidative Stress Markers and iNOS/Nrf2 Expression.BioMed Res. Int.20222022112010.1155/2022/1382878 35342748
    [Google Scholar]
  110. RathodK AhmedH GomteSS ChouguleSAP DetheM.R. PatelR.J. PvpD.B. AlexanderA. Exploring the potential of anti-inflammatory activity of berberine chloride-loaded mesoporous silica nanoparticles in carrageenan-induced rat paw edema model.J. Solid State Chem.202331712363910.1016/j.jssc.2022.123639
    [Google Scholar]
  111. XieJ. XiaoD. ZhaoJ. HuN. BaoQ. JiangL. YuL. Mesoporous silica particles as a multifunctional delivery system for pain relief in experimental neuropathy.Adv. Healthc. Mater.20165101213122110.1002/adhm.201500996 27028159
    [Google Scholar]
  112. SunG. WuX. ZhuH. YuanK. ZhangY. ZhangC. DengZ. ZhouM. ZhangZ. YangG. ChuH. Reactive Oxygen Species-Triggered Curcumin Release from Hollow Mesoporous Silica Nanoparticles for PM 2.5 -Induced Acute Lung Injury Treatment.ACS Appl. Mater. Interfaces20231528335043351310.1021/acsami.3c07361 37411033
    [Google Scholar]
  113. YadavY.C. PattnaikS. SwainK. Curcumin loaded mesoporous silica nanoparticles: Assessment of bioavailability and cardioprotective effect.Drug Dev. Ind. Pharm.201945121889189510.1080/03639045.2019.1672717 31549866
    [Google Scholar]
  114. HamamF. NasrA. Curcumin-loaded mesoporous silica particles as wound-healing agent: An In vivo study.Saudi J. Med. Med. Sci.202081172410.4103/sjmms.sjmms_2_19 31929774
    [Google Scholar]
  115. JuèreE. FlorekJ. BouchouchaM. JambhrunkarS. WongK.Y. PopatA. KleitzF. In vitro dissolution, cellular membrane permeability, and anti-inflammatory response of resveratrol-encapsulated mesoporous silica nanoparticles.Mol. Pharm.201714124431444110.1021/acs.molpharmaceut.7b00529 29094948
    [Google Scholar]
  116. YukiK. FujiogiM. KoutsogiannakiS. COVID-19 pathophysiology: A review.Clin. Immunol.202021510842710.1016/j.clim.2020.108427 32325252
    [Google Scholar]
  117. CiottiM. CiccozziM. TerrinoniA. JiangW.C. WangC.B. BernardiniS. The COVID-19 pandemic.Crit. Rev. Clin. Lab. Sci.202057636538810.1080/10408363.2020.1783198 32645276
    [Google Scholar]
  118. GarcíaL.F. Immune response, inflammation, and the clinical spectrum of COVID-19.Front. Immunol.202011144110.3389/fimmu.2020.01441 32612615
    [Google Scholar]
  119. WangH. ChenL. LiR. LvC. XuY. XiongY. Polydopamine-coated mesoporous silica nanoparticles co-loaded with Ziyuglycoside I and Oseltamivir for synergistic treatment of viral pneumonia.Int. J. Pharm.202364512341210.1016/j.ijpharm.2023.123412 37703956
    [Google Scholar]
  120. PiaoH. RejinoldN.S. ChoiG. PeiY.R. JinG. ChoyJ.H. Niclosamide encapsulated in mesoporous silica and geopolymer: A potential oral formulation for COVID-19.Microporous Mesoporous Mater.202132611139410.1016/j.micromeso.2021.111394 34483712
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010310578240926051158
Loading
/content/journals/cpb/10.2174/0113892010310578240926051158
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test