Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Cancer is one of the main reasons for death, and it threatens human life and health. Both the environment and genes can lead to cancers. It dates back more than a million years; more importantly, tumor cells can not be detected until they grow to a large number. Currently, cancers are treated with surgical excision or non-surgical procedures. By studying the interaction between ncRNAs and PKM2, we aim to provide new targets for diagnosis, treatment, and prognosis for cancers. Read relevant articles and made a summary and classification. Non-coding RNAs (ncRNAs) are RNAs that do not code for proteins. They perform a function in transcription and translation and can be used as targets for cancer therapy. Pyruvate kinase M2 (PKM2) is a form of PKM, and it catalyzes the glycolysis of the final cellular processes to promote tumorigenesis. Not only that, but it also plays non-metabolic functions, including the expression of the gene, cell proliferation, cell migration, and tumor angiogenesis in cancer cells. The existing studies have found that microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) can promote or inhibit the aerobic glycolysis of cancer cells by affecting PKM2, which increases or decrease the risk of cancers and affect the progression of cancers. This review focuses on the mechanism of ncRNAs regulating PKM2 in cancers and summarizes the roles of some ncRNAs.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010311953240628084818
2024-07-15
2025-09-13
Loading full text...

Full text loading...

References

  1. WangJ.J. LeiK.F. HanF. Tumor microenvironment: Recent advances in various cancer treatments.Eur. Rev. Med. Pharmacol. Sci.2018221238553864 29949179
    [Google Scholar]
  2. TianJ. DongY. ChangS. WangY. ShenC. CheG. Epidemiological evidence for associations between variants in microRNA and cancer risk.Carcinogenesis202243432133710.1093/carcin/bgac011 35084494
    [Google Scholar]
  3. HajibabaieF. AbedpoorN. AssarehN. TabatabaiefarM.A. ShariatiL. ZarrabiA. The importance of SNPs at miRNA binding sites as biomarkers of gastric and colorectal cancers: A systematic review.J. Pers. Med.202212345610.3390/jpm12030456 35330456
    [Google Scholar]
  4. LiY. Al HallakM.N. PhilipP.A. AzmiA.S. MohammadR.M. Non-coding RNAs in pancreatic cancer diagnostics and therapy: Focus on lncRNAs, circRNAs, and piRNAs.Cancers (Basel)20211316416110.3390/cancers13164161 34439315
    [Google Scholar]
  5. LiuS.J. DangH.X. LimD.A. FengF.Y. MaherC.A. Long noncoding RNAs in cancer metastasis.Nat. Rev. Cancer202121744646010.1038/s41568‑021‑00353‑1 33953369
    [Google Scholar]
  6. SmithA.J. SompelK.M. ElangoA. TennisM.A. Non-coding RNA and frizzled receptors in cancer.Front. Mol. Biosci.2021871254610.3389/fmolb.2021.712546 34671643
    [Google Scholar]
  7. Milán-RoisP. QuanA. SlackF.J. SomozaÁ. The role of LncRNAs in uveal melanoma.Cancers (Basel)20211316404110.3390/cancers13164041 34439196
    [Google Scholar]
  8. DesantisV. SolimandoA.G. SaltarellaI. SaccoA. GiustiniV. BentoM. LamanuzziA. MelaccioA. FrassanitoM.A. ParadisoA. MontagnaniM. VaccaA. RoccaroA.M. MicroRNAs as a potential new preventive approach in the transition from asymptomatic to symptomatic multiple myeloma disease.Cancers (Basel)20211315365010.3390/cancers13153650 34359551
    [Google Scholar]
  9. MaY. ZhengL. GaoY. ZhangW. ZhangQ. XuY. A comprehensive overview of circRNAs: Emerging biomarkers and potential therapeutics in gynecological cancers.Front. Cell Dev. Biol.2021970951210.3389/fcell.2021.709512 34368160
    [Google Scholar]
  10. HuangJ. KongW. ZhangJ. ChenY. XueW. LiuD. HuangY. c-Myc modulates glucose metabolism via regulation of miR-184/PKM2 pathway in clear-cell renal cell carcinoma.Int. J. Oncol.20164941569157510.3892/ijo.2016.3622 27431728
    [Google Scholar]
  11. YeJ. MancusoA. TongX. WardP.S. FanJ. RabinowitzJ.D. ThompsonC.B. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation.Proc. Natl. Acad. Sci. USA2012109186904690910.1073/pnas.1204176109 22509023
    [Google Scholar]
  12. LiuQ. LiangM. LiuT. VuittonL. ZhengS. GaoX. LuM. LiX. SheyhidinI. LuX. M2 isoform of pyruvate kinase (PKM2) is upregulated in Kazakh’s ESCC and promotes proliferation and migration of ESCC cells.Tumour Biol.20163722665267210.1007/s13277‑015‑4073‑z 26404132
    [Google Scholar]
  13. LuanW. WangY. ChenX. ShiY. WangJ. ZhangJ. QianJ. LiR. TaoT. WeiW. HuQ. LiuN. YouY. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop.Oncotarget2015615130061301810.18632/oncotarget.3514 25948776
    [Google Scholar]
  14. WuH. LiZ. YangP. ZhangL. FanY. LiZ. PKM2 depletion induces the compensation of glutaminolysis through β-catenin/c-Myc pathway in tumor cells.Cell. Signal.201426112397240510.1016/j.cellsig.2014.07.024 25041845
    [Google Scholar]
  15. WuM. AnJ. ZhengQ. XinX. LinZ. LiX. LiH. LuD. Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR.Oncotarget2016741665256653910.18632/oncotarget.9089 27167190
    [Google Scholar]
  16. TaniguchiK. SugitoN. KumazakiM. ShinoharaH. YamadaN. NakagawaY. ItoY. OtsukiY. UnoB. UchiyamaK. AkaoY. MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer.Cancer Lett.20153631172710.1016/j.canlet.2015.03.026 25818238
    [Google Scholar]
  17. ZhengX. ZhouY. ChenW. ChenL. LuJ. HeF. LiX. ZhaoL. Ginsenoside 20(S)-Rg3 prevents PKM2-Targeting miR-324-5p from H19 sponging to antagonize the warburg effect in ovarian cancer cells.Cell. Physiol. Biochem.20185131340135310.1159/000495552 30481782
    [Google Scholar]
  18. WangC. LiY. YanS. WangH. ShaoX. XiaoM. YangB. QinG. KongR. ChenR. ZhangN. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2.Nat. Commun.2020111316210.1038/s41467‑020‑16966‑3 32572027
    [Google Scholar]
  19. DaiT. ZhangX. ZhouX. HuX. HuangX. XingF. TianH. LiY. Long non‐coding RNA VAL facilitates PKM2 enzymatic activity to promote glycolysis and malignancy of gastric cancer.Clin. Transl. Med.20221210e108810.1002/ctm2.1088 36229913
    [Google Scholar]
  20. LiQ. PanX. ZhuD. DengZ. JiangR. WangX. Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR‐338‐3p/PKM2 axis under hypoxic stress.Hepatology20197041298131610.1002/hep.30671 31004447
    [Google Scholar]
  21. ChenJ. YuY. ChenX. HeY. HuQ. LiH. HanQ. RenF. LiJ. LiC. BaoJ. RenZ. DuanZ. CuiG. SunR. MiR‐139‐5p is associated with poor prognosis and regulates glycolysis by repressing PKM 2 in gallbladder carcinoma.Cell Prolif.2018516e1251010.1111/cpr.12510 30105813
    [Google Scholar]
  22. HanB. MengX. ChenH. ChenL. LiuX. WangH. LiuD. GaoF. LinL. MingJ. SunB. YinS. WangR. WuP. CaiJ. JiangC. Epigenetic silencing of miR-338 facilitates glioblastoma progression by de-repressing the pyruvate kinase M2-β-catenin axis.Aging (Albany NY)2017981885189710.18632/aging.101271 28858851
    [Google Scholar]
  23. XuQ. ZhangM. TuJ. PangL. CaiW. LiuX. MicroRNA-122 affects cell aggressiveness and apoptosis by targeting PKM2 in human hepatocellular carcinoma.Oncol. Rep.20153442054206410.3892/or.2015.4175 26252254
    [Google Scholar]
  24. WangX. XuY. WangX. JiangC. HanS. DongK. ShenM. XuD. Linc RNA ‐p21 suppresses development of human prostate cancer through inhibition of PKM 2.Cell Prolif.2017506e1239510.1111/cpr.12395 28994148
    [Google Scholar]
  25. ZhengY.L. LiL. JiaY.X. ZhangB.Z. LiJ.C. ZhuY.H. LiM.Q. HeJ.Z. ZengT.T. BanX.J. YuanY.F. LiY. GuanX.Y. LINC01554-mediated glucose metabolism reprogramming suppresses tumorigenicity in hepatocellular carcinoma via downregulating PKM2 expression and inhibiting Akt/mTOR signaling pathway.Theranostics20199379681010.7150/thno.28992 30809309
    [Google Scholar]
  26. ZhangH. FengC. ZhangM. ZengA. SiL. YuN. BaiM. miR‐625‐5p/PKM2 negatively regulates melanoma glycolysis state.J. Cell. Biochem.201912032964297210.1002/jcb.26917 30500994
    [Google Scholar]
  27. ZhengQ. LinZ. XuJ. LuY. MengQ. WangC. YangY. XinX. LiX. PuH. GuiX. LiT. XiongW. LuD. Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting β-catenin by activating PKM2 and inactivating PTEN.Cell Death Dis.20189325310.1038/s41419‑018‑0305‑7 29449541
    [Google Scholar]
  28. WangC. JiangX. LiX. SongS. MengQ. WangL. LuY. XinX. PuH. GuiX. LiT. LuD. Long noncoding RNA HULC accelerates the growth of human liver cancer stem cells by upregulating CyclinD1 through miR675-PKM2 pathway via autophagy.Stem Cell Res. Ther.2020111810.1186/s13287‑019‑1528‑y 31900225
    [Google Scholar]
  29. WangL. LiB. BoX. YiX. XiaoX. ZhengQ. Hypoxia-induced LncRNA DACT3-AS1 upregulates PKM2 to promote metastasis in hepatocellular carcinoma through the HDAC2/FOXA3 pathway.Exp. Mol. Med.202254684886010.1038/s12276‑022‑00767‑3 35764883
    [Google Scholar]
  30. WangY. YangF. PengQ. MeiK. HeH. YangQ. Long non‐coding RNA SNHG1 activates glycolysis to promote hepatocellular cancer progression through the miR‐326/PKM2 axis.J. Gene Med.2022248e344010.1002/jgm.3440 35816558
    [Google Scholar]
  31. GuanY. HuangQ. AiY. ChenQ. ZhaoW. WangX. WuQ. ChenH. Nur77-activated lncRNA WFDC21P attenuates hepatocarcinogenesis via modulating glycolysis.Oncogene202039112408242310.1038/s41388‑020‑1158‑y 31959898
    [Google Scholar]
  32. JiaG. WangY. LinC. LaiS. DaiH. WangZ. DaiL. SuH. SongY. ZhangN. FengY. TangB. RETRACTED ARTICLE: LNCAROD enhances hepatocellular carcinoma malignancy by activating glycolysis through induction of pyruvate kinase isoform PKM2.J. Exp. Clin. Cancer Res.202140129910.1186/s13046‑021‑02090‑7 34551796
    [Google Scholar]
  33. FeiM. LiX. LiangS. ZhouS. WuH. SunL. LiuY. HuQ. LiuL. WangJ. LncRNA PWRN1 inhibits the progression of hepatocellular carcinoma by activating PKM2 activity.Cancer Lett.202458421662010.1016/j.canlet.2024.216620 38218456
    [Google Scholar]
  34. HuaQ. MiB. XuF. WenJ. ZhaoL. LiuJ. HuangG. Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis.Theranostics202010114762477810.7150/thno.43839 32308748
    [Google Scholar]
  35. LangN. WangC. ZhaoJ. ShiF. WuT. CaoH. Long non coding RNA BCYRN1 promotes glycolysis and tumor progression by regulating the miR 149/PKM2 axis in non small cell lung cancer.Mol. Med. Rep.20202131509151610.3892/mmr.2020.10944 32016455
    [Google Scholar]
  36. BianZ. ZhangJ. LiM. FengY. WangX. ZhangJ. YaoS. JinG. DuJ. HanW. YinY. HuangS. FeiB. ZouJ. HuangZ. LncRNA–FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling.Clin. Cancer Res.201824194808481910.1158/1078‑0432.CCR‑17‑2967 29914894
    [Google Scholar]
  37. CuiK. WuH. FanJ. ZhangL. LiH. GuoH. YangR. LiZ. The mixture of ferulic acid and P-Coumaric Acid suppresses colorectal cancer through lncRNA 495810/PKM2 mediated aerobic glycolysis.Int. J. Mol. Sci.202223201210610.3390/ijms232012106 36292959
    [Google Scholar]
  38. JinY. JiangA. SunL. LuY. Long noncoding RNA TMPO-AS1 accelerates glycolysis by regulating the miR-1270/PKM2 axis in colorectal cancer.BMC Cancer202424123810.1186/s12885‑024‑11964‑w 38383342
    [Google Scholar]
  39. ChenC. LiuW.R. ZhangB. ZhangL.M. LiC.G. LiuC. ZhangH. HuoY.S. MaY.C. TianP.F. QiQ. LiJ.J. TangZ. ZhangZ.F. GiacconeG. YueD.S. WangC.L. LncRNA H19 downregulation confers erlotinib resistance through upregulation of PKM2 and phosphorylation of AKT in EGFR-mutant lung cancers.Cancer Lett.2020486587010.1016/j.canlet.2020.05.009 32439420
    [Google Scholar]
  40. XueJ. ZhangF. LNCRNA LINC00511 plays an oncogenic role in lung adenocarcinoma by regulating PKM2 expression via sponging MIR ‐625‐5p.Thorac. Cancer20201192570257910.1111/1759‑7714.13576 32716147
    [Google Scholar]
  41. LiuX. ZhuQ. GuoY. XiaoZ. HuL. XuQ. LncRNA LINC00689 promotes the growth, metastasis and glycolysis of glioma cells by targeting miR-338-3p/PKM2 axis.Biomed. Pharmacother.201911710906910.1016/j.biopha.2019.109069 31181442
    [Google Scholar]
  42. LiC. ZhaoZ. ZhouZ. LiuR. RETRACTED ARTICLE: Linc-ROR confers gemcitabine resistance to pancreatic cancer cells via inducing autophagy and modulating the miR-124/PTBP1/PKM2 axis.Cancer Chemother. Pharmacol.20167861199120710.1007/s00280‑016‑3178‑4 27785603
    [Google Scholar]
  43. YuT. LiG. WangC. GongG. WangL. LiC. ChenY. WangX. MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis.RNA Biol.202118122513253010.1080/15476286.2021.1930755 34110962
    [Google Scholar]
  44. YaoY. ChenX. WangX. LiH. ZhuY. LiX. XiaoZ. ZiT. QinX. ZhaoY. YangT. WangL. WuG. FangX. WuD. Glycolysis related lncRNA SNHG3/miR-139-5p/PKM2 axis promotes castration-resistant prostate cancer (CRPC) development and enzalutamide resistance.Int. J. Biol. Macromol.2024260Pt 212963510.1016/j.ijbiomac.2024.129635 38266860
    [Google Scholar]
  45. YaoA. XiangY. SiY.R. FanL.J. LiJ.P. LiH. GuoW. HeH.X. LiangX.J. TanY. BaoL.Y. LiaoX.H. PKM2 promotes glucose metabolism through a let‐7a‐5p/Stat3/hnRNP‐A1 regulatory feedback loop in breast cancer cells.J. Cell. Biochem.201912046542655410.1002/jcb.27947 30368881
    [Google Scholar]
  46. PuckettD.L. AlquraishiM. ChowanadisaiW. BettaiebA. The role of PKM2 in metabolic reprogramming: Insights into the regulatory roles of non-coding RNAs.Int. J. Mol. Sci.2021223117110.3390/ijms22031171 33503959
    [Google Scholar]
  47. LiuA.M. XuZ. ShekF.H. WongK.F. LeeN.P. PoonR.T. ChenJ. LukJ.M. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma.PLoS One201491e8687210.1371/journal.pone.0086872 24466275
    [Google Scholar]
  48. SongL. ZhangW. ChangZ. PanY. ZongH. FanQ. WangL. miR-4417 Targets Tripartite Motif-Containing 35 (TRIM35) and Regulates Pyruvate Kinase Muscle 2 (PKM2) phosphorylation to promote proliferation and suppress apoptosis in hepatocellular carcinoma cells.Med. Sci. Monit.2017231741175010.12659/MSM.900296 28394882
    [Google Scholar]
  49. YangY. MengQ. WangC. LiX. LuY. XinX. ZhengQ. LuD. MicroRNA 675 cooperates PKM2 to aggravate progression of human liver cancer stem cells induced from embryonic stem cells.J. Mol. Med. (Berl.)201896101119113010.1007/s00109‑018‑1687‑9 30140938
    [Google Scholar]
  50. InomataY. OhJ.W. TaniguchiK. SugitoN. KawaguchiN. HirokawaF. LeeS.W. AkaoY. TakaiS. KimK.P. UchiyamaK. Downregulation of miR-122-5p activates glycolysis via PKM2 in kupffer cells of rat and mouse models of non-alcoholic steatohepatitis.Int. J. Mol. Sci.2022239523010.3390/ijms23095230 35563621
    [Google Scholar]
  51. FuR. YangP. AminS. LiZ. A novel miR-206/hnRNPA1/PKM2 axis reshapes the Warburg effect to suppress colon cancer growth.Biochem. Biophys. Res. Commun.2020531446547110.1016/j.bbrc.2020.08.019 32800545
    [Google Scholar]
  52. ZhengH. ZhangM. KeX. DengX. LiD. WangQ. YanS. XueY. WangQ. LncRNA XIST/miR-137 axis strengthens chemo-resistance and glycolysis of colorectal cancer cells by hindering transformation from PKM2 to PKM1.Cancer Biomark.202130439540610.3233/CBM‑201740 33386794
    [Google Scholar]
  53. WuH. CuiM. LiC. LiH. DaiY. CuiK. LiZ. Kaempferol reverses aerobic glycolysis via miR-339-5p-mediated PKM alternative splicing in colon cancer cells.J. Agric. Food Chem.202169103060306810.1021/acs.jafc.0c07640 33663206
    [Google Scholar]
  54. RenJ. LiW. PanG. HuangF. YangJ. ZhangH. ZhouR. XuN. miR-142-3p modulates cell invasion and migration via PKM2-mediated aerobic glycolysis in colorectal cancer.Anal. Cell. Pathol. (Amst.)202120211810.1155/2021/9927720 34336555
    [Google Scholar]
  55. HeJ. XieG. TongJ. PengY. HuangH. LiJ. WangN. LiangH. Overexpression of microRNA-122 re-sensitizes 5-FU-resistant colon cancer cells to 5-FU through the inhibition of PKM2 in vitro and in vivo.Cell Biochem. Biophys.20147021343135010.1007/s12013‑014‑0062‑x 24898807
    [Google Scholar]
  56. TaniguchiK. SakaiM. SugitoN. KumazakiM. ShinoharaH. YamadaN. NakayamaT. UedaH. NakagawaY. ItoY. FutamuraM. UnoB. OtsukiY. YoshidaK. UchiyamaK. AkaoY. PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors.Oncotarget2016714189401895210.18632/oncotarget.8005 26980745
    [Google Scholar]
  57. NiQ. AnM. LuoS. LiX. HeG. ShenM. XuL. HuangJ. YanM. FanY. GaoZ. Pseudogene TDGF1P3 regulates the proliferation and metastasis of colorectal cancer cells via the miR-338-3p–PKM2 axis.Biochem. Biophys. Res. Commun.202363871310.1016/j.bbrc.2022.11.054 36436343
    [Google Scholar]
  58. TangR. YangC. MaX. WangY. LuoD. HuangC. XuZ. LiuP. YangL. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer.Oncotarget2016755972598410.18632/oncotarget.6821 26745603
    [Google Scholar]
  59. SugiyamaT. TaniguchiK. MatsuhashiN. TajirikaT. FutamuraM. TakaiT. AkaoY. YoshidaK. MiR‐133b inhibits growth of human gastric cancer cells by silencing pyruvate kinase muscle‐splicer polypyrimidine tract‐binding protein 1.Cancer Sci.2016107121767177510.1111/cas.13091 27696637
    [Google Scholar]
  60. PengC. SunZ. LiO. GuoC. YiW. TanZ. JiangB. Leptin stimulates the epithelial mesenchymal transition and pro angiogenic capability of cholangiocarcinoma cells through the miR 122/PKM2 axis.Int. J. Oncol.201955129830810.3892/ijo.2019.4807 31115511
    [Google Scholar]
  61. YaoX. LiW. LiL. LiM. ZhaoY. FangD. ZengX. LuoZ. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis.Cell Death Dis.202213325810.1038/s41419‑022‑04711‑1 35319018
    [Google Scholar]
  62. XuQ. LiuL-Z. YinY. HeJ. LiQ. QianX. YouY. LuZ. PeiperS.C. ShuY. JiangB-H. Regulatory circuit of PKM2/NF-κB/miR-148a/152-modulated tumor angiogenesis and cancer progression.Oncogene201534435482549310.1038/onc.2015.6 25703326
    [Google Scholar]
  63. WenY.Y. LiuW.T. SunH.R. GeX. ShiZ.M. WangM. LiW. ZhangJ.Y. LiuL.Z. JiangB.H. IGF-1-mediated PKM2/β-catenin/miR-152 regulatory circuit in breast cancer.Sci. Rep.2017711589710.1038/s41598‑017‑15607‑y 29162853
    [Google Scholar]
  64. WuH. JiaoY. GuoX. WuZ. LvQ. METTL14/MIR ‐29c‐3p axis drives aerobic glycolysis to promote triple‐negative breast cancer progression though TRIM9 ‐mediated PKM2 ubiquitination.J. Cell. Mol. Med.2024283e1811210.1111/jcmm.18112 38263865
    [Google Scholar]
  65. ZhouY. ZhengX. LuJ. ChenW. LiX. ZhaoL. Ginsenoside 20(S)-Rg3 Inhibits the warburg effect via modulating DNMT3A/MiR-532-3p/HK2 pathway in ovarian cancer cells.Cell. Physiol. Biochem.20184562548255910.1159/000488273 29558748
    [Google Scholar]
  66. GuoN.L. zhang, J.X.; Wu, J.P.; Xu, Y.H. Isoflurane promotes glucose metabolism through up-regulation of miR-21 and suppresses mitochondrial oxidative phosphorylation in ovarian cancer cells.Biosci. Rep.2017376BSR2017081810.1042/BSR20170818 28951521
    [Google Scholar]
  67. TaoT. LiG. DongQ. LiuD. LiuC. HanD. HuangY. ChenS. XuB. ChenM. Loss of SNAIL inhibits cellular growth and metabolism through the miR-128-mediated RPS6KB1/HIF-1α/PKM2 signaling pathway in prostate cancer cells.Tumour Biol.20143598543855010.1007/s13277‑014‑2057‑z 24859886
    [Google Scholar]
  68. ZhangK. ZhangM. JiangH. LiuF. LiuH. LiY. Down-regulation of miR-214 inhibits proliferation and glycolysis in non-small-cell lung cancer cells via down-regulating the expression of hexokinase 2 and pyruvate kinase isozyme M2.Biomed. Pharmacother.201810554555210.1016/j.biopha.2018.06.009 29886375
    [Google Scholar]
  69. GuoM. ZhaoX. YuanX. JiangJ. LiP. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in cervical cancer.Oncotarget2017817282262823610.18632/oncotarget.15999 28415668
    [Google Scholar]
  70. KefasB. ComeauL. ErdleN. MontgomeryE. AmosS. PurowB. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells.Neuro-oncol.201012111102111210.1093/neuonc/noq080 20667897
    [Google Scholar]
  71. ZhangH.S. ZhangF.J. LiH. LiuY. DuG.Y. HuangY.H. Tanshinone IIA inhibits human esophageal cancer cell growth through miR-122-mediated PKM2 down-regulation.Arch. Biochem. Biophys.2016598505610.1016/j.abb.2016.03.031 27040384
    [Google Scholar]
  72. WangX. ZhangH. YangH. BaiM. NingT. DengT. LiuR. FanQ. ZhuK. LiJ. ZhanY. YingG. BaY. Exosome‐delivered circRNA promotes glycolysis to induce chemoresistance through the miR‐122‐PKM2 axis in colorectal cancer.Mol. Oncol.202014353955510.1002/1878‑0261.12629 31901148
    [Google Scholar]
  73. ChenJ. WangH. TangM. CircAGFG1 absence decreases PKM2 expression to enhance oxaliplatin sensitivity in colorectal cancer in a miR-7-5p-dependent manner.J. Chemother.202436320822110.1080/1120009X.2023.2253680 37691430
    [Google Scholar]
  74. ShenJ. MaZ. YangJ. QuT. XiaY. XuY. ZhouM. LiuW. CircPHGDH downregulation decreases papillary thyroid cancer progression through miR-122-5p/PKM2 axis.BMC Cancer202424151110.1186/s12885‑024‑12199‑5 38654205
    [Google Scholar]
  75. LiH. GuoH. HuangQ. WangS. LiX. QiuM. Circular RNA P4HB promotes glycolysis and tumor progression by binding with PKM2 in lung adenocarcinoma.Respir. Res.202324125210.1186/s12931‑023‑02563‑7 37880717
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010311953240628084818
Loading
/content/journals/cpb/10.2174/0113892010311953240628084818
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; circRNA; lncRNA; miRNA; ncRNAs; PKM2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test