Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Cancer is a significant issue worldwide. Generally, commercially available treatments, such as surgery, radiotherapy, and chemotherapy, are associated with undesirable complications. Hence, immunotherapy serves as a crucial alternative to those treatment options.

Objective

This modality is aimed to boost the immune system through the application of engineered antibodies, which can be produced using recombinant DNA technology.

Results

The discussion of the technologies leads to an introduction of the single-chain variable fragment (scFv). Thereafter, the advantages, disadvantages, and challenges associated with different expression systems, such as mammalian cells, yeast cells, bacterial cells, plant cells, and phage display were discussed comprehensively.

Conclusion

Furthermore, conventional approaches such as hybridoma and modern approaches such as cell-free protein synthesis (CFPS) and simple colony assays are included. In short, this article has compiled evidence relating to each display system and may serve as a reference for those who aim to explore antibody engineering using one of the methods listed in this article.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010307146240626080746
2024-07-12
2025-09-13
Loading full text...

Full text loading...

References

  1. DeoS.V.S. SharmaJ. KumarS. GLOBOCAN 2020 Report on Global Cancer Burden: Challenges and opportunities for surgical oncologists.Ann. Surg. Oncol.202229116497650010.1245/s10434‑022‑12151‑6 35838905
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. LingS.P. MingL.C. DhaliwalJ.S. GuptaM. ArdiantoC. GohK.W. HussainZ. ShafqatN. Role of immunotherapy in the treatment of cancer: A systematic review.Cancers (Basel)20221421520510.3390/cancers14215205 36358624
    [Google Scholar]
  4. D’ErricoG. MachadoH.L. SainzB. Jr A current perspective on cancer immune therapy: Step‐by‐step approach to constructing the magic bullet.Clin. Transl. Med.201761e310.1186/s40169‑016‑0130‑5 28050779
    [Google Scholar]
  5. KouryJ. LuceroM. CatoC. ChangL. GeigerJ. HenryD. HernandezJ. HungF. KaurP. TeskeyG. TranA. Immunotherapies: Exploiting the immune system for cancer treatment.J. Immunol. Res.2018201811610.1155/2018/9585614 29725606
    [Google Scholar]
  6. ShiravandY. KhodadadiF. KashaniS.M.A. Hosseini-FardS.R. HosseiniS. SadeghiradH. LadwaR. O’ByrneK. KulasingheA. Immune checkpoint inhibitors in cancer therapy.Curr. Oncol.20222953044306010.3390/curroncol29050247 35621637
    [Google Scholar]
  7. KhanS. UllahM.W. SiddiqueR. NabiG. MananS. YousafM. HouH. Role of recombinant DNA technology to improve life.Int. J. Genomics2016201611410.1155/2016/2405954 28053975
    [Google Scholar]
  8. FrenzelA. HustM. SchirrmannT. Expression of recombinant antibodies.Front. Immunol.2013421710.3389/fimmu.2013.00217 23908655
    [Google Scholar]
  9. RosanoG.L. CeccarelliE.A. Recombinant protein expression in Escherichia coli: Advances and challenges.Front. Microbiol.2014517210.3389/fmicb.2014.00172 24860555
    [Google Scholar]
  10. StechM. NikolaevaO. ThoringL. StöckleinW.F.M. WüstenhagenD.A. HustM. DübelS. KubickS. Cell-free synthesis of functional antibodies using a coupled in vitro transcription translation system based on CHO cell lysates.Sci. Rep.2017711203010.1038/s41598‑017‑12364‑w 28931913
    [Google Scholar]
  11. BossM.A. KentenJ.H. WoodC.R. EmtageJ.S. Assembly of functional antibodies from immunoglobulin heavy and light chains synthesised in E. coli.Nucleic Acids Res.19841293791380610.1093/nar/12.9.3791 6328437
    [Google Scholar]
  12. McCaffertyJ. GriffithsA.D. WinterG. ChiswellD.J. Phage antibodies: Filamentous phage displaying antibody variable domains.Nature1990348630155255410.1038/348552a0 2247164
    [Google Scholar]
  13. LuR.M. HwangY.C. LiuI.J. LeeC.C. TsaiH.Z. LiH.J. WuH.C. Development of therapeutic antibodies for the treatment of diseases.J. Biomed. Sci.2020271110.1186/s12929‑019‑0592‑z 31894001
    [Google Scholar]
  14. AhmadZ.A. YeapS.K. AliA.M. HoW.Y. AlitheenN.B.M. HamidM. scFv antibody: Principles and clinical application.Clin. Dev. Immunol.2012201211510.1155/2012/980250 22474489
    [Google Scholar]
  15. SafdariY. AhmadzadehV. KhaliliM. JalianiH.Z. ZareiV. Erfani-MoghadamV. Use of single chain antibody derivatives for targeted drug delivery.Mol. Med.201622125827010.2119/molmed.2016.00043 27249008
    [Google Scholar]
  16. NandK.N. GuptaJ.C. PandaA.K. JainS.K. Development of a recombinant hCG-specific single chain immunotoxin cytotoxic to hCG expressing cancer cells.Protein Expr. Purif.2015106101710.1016/j.pep.2014.10.008 25448825
    [Google Scholar]
  17. ChenS. LiJ. LiQ. WangZ. Bispecific antibodies in cancer immunotherapy.Hum. Vaccin. Immunother.201612102491250010.1080/21645515.2016.1187802 27249163
    [Google Scholar]
  18. IsaevA.B. MusharovaO.S. SeverinovK.V. Microbial Arsenal of Antiviral Defenses – Part I.Biochemistry (Mosc.)202186331933710.1134/S0006297921030081 33838632
    [Google Scholar]
  19. AsmamawM. ZawdieB. Mechanism and applications of CRISPR/Cas-9-mediated genome editing.Biologics202115353361 34456559
    [Google Scholar]
  20. LamN. FarberD.L. Engineering antibody therapies for protective immunity.J. Thorac. Cardiovasc. Surg.202116141358136110.1016/j.jtcvs.2020.05.107 32711969
    [Google Scholar]
  21. Schibeci Natoli ScialliN. ColittiB. BertolottiL. PezzoniG. MartignaniE. MelegaM. BrocchiE. RosatiS. Genome editing of a hybridoma cell line via the CRISPR/Cas9 system: A new approach for constitutive high-level expression of heterologous proteins in eukaryotic system.Vet. Immunol. Immunopathol.202123811028610.1016/j.vetimm.2021.110286 34171554
    [Google Scholar]
  22. Le GallC. FennemannF. van der SchootJ. ScheerenF. VerdoesM. CRISPR/Cas9-based Engineering of Immunoglobulin Loci in Hybridoma Cells.Bio Protoc.2023134e461310.21769/BioProtoc.4613 36845533
    [Google Scholar]
  23. van der SchootJ.M.S. FennemannF.L. ValenteM. DolenY. HagemansI.M. BeckerA.M.D. Le GallC.M. van DalenD. CevirgelA. van BruggenJ.A.C. EngelfrietM. CavalT. BentlageA.E.H. FransenM.F. NederendM. LeusenJ.H.W. HeckA.J.R. VidarssonG. FigdorC.G. VerdoesM. ScheerenF.A. Functional diversification of hybridoma-produced antibodies by CRISPR/HDR genomic engineering. Sci. Adv.201958eaaw182210.1126/sciadv.aaw182231489367
    [Google Scholar]
  24. LuoB. ZhanY. LuoM. DongH. LiuJ. LinY. ZhangJ. WangG. VerhoeyenE. ZhangY. ZhangH. Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration.Cell Death Dis.2020111197310.1038/s41419‑020‑03187‑1 33184267
    [Google Scholar]
  25. MoffettH.F. HarmsC.K. FitzpatrickK.S. TooleyM.R. BoonyaratanakornkitJ. TaylorJ.J. B cells engineered to express pathogen-specific antibodies protect against infection.Sci. Immunol.2019435eaax064410.1126/sciimmunol.aax0644 31101673
    [Google Scholar]
  26. Le GallC.M. van der SchootJ.M.S. Ramos-TomilleroI. KhalilyM.P. van DalenF.J. WijfjesZ. SmedingL. van DalenD. CammarataA. BongerK.M. FigdorC.G. ScheerenF.A. VerdoesM. Dual site-specific chemoenzymatic antibody fragment conjugation using CRISPR-based hybridoma engineering.Bioconjug. Chem.202132230131010.1021/acs.bioconjchem.0c00673 33476135
    [Google Scholar]
  27. KhoshnejadM. BrennerJ.S. ParhizH. MuzykantovV.R. CRISPR/Cas9-mediated genetic engineering of hybridomas for creation of antibodies that allow for site-specific conjugation.Methods Mol. Biol.201920338193
    [Google Scholar]
  28. AmetranoA. CosciaM.R. Production of a chimeric mouse-fish monoclonal antibody by the CRISPR/Cas9 technology.Methods Mol. Biol.20222498337350
    [Google Scholar]
  29. TengM. ZhouZ.Y. YaoY. NairV. ZhangG.P. LuoJ. A new strategy for efficient screening and identification of monoclonal antibodies against oncogenic avian herpesvirus utilizing CRISPR/Cas9-based gene-editing technology.Viruses2022149204510.3390/v14092045 36146851
    [Google Scholar]
  30. HustonJ.S. Mudgett-HunterM. TaiM.S. McCartneyJ. WarrenF. HaberE. Protein engineering of single-chain Fv analogs and fusion proteins.Methods Enzymol199103468810.1016/0076‑6879(91)03005‑2
    [Google Scholar]
  31. DesplancqD. KingD.J. LawsonA.D.G. MountainA. Multimerization behaviour of single chain Fv variants for the tumour-binding antibody B72.3.Protein Eng. Des. Sel.1994781027103310.1093/protein/7.8.1027 7809029
    [Google Scholar]
  32. ArgosP. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion.J. Mol. Biol.1990211494395810.1016/0022‑2836(90)90085‑Z 2313701
    [Google Scholar]
  33. GiudicelliV. Duroux, P.; Kossida, S.; Lefranc, M.P. IG and TR single chain fragment variable (scFv) sequence analysis: A new advanced functionality of IMGT/V-QUEST and IMGT/HighV-QUEST.BMC Immunol.20171813510.1186/s12865‑017‑0218‑8 28651553
    [Google Scholar]
  34. MarksJ.D. HoogenboomH.R. BonnertT.P. McCaffertyJ. GriffithsA.D. WinterG. By-passing immunization.J. Mol. Biol.1991222358159710.1016/0022‑2836(91)90498‑U 1748994
    [Google Scholar]
  35. PirkalkhoranS. GrabowskaW.R. KashkoliH.H. MirhassaniR. GuilianoD. DolphinC. KhaliliH. Bioengineering of antibody fragments: Challenges and opportunities.Bioengineering (Basel)202310212210.3390/bioengineering10020122 36829616
    [Google Scholar]
  36. HoM. PastanI. Mammalian cell display for antibody engineering.Methods Mol. Biol.2009525337xiv10.1007/978‑1‑59745‑554‑1_18
    [Google Scholar]
  37. MarkJ.K.K. LimC.S.Y. NordinF. TyeG.J. Expression of mammalian proteins for diagnostics and therapeutics: A review.Mol. Biol. Rep.20224911105931060810.1007/s11033‑022‑07651‑3 35674877
    [Google Scholar]
  38. RamaziS. ZahiriJ. Post-translational modifications in proteins: Resources, tools and prediction methods.Database (Oxford)20212021baab01210.1093/database/baab012 33826699
    [Google Scholar]
  39. VendelM.C. FavisM. SnyderW.B. HuangF. CapiliA.D. DongJ. GlaserS.M. MillerB.R. DemarestS.J. Secretion from bacterial versus mammalian cells yields a recombinant scFv with variable folding properties.Arch. Biochem. Biophys.2012526218819310.1016/j.abb.2011.12.018 22230329
    [Google Scholar]
  40. RobertsonN. Lopez-AntonN. GurjarS.A. KhaliqueH. KhalafZ. ClerkinS. LeydonV.R. Parker-ManuelR. RaesideA. PayneT. JonesT.D. SeymourL. CawoodR. Development of a novel mammalian display system for selection of antibodies against membrane proteins.J. Biol. Chem.202029552184361844810.1074/jbc.RA120.015053 33127646
    [Google Scholar]
  41. ZhuJ. HattonD. New mammalian expression systems.Adv. Biochem. Eng. Biotechnol.201816552595010.1007/10_2016_55
    [Google Scholar]
  42. MasonD.M. WeberC.R. ParolaC. MengS.M. GreiffV. KeltonW.J. ReddyS.T. High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed mutagenesis.Nucleic Acids Res.201846147436744910.1093/nar/gky550 29931269
    [Google Scholar]
  43. ZhouC. JacobsenF.W. CaiL. ChenQ. ShenD. Development of a novel mammalian cell surface antibody display platform.MAbs20102550851810.4161/mabs.2.5.12970 20716968
    [Google Scholar]
  44. CherfG.M. CochranJ.R. Applications of yeast surface display for protein engineering.Methods Mol. Biol.201513191555087510.1007/978‑1‑4939‑2748‑7_8
    [Google Scholar]
  45. RosowskiS. BeckerS. ToleikisL. ValldorfB. GrzeschikJ. DemirD. WillenbücherI. GaaR. KolmarH. ZielonkaS. KrahS. A novel one-step approach for the construction of yeast surface display Fab antibody libraries.Microb. Cell Fact.2018171310.1186/s12934‑017‑0853‑z 29316915
    [Google Scholar]
  46. ColbyD.W. GargP. HoldenT. ChaoG. WebsterJ.M. MesserA. IngramV.M. WittrupK.D. Development of a human light chain variable domain (V(L)) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display.J. Mol. Biol.2004342390191210.1016/j.jmb.2004.07.054 15342245
    [Google Scholar]
  47. RazaiA. Garcia-RodriguezC. LouJ. GerenI.N. ForsythC.M. RoblesY. TsaiR. SmithT.J. SmithL.A. SiegelR.W. FeldhausM. MarksJ.D. Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A.J. Mol. Biol.2005351115816910.1016/j.jmb.2005.06.003 16002090
    [Google Scholar]
  48. Teymennet-RamírezK.V. Martínez-MoralesF. Trejo-HernándezM.R. Yeast surface display system: Strategies for improvement and biotechnological applications.Front. Bioeng. Biotechnol.2022979474210.3389/fbioe.2021.794742 35083204
    [Google Scholar]
  49. XieY. HanX. MiaoY. An effective recombinant protein expression and purification system in Saccharomyces cerevisiae.Curr. Protoc. Mol. Biol.20181231e6210.1002/cpmb.62 29927062
    [Google Scholar]
  50. BoderE.T. Raeeszadeh-SarmazdehM. PriceJ.V. Engineering antibodies by yeast display.Arch. Biochem. Biophys.201252629910610.1016/j.abb.2012.03.009 22450168
    [Google Scholar]
  51. LozančićM. Surface display—an alternative to classic enzyme immobilization.Catalysts20199972810.3390/catal9090728
    [Google Scholar]
  52. SaleemM. BrimH. HussainS. ArshadM. LeighM.B. Zia-ul-hassan, Perspectives on microbial cell surface display in bioremediation.Biotechnol. Adv.200826215116110.1016/j.biotechadv.2007.10.002 18068937
    [Google Scholar]
  53. VolkA.L. HuF.J. RockbergJ. Epitope mapping of monoclonal and polyclonal antibodies using bacterial cell surface display.Methods Molecular Biol.2014113148550010.1007/978‑1‑62703‑992‑5_29
    [Google Scholar]
  54. HanM.J. LeeS.H. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT.FEMS Microbiol. Lett.201536211710.1093/femsle/fnu002 25790485
    [Google Scholar]
  55. KronqvistN. MalmM. RockbergJ. HjelmB. UhlénM. StåhlS. LöfblomJ. Staphylococcal surface display in combinatorial protein engineering and epitope mapping of antibodies.Recent Pat. Biotechnol.20104317118210.2174/187220810793611536 21171954
    [Google Scholar]
  56. DesvauxM. DumasE. ChafseyI. HébraudM. Protein cell surface display in Gram-positive bacteria: From single protein to macromolecular protein structure.FEMS Microbiol. Lett.2006256111510.1111/j.1574‑6968.2006.00122.x 16487313
    [Google Scholar]
  57. KimJ. SchumannW. Display of proteins on Bacillus subtilis endospores.Cell. Mol. Life Sci.200966193127313610.1007/s00018‑009‑0067‑6 19554258
    [Google Scholar]
  58. RathinamN.K. SaniR.K. Next Generation Biomanufacturing Technologies.Washington, DCAmerican Chemical Society201910.1021/bk‑2019‑1329
    [Google Scholar]
  59. KarusoP. Modern methods for the isolation of natural product receptors.Comprehensive Natural Products II.AmsterdamElsevier201051356710.1016/B978‑008045382‑8.00210‑0
    [Google Scholar]
  60. HanL. ZhaoY. CuiS. LiangB. Redesigning of microbial cell surface and its application to whole-cell biocatalysis and biosensors.Appl. Biochem. Biotechnol.2018185239641810.1007/s12010‑017‑2662‑6 29168153
    [Google Scholar]
  61. OluwayeluD.O. AdebiyiA.I. Plantibodies in human and animal health: A review.Afr. Health Sci.201616264064510.4314/ahs.v16i2.35 27605982
    [Google Scholar]
  62. MarusicC. PioliC. StelterS. NovelliF. LonoceC. MorrocchiE. BenvenutoE. SalzanoA.M. ScaloniA. DoniniM. N‐glycan engineering of a plant‐produced anti‐CD20‐hIL‐2 immunocytokine significantly enhances its effector functions.Biotechnol. Bioeng.2018115356557610.1002/bit.26503 29178403
    [Google Scholar]
  63. GengenbachB.B. KeilL.L. OpdensteinenP. MüschenC.R. MelmerG. LentzenH. BührmannJ. BuyelJ.F. Comparison of microbial and transient expression (tobacco plants and plant‐cell packs) for the production and purification of the anticancer mistletoe lectin viscumin.Biotechnol. Bioeng.201911692236224910.1002/bit.27076 31140580
    [Google Scholar]
  64. LimC.Y. LeeK.J. OhD.B. KoK. Effect of the developmental stage and tissue position on the expression and glycosylation of recombinant glycoprotein GA733-FcK in transgenic plants.Front. Plant Sci.2015577810.3389/fpls.2014.00778 25628633
    [Google Scholar]
  65. VaqueroC. SackM. ChandlerJ. DrossardJ. SchusterF. MoneckeM. SchillbergS. FischerR. Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves.Proc. Natl. Acad. Sci. USA19999620111281113310.1073/pnas.96.20.11128 10500141
    [Google Scholar]
  66. BurnettM.J.B. BurnettA.C. Therapeutic recombinant protein production in plants: Challenges and opportunities.Plants People Planet20202212113210.1002/ppp3.10073
    [Google Scholar]
  67. DoniniM. MarusicC. Current state-of-the-art in plant-based antibody production systems.Biotechnol. Lett.201941333534610.1007/s10529‑019‑02651‑z 30684155
    [Google Scholar]
  68. RosenblumG. CoopermanB.S. Engine out of the chassis: Cell‐free protein synthesis and its uses.FEBS Lett.2014588226126810.1016/j.febslet.2013.10.016 24161673
    [Google Scholar]
  69. ZhangL. LinX. WangT. GuoW. LuY. Development and comparison of cell-free protein synthesis systems derived from typical bacterial chassis.Bioresour. Bioprocess.2021815810.1186/s40643‑021‑00413‑2 34249606
    [Google Scholar]
  70. ShirbaghaeeZ. BolhassaniA. Different applications of virus‐like particles in biology and medicine: Vaccination and delivery systems.Biopolymers2016105311313210.1002/bip.22759 26509554
    [Google Scholar]
  71. ZichelR. MimranA. KerenA. BarneaA. Steinberger-LevyI. MarcusD. TurgemanA. ReuvenyS. Efficacy of a potential trivalent vaccine based on Hc fragments of botulinum toxins A, B, and E produced in a cell-free expression system.Clin. Vaccine Immunol.201017578479210.1128/CVI.00496‑09 20357058
    [Google Scholar]
  72. Rodríguez-LimasW.A. SekarK. TyoK.E.J. Virus-like particles: The future of microbial factories and cell-free systems as platforms for vaccine development.Curr. Opin. Biotechnol.20132461089109310.1016/j.copbio.2013.02.008 23481378
    [Google Scholar]
  73. DondapatiS.K. StechM. ZemellaA. KubickS. Cell-free protein synthesis: A promising option for future drug development.BioDrugs202034332734810.1007/s40259‑020‑00417‑y 32198631
    [Google Scholar]
  74. KimH.C. KimD.M. Methods for energizing cell-free protein synthesis.J. Biosci. Bioeng.200910811410.1016/j.jbiosc.2009.02.007 19577183
    [Google Scholar]
  75. ZemellaA. ThoringL. HoffmeisterC. KubickS. Cell-free protein synthesis: Pros and cons of prokaryotic and eukaryotic systems.ChemBioChem201516172420243110.1002/cbic.201500340 26478227
    [Google Scholar]
  76. BrödelA.K. SonnabendA. KubickS. Cell‐free protein expression based on extracts from CHO cells.Biotechnol. Bioeng.20141111253610.1002/bit.25013 24018795
    [Google Scholar]
  77. StechM. KubickS. Cell-free synthesis meets antibody production: A review.Antibodies (Basel)201541123310.3390/antib4010012
    [Google Scholar]
  78. ParrayH.A. ShuklaS. SamalS. ShrivastavaT. AhmedS. SharmaC. KumarR. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives.Int. Immunopharmacol.20208510663910.1016/j.intimp.2020.106639 32473573
    [Google Scholar]
  79. HolzlöhnerP. HanackK. Generation of murine monoclonal antibodies by hybridoma technology.J. Vis. Exp.2017201711954832
    [Google Scholar]
  80. BoydS.D. CroweJ.E.Jr Deep sequencing and human antibody repertoire analysis.Curr. Opin. Immunol.20164010310910.1016/j.coi.2016.03.008 27065089
    [Google Scholar]
  81. Doria-RoseN.A. JoyceM.G. Strategies to guide the antibody affinity maturation process.Curr. Opin. Virol.20151113714710.1016/j.coviro.2015.04.002 25913818
    [Google Scholar]
  82. ChingK.H. CollariniE.J. AbdicheY.N. BedingerD. PedersenD. IzquierdoS. HarrimanR. ZhuL. EtchesR.J. van de LavoirM.C. HarrimanW.D. LeightonP.A. Chickens with humanized immunoglobulin genes generate antibodies with high affinity and broad epitope coverage to conserved targets.MAbs2018101718010.1080/19420862.2017.1386825 29035625
    [Google Scholar]
  83. LavinderJ.J. HoiK.H. ReddyS.T. WineY. GeorgiouG. Systematic characterization and comparative analysis of the rabbit immunoglobulin repertoire.PLoS One201496e10132210.1371/journal.pone.0101322 24978027
    [Google Scholar]
  84. MacLennanI.C.M. Germinal Centers.Annu. Rev. Immunol.199412111713910.1146/annurev.iy.12.040194.001001 8011279
    [Google Scholar]
  85. StavnezerJ. GuikemaJ.E.J. SchraderC.E. Mechanism and regulation of class switch recombination.Annu. Rev. Immunol.200826126129210.1146/annurev.immunol.26.021607.090248 18370922
    [Google Scholar]
  86. SteinwandM. DrosteP. FrenzelA. HustM. DübelS. SchirrmannT. The influence of antibody fragment format on phage display based affinity maturation of IgG.MAbs20146120421810.4161/mabs.27227 24262918
    [Google Scholar]
  87. LuckenbachG.A. Some recent aspect on hybridoma technology.Advances in Forensic Haemogenetics.ChamSpringer198810.1007/978‑3‑642‑73330‑7_55
    [Google Scholar]
  88. CarthewP. Is rodent virus contamination of monoclonal antibody preparations for use in human therapy a hazard?J. Gen. Virol.198667696397410.1099/0022‑1317‑67‑6‑963 3011978
    [Google Scholar]
  89. National Research Council (US) Committee. Monoclonal Antibody Production; National Academies Press (US): Washington1999
    [Google Scholar]
  90. MitraS. TomarP.C. Hybridoma technology; advancements, clinical significance, and future aspects.J. Genet. Eng. Biotechnol.202119115910.1186/s43141‑021‑00264‑6 34661773
    [Google Scholar]
  91. PetersonN.C. PeaveyJ.E. Comparison of in vitro monoclonal antibody production methods with an in vivo ascites production technique.Contemp. Top. Lab. Anim. Sci.19983756166 12456135
    [Google Scholar]
  92. GstraunthalerG. LindlT. van der ValkJ. A plea to reduce or replace fetal bovine serum in cell culture media.Cytotechnology201365579179310.1007/s10616‑013‑9633‑8 23975256
    [Google Scholar]
  93. LiuL. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins.Protein Cell201891153210.1007/s13238‑017‑0408‑4 28421387
    [Google Scholar]
  94. WhitfieldK. In vitro and in vivo monoclonal antibody production.1999Available From: https://pivotalscientific.com/scientific-library/in-vitro-and-in-vivo-mab-production
    [Google Scholar]
  95. SchadeR. HlinakA. Egg yolk antibodies, state of the art and future prospects.Altern. Anim. Exp.199613559 11178463
    [Google Scholar]
  96. SchadeR. ZhangX.Y. TerzoloH.R. Use of IgY Antibodies in human and veterinary medicine.Bioactive Egg Compounds.Berlin, HeidelbergSpringer Berlin Heidelberg200721322210.1007/978‑3‑540‑37885‑3_25
    [Google Scholar]
  97. SpillnerE. BrarenI. GreunkeK. SeismannH. BlankS. du PlessisD. Avian IgY antibodies and their recombinant equivalents in research, diagnostics and therapy.Biologicals201240531332210.1016/j.biologicals.2012.05.003 22748514
    [Google Scholar]
  98. YamanakaH.I. InoueT. Ikeda-TanakaO. Chicken monoclonal antibody isolated by a phage display system.J. Immunol.199615731156116210.4049/jimmunol.157.3.1156 8757621
    [Google Scholar]
  99. ZhangX. ChenH. TianZ. ChenS. SchadeR. Chicken monoclonal IgY antibody: A novel antibody development strategy.Avian Biol. Res.2010339710610.3184/175815510X12823014530963
    [Google Scholar]
  100. FinlayW.J.J. ShawI. ReillyJ.P. KaneM. Generation of high-affinity chicken single-chain Fv antibody fragments for measurement of the Pseudonitzschia pungens toxin domoic acid.Appl. Environ. Microbiol.20067253343334910.1128/AEM.72.5.3343‑3349.2006 16672476
    [Google Scholar]
  101. GeS. ZhangX. ZhongF. LiuX. ZhangX. Generation and evaluation of IgY-scFv based mimetics against canine parvovirus.Vet. Res.20215217010.1186/s13567‑021‑00943‑9 33985573
    [Google Scholar]
  102. WaldmannH. Human monoclonal antibodies: The benefits of humanization.Methods Mol. Biol.20191904110
    [Google Scholar]
  103. ChoiJ. KimM. LeeJ. SeoY. HamY. LeeJ. LeeJ. KimJ.K. KwonM.H. Antigen-binding affinity and thermostability of chimeric mouse-chicken IgY and mouse-human IgG antibodies with identical variable domains.Sci. Rep.2019911924210.1038/s41598‑019‑55805‑4 31848417
    [Google Scholar]
  104. GassmannM. ThömmesP. WeiserT. HübscherU. Efficient production of chicken egg yolk antibodies against a conserved mammalian protein.FASEB J.1990482528253210.1096/fasebj.4.8.1970792 1970792
    [Google Scholar]
  105. CaryS.P. LeeJ. WagenknechtR. SilvermanG.J. Characterization of superantigen-induced clonal deletion with a novel clan III-restricted avian monoclonal antibody: Exploiting evolutionary distance to create antibodies specific for a conserved VH region surface.J. Immunol.200016494730474110.4049/jimmunol.164.9.4730 10779779
    [Google Scholar]
  106. NakamuraN. ShuyamaA. HojyoS. ShimokawaM. MiyamotoK. KawashimaT. AosasaM. HoriuchiH. FurusawaS. MatsudaH. Establishment of a chicken monoclonal antibody panel against mammalian prion protein.J. Vet. Med. Sci.200466780781410.1292/jvms.66.807 15297752
    [Google Scholar]
  107. BuersteddeJ.M. ReynaudC.A. HumphriesE.H. OlsonW. EwertD.L. WeillJ.C. Light chain gene conversion continues at high rate in an ALV-induced cell line.EMBO J.19909392192710.1002/j.1460‑2075.1990.tb08190.x 2155784
    [Google Scholar]
  108. ReynaudC.A. AnquezV. GrimalH. WeillJ.C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire.Cell198748337938810.1016/0092‑8674(87)90189‑9 3100050
    [Google Scholar]
  109. LiC. HeJ. RenH. ZhangX. DuE. LiX. Preparation of a chicken scFv to analyze gentamicin residue in animal derived food products.Anal. Chem.20168874092409810.1021/acs.analchem.6b00426 26980703
    [Google Scholar]
  110. ChenH.X. HeF. SunY. LuoY. QiuH.J. ZhangX.Y. SuttonB.J. Generation and characterization of chicken-sourced single-chain variable fragments (scFvs) against porcine interferon-gamma (pIFN-γ).J. Immunoassay Immunochem.2015361274410.1080/15321819.2014.892511 24568649
    [Google Scholar]
  111. EbrahimizadehW. RajabibazlM. Bacteriophage vehicles for phage display: Biology, mechanism, and application.Curr. Microbiol.201469210912010.1007/s00284‑014‑0557‑0 24638925
    [Google Scholar]
  112. LedsgaardL. KilstrupM. Karatt-VellattA. McCaffertyJ. LaustsenA. Basics of antibody phage display technology.Toxins (Basel)201810623610.3390/toxins10060236 29890762
    [Google Scholar]
  113. MaH. O’KennedyR. Recombinant antibody fragment production.Methods2017116233310.1016/j.ymeth.2016.11.008 27871972
    [Google Scholar]
  114. NixonA.E. SextonD.J. LadnerR.C. Drugs derived from phage display.MAbs201461738510.4161/mabs.27240 24262785
    [Google Scholar]
  115. KnappikA. BrundiersR. Recombinant antibody expression and purification. The Protein Protocols Handbook.Berlin, HeidelbergSpringer Link200910.1007/978‑1‑59745‑198‑7_203
    [Google Scholar]
  116. D’AngeloS. StaquiciniF.I. FerraraF. StaquiciniD.I. SharmaG. TarletonC.A. NguyenH. NaranjoL.A. SidmanR.L. ArapW. BradburyA.R.M. PasqualiniR. Selection of phage-displayed accessible recombinant targeted antibodies (SPARTA): Methodology and applications.JCI Insight201839e9830510.1172/jci.insight.98305 29720567
    [Google Scholar]
  117. FagerlundA. MyrsetA.H. KulsethM.A. Construction and characterization of a 9-mer phage display pVIII-library with regulated peptide density.Appl. Microbiol. Biotechnol.200880592593610.1007/s00253‑008‑1630‑z 18716770
    [Google Scholar]
  118. HessG.T. CragnoliniJ.J. PoppM.W. AllenM.A. DouganS.K. SpoonerE. PloeghH.L. BelcherA.M. GuimaraesC.P. M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins.Bioconjug. Chem.20122371478148710.1021/bc300130z 22759232
    [Google Scholar]
  119. TomimatsuK. MatsumotoS. TanakaH. YamashitaM. NakanishiH. TeruyaK. KazunoS. KinjoT. HamasakiT. KusumotoK. KabayamaS. KatakuraY. ShirahataS. A rapid screening and production method using a novel mammalian cell display to isolate human monoclonal antibodies.Biochem. Biophys. Res. Commun.20134411596410.1016/j.bbrc.2013.10.007 24140057
    [Google Scholar]
  120. FavorA.H. LlanosC.D. YoungblutM.D. BardalesJ.A. Optimizing bacteriophage engineering through an accelerated evolution platform.Sci. Rep.20201011398110.1038/s41598‑020‑70841‑1 32814789
    [Google Scholar]
  121. WangX. ZhongP. LuoP.P. WangK.C. Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment.PLoS One201164e1902310.1371/journal.pone.0019023 21552519
    [Google Scholar]
  122. KatoM. HanyuY. Single-step colony assay with autoinduction of scFv expression for the screening of antibody libraries.Biotechniques201966419419710.2144/btn‑2018‑0195 30781974
    [Google Scholar]
  123. HanyuY. KatoM. Screening antibody libraries with colony assay using scFv-alkaline phosphatase fusion proteins.Molecules20202512290510.3390/molecules25122905 32599779
    [Google Scholar]
  124. KatoM. HanyuY. Colony assay for antibody library screening: Outlook and comparison to display screening.Antibody Engineering; InTechOpen: London2009
    [Google Scholar]
  125. GreenfieldE.A. Collecting and storing hybridoma tissue culture supernatants.2020Available From: https://cshprotocols.cshlp.org/content/2020/10/pdb.prot103317.full.pdf
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010307146240626080746
Loading
/content/journals/cpb/10.2174/0113892010307146240626080746
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test