Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Objectives

The objective of this study is to search for hydroxysafflor yellow A (HSYA) and Idiopathic sudden sensorineural hearing loss (ISSNHL)-related target genes and to study the treatment effects of HSYA on lipopolysaccharide (LPS)-induced endothelial cell injury.

Methods

We used network pharmacology to screen molecules related to HSYA and ISSNHL, then analyzed these molecules and their enriched biological processes and signaling pathways Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). We selected inflammation-related hub genes for molecular docking determination by protein-protein interaction (PPI) analysis, and further verified them with experiments.

Results

Thirty-four HSYA-ISSNHL-related differential genes were obtained using drug-disease differential gene screening using online tools. Three key proteins, NF-κB, CASP3, and MAPK1, were selected according to Degree > 20. Among them, NF-κB is closely related to inflammation and ISSNHL. In experiments, HSYA reduced inflammatory (IL-6, TNF-α) and oxidative stress (ROS, SOD and MDA) indicators after LPS intervention, and the expression of NF-κB-related signaling pathway genes.

Conclusion

HSYA may reduce inflammation and oxidative stress by inhibiting the expression of the TLR4 / NF-κB-related signaling pathway, therefore protecting endothelial cells, which might be a potential mechanism of HSYA in ISSNHL treatment.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010311334240816101114
2024-08-30
2025-09-03
Loading full text...

Full text loading...

References

  1. ChandrasekharS.S. Tsai DoB.S. SchwartzS.R. BontempoL.J. FaucettE.A. FinestoneS.A. HollingsworthD.B. KelleyD.M. KmuchaS.T. MoonisG. PolingG.L. RobertsJ.K. StachlerR.J. ZeitlerD.M. CorriganM.D. NnachetaL.C. SatterfieldL. Clinical practice guideline: Sudden hearing loss (Update).Otolaryngol. Head Neck Surg.2019161S114510.1177/0194599819859885
    [Google Scholar]
  2. KuoC.Y. ChungC.H. WangC.H. ChienW.C. ChenH.C. Increased incidence in hospitalised patients with sudden sensorineural hearing loss: A 14-year nationwide population-based study.Int. J. Audiol.2019581176977310.1080/14992027.2019.162700931195853
    [Google Scholar]
  3. ZhangX. WengY. XuY. XiongH. LiangM. ZhengY. OuY. Selected blood inflammatory and metabolic parameters predicted successive bilateral sudden sensorineural hearing loss.Dis. Markers201920191910.1155/2019/716525731360265
    [Google Scholar]
  4. UluŞ. KınarA. BucakA. ÖzdemirM. Systemic immune inflammatory index of patients with idiopathic sudden sensorineural hearing loss: Comparison of NLR and PRL values.Ear Nose Throat J.20211001072673010.1177/014556132092431232396031
    [Google Scholar]
  5. SunY. GuoY. WangH. ChenZ. WuY. ShiH. FengY. YinS. Differences in platelet-related parameters among patients with audiographically distinct sudden sensorineural hearing loss.Medicine (Baltimore)20179636e787710.1097/MD.000000000000787728885341
    [Google Scholar]
  6. NiW. SongS.P. JiangY.D. Association between routine hematological parameters and sudden sensorineural hearing loss: A meta-analysis.J. Otol.2021161475410.1016/j.joto.2020.07.00633505450
    [Google Scholar]
  7. SaiN. ZhangT. WuJ. An immunohistochemical study of cochlear blood-labyrinth barrier in mice.Chin. J. Otol.2018162205211
    [Google Scholar]
  8. ZhangT. HanW.J. Advances in pathophysiological studies of cochlear blood-labyrinth barrier.Chin. J. Otol.2017152257260
    [Google Scholar]
  9. ZhangL.L. TianK. TangZ.H. ChenX.J. BianZ.X. WangY.T. LuJ.J. Phytochemistry and pharmacology of Carthamus tinctorius L.Am. J. Chin. Med.201644219722610.1142/S0192415X1650013027080938
    [Google Scholar]
  10. MeselhyM.R. KadotaS. MomoseY. HatakeyamaN. KusaiA. HattoriM. NambaT. Two new quinochalcone yellow pigments from Carthamus tinctorius and Ca2+ antagonistic activity of tinctormine.Chem. Pharm. Bull. (Tokyo)199341101796180210.1248/cpb.41.17968281577
    [Google Scholar]
  11. XueX. DengY. WangJ. ZhouM. LiaoL. WangC. PengC. LiY. Hydroxysafflor yellow A, a natural compound from Carthamus tinctorius L with good effect of alleviating atherosclerosis.Phytomedicine20219115369410.1016/j.phymed.2021.15369434403879
    [Google Scholar]
  12. BaiX. WangWX. FuRJ. Therapeutic potential of hydroxysafflor yellow A on cardio-cerebrovascular diseases.Front Pharmacol.2020110126510.3389/fphar.2020.01265.
    [Google Scholar]
  13. LiY. LiuX.T. ZhangP.L. LiY.C. SunM.R. WangY.T. WangS.P. YangH. LiuB.L. WangM. GaoW. LiP. Hydroxysafflor yellow A blocks HIF-1α induction of NOX2 and protects ZO-1 protein in cerebral microvascular endothelium.Antioxidants202211472810.3390/antiox1104072835453413
    [Google Scholar]
  14. ChenQ. WanJ. ZhangY. HeY. BaoY. YuL. YangJ. Pharmacokinetic-pharmacodynamic modeling analysis for hydroxysafflor yellow A-calycosin in compatibility in normal and cerebral ischemic rats: A comparative study.Biomed. Pharmacother.202215011295010.1016/j.biopha.2022.11295035427818
    [Google Scholar]
  15. LinB. WanH. YangJ. YuL. ZhouH. WanH. Lipid regulation of protocatechualdehyde and hydroxysafflor yellow A via AMPK/SREBP2/PCSK9/LDLR signaling pathway in hyperlipidemic zebrafish.Heliyon2024103e2490810.1016/j.heliyon.2024.e2490838333845
    [Google Scholar]
  16. GeC. PengY. LiJ. WangL. ZhuX. WangN. YangD. ZhouX. ChangD. Hydroxysafflor yellow A alleviates acute myocardial ischemia/reperfusion injury in mice by inhibiting ferroptosis via the activation of the HIF-1α/SLC7A11/GPX4 signaling pathway.Nutrients20231515341110.3390/nu1515341137571350
    [Google Scholar]
  17. YuL. JinZ. LiM. LiuH. TaoJ. XuC. WangL. ZhangQ. Protective potential of hydroxysafflor yellow A in cerebral ischemia and reperfusion injury: An overview of evidence from experimental studies.Front. Pharmacol.20221313106303510.3389/fphar.2022.106303536588739
    [Google Scholar]
  18. YeS. LiuJ. DongQ. WangX. Wandong She Resveratrol ameliorates lipopolysaccharide-induced sudden sensorineural hearing loss in in vitro model through multitarget antiapoptotic mechanism based on network pharmacology and molecular docking.Evid. Based Complement. Alternat. Med.2022202211110.1155/2022/640458835646137
    [Google Scholar]
  19. MaJ.H. LeeE. YoonS.H. MinH. OhJ.H. HwangI. SungY. RyuJ.H. BokJ. YuJ.W. Therapeutic effect of NLRP3 inhibition on hearing loss induced by systemic inflammation in a CAPS-associated mouse model.EBioMedicine20228210418410.1016/j.ebiom.2022.10418435870427
    [Google Scholar]
  20. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D85531680165
    [Google Scholar]
  21. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku120525428349
    [Google Scholar]
  22. Jabbari MoghadamY. AsadiM.R. AbbaszadehV. GharesouranJ. DehghaniH. SabaieH. HussenB.M. TaheriM. Akbari DilmaghnaiN. RezazadehM. Analysis of NFKB1 and NFKB2 gene expression in the blood of patients with sudden sensorineural hearing loss.Int. J. Pediatr. Otorhinolaryngol.202316611147010.1016/j.ijporl.2023.11147036773447
    [Google Scholar]
  23. ZhuW. SheW. GaoZ. MaY. JinX. Inhibition of macrophage migration inhibitory factor alleviates LPS-induced inflammation response of HEI-OC1 cells via suppressing NF-κB signaling.Cytokine202215015577610.1016/j.cyto.2021.15577634864396
    [Google Scholar]
  24. NunezD.A. WijesingheP. NabiS. YehD. GarnisC. microRNAs in sudden hearing loss.Laryngoscope20201306E416E42210.1002/lary.2832731603566
    [Google Scholar]
  25. IngersollM.A. LutzeR.D. KelmannR.G. KSR1 knockout mouse model demonstrates MAPK pathway’s key role in cisplatin and noise-induced hearing loss.bioRxiv202356631610.1101/2023.11.08.566316
    [Google Scholar]
  26. McStayG.P. GreenD.R. Measuring apoptosis: Caspase inhibitors and activity assays.Cold Spring Harb. Protoc.201420148pdb.top07035910.1101/pdb.top07035925086023
    [Google Scholar]
  27. WangX. ZhouL. YeS. LiuS. ChenL. ChengZ. HuangY. WangB. PanM. WangD. WangL. LeiZ. ImY.J. LiX. rFGF4 alleviates lipopolysaccharide-induced acute lung injury by inhibiting the TLR4/NF-κB signaling pathway.Int. Immunopharmacol.202311710992310.1016/j.intimp.2023.10992336842235
    [Google Scholar]
  28. XieL. ZhouQ. ChenX. DuX. LiuZ. FeiB. HouJ. DaiY. SheW. Elucidation of the Hdac2/Sp1/miR-204-5p/Bcl-2 axis as a modulator of cochlear apoptosis via in vivo/in vitro models of acute hearing loss.Mol. Ther. Nucleic Acids202123231093110910.1016/j.omtn.2021.01.01733614251
    [Google Scholar]
  29. YamamotoH. OmelchenkoI. ShiX. NuttallA.L. The influence of NF‐κB signal‐transduction pathways on the murine inner ear by acoustic overstimulation.J. Neurosci. Res.20098781832184010.1002/jnr.2201819185019
    [Google Scholar]
  30. DohiT. KawashimaR. KawamuraY.I. OtsuboT. HagiwaraT. AmatucciA. MichaelsonJ. BurklyL.C. Pathological activation of canonical nuclear-factor κB by synergy of tumor necrosis factor α and TNF-like weak inducer of apoptosis in mouse acute colitis.Cytokine2014691142110.1016/j.cyto.2014.05.00125022957
    [Google Scholar]
  31. LawrenceT. The nuclear factor NF-kappaB pathway in inflammation.Cold Spring Harb. Perspect. Biol.200916a00165110.1101/cshperspect.a00165120457564
    [Google Scholar]
  32. MasudaM. NagashimaR. KanzakiS. FujiokaM. OgitaK. OgawaK. Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation.Brain Res.20061068123724710.1016/j.brainres.2005.11.02016376312
    [Google Scholar]
  33. WatanabeK. InaiS. JinnouchiK. BadaS. HessA. MichelO. YagiT. Nuclear-factor kappa B (NF-kappa B)-inducible nitric oxide synthase (iNOS/NOS II) pathway damages the stria vascularis in cisplatin-treated mice.Anticancer Res.2002226C4081408512553036
    [Google Scholar]
  34. WeissB.G. FreytagS. KloosB. HaubnerF. SharafK. SpiegelJ.L. CanisM. IhlerF. BertlichM. Cannabinoid receptor 2 agonism is capable of preventing lipopolysaccharide induced decreases of cochlear microcirculation – A potential approach for inner ear pathologies.Otol. Neurotol.2021429e1396e140110.1097/MAO.000000000000328034267099
    [Google Scholar]
  35. XiaL. LiuJ. SunY. ShiH. YangG. FengY. YinS. Rosiglitazone improves glucocorticoid resistance in a sudden sensorineural hearing loss by promoting map kinase phosphatase-1 expression.Mediators Inflamm.2019201911010.1155/2019/791573031217747
    [Google Scholar]
  36. ZhouQ.Q. DaiY.H. DuX.P. HouJ. QiH. SheW.D. Aminophylline restores glucocorticoid sensitivity in a guinea pig model of sudden sensorineural hearing loss induced by lipopolysaccharide.Sci. Rep.201771273610.1038/s41598‑017‑02956‑x28578424
    [Google Scholar]
  37. GuoJ. ChenW. BaoB. ZhangD. PanJ. ZhangM. Protective effect of berberine against LPS-induced endothelial cell injury via the JNK signaling pathway and autophagic mechanisms.Bioengineered20211211324133710.1080/21655979.2021.191567133896366
    [Google Scholar]
  38. ChenZ. CaoZ. GuiF. ZhangM. WuX. PengH. YuB. LiW. AiF. ZhangJ. TMEM43 protects against sepsis-induced cardiac injury via inhibiting ferroptosis in mice.Cells20221119299210.3390/cells1119299236230956
    [Google Scholar]
  39. KangL. PangJ. ZhangX. LiuY. WuY. WangJ. HanD. L-arabinose attenuates lps-induced intestinal inflammation and injury through reduced M1 macrophage polarization.J. Nutr.2023153113327334010.1016/j.tjnut.2023.09.01237717628
    [Google Scholar]
  40. ZhangH. WuZ. YangY. ShaukatA. YangJ. GuoY. ZhangT. ZhuX. QiuJ. DengG. ShiD. Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling.J. Zhejiang Univ. Sci. B2019201081682710.1631/jzus.B190007131489801
    [Google Scholar]
  41. WiesingerA. PetersW. ChappellD. KentrupD. ReuterS. PavenstädtH. OberleithnerH. KümpersP. Nanomechanics of the endothelial glycocalyx in experimental sepsis.PLoS One2013811e8090510.1371/journal.pone.008090524278345
    [Google Scholar]
  42. LeiJ. XiangP. ZengS. ChenL. ZhangL. YuanZ. ZhangJ. WangT. YuR. ZhangW. IbrahimI.I. MaL. YuC. Tetramethylpyrazine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration via TLR4/NF-κB/HPSE1 signaling pathway during inflammation.Front. Pharmacol.2022121279184110.3389/fphar.2021.79184135185540
    [Google Scholar]
  43. WanC.X. XuM. HuangS.H. WuQ.Q. YuanY. DengW. TangQ.Z. Baicalein protects against endothelial cell injury by inhibiting the TLR4/NF‑κB signaling pathway.Mol. Med. Rep.20181723085309129257294
    [Google Scholar]
  44. Pérez-CremadesD. Bueno-BetíC. García-GiménezJ.L. Ibañez-CabellosJ.S. PallardóF.V. HermenegildoC. NovellaS. Extracellular histones trigger oxidative stress-dependent induction of the NF-kB/CAM pathway via TLR4 in endothelial cells.J. Physiol. Biochem.202379225126010.1007/s13105‑022‑00935‑z36464762
    [Google Scholar]
  45. MorganM.J. LiuZ. Crosstalk of reactive oxygen species and NF-κB signaling.Cell Res.201121110311510.1038/cr.2010.17821187859
    [Google Scholar]
  46. TsukamotoH. TakeuchiS. KubotaK. KobayashiY. KozakaiS. UkaiI. ShichikuA. OkuboM. NumasakiM. KanemitsuY. MatsumotoY. NochiT. WatanabeK. AsoH. TomiokaY. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1–IKKϵ–IRF3 axis activation.J. Biol. Chem.201829326101861020110.1074/jbc.M117.79663129760187
    [Google Scholar]
  47. KryskoD.V. AgostinisP. KryskoO. GargA.D. BachertC. LambrechtB.N. VandenabeeleP. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation.Trends Immunol.201132415716410.1016/j.it.2011.01.00521334975
    [Google Scholar]
  48. ChenX. YuG. FanS. BianM. MaH. LuJ. JinL. Sargassum fusiforme polysaccharide activates nuclear factor kappa-B (NF-κB) and induces cytokine production via Toll-like receptors.Carbohydr. Polym.201410510511312010.1016/j.carbpol.2014.01.05624708959
    [Google Scholar]
  49. YangC.H. HwangC.F. YangM.Y. LinP.M. ChuangJ.H. Expression of toll-like receptor genes in leukocytes of patients with sudden sensorineural hearing loss.Laryngoscope201512512E382E38710.1002/lary.2524125809471
    [Google Scholar]
  50. LiuX.H. LiangF. JiaX.Y. ZhaoL. ZhouY. YangJ. Hyperbaric oxygen treatment improves hearing level via attenuating TLR4/NF-κB mediated inflammation in sudden sensorineural hearing loss patients.Biomed. Environ. Sci.202033533133732553077
    [Google Scholar]
  51. PrasadK.N. BondyS.C. MicroRNAs in hearing disorders: Their regulation by oxidative stress, inflammation and antioxidants.Front. Cell. Neurosci.20171127610.3389/fncel.2017.0027628955205
    [Google Scholar]
  52. SalvagoP. RizzoS. BiancoA. MartinesF. Sudden sensorineural hearing loss: Is there a relationship between routine haematological parameters and audiogram shapes?.Int. J. Audiol.201756314815310.1080/14992027.2016.123641827712131
    [Google Scholar]
  53. HanD. WeiJ. ZhangR. MaW. ShenC. FengY. XiaN. XuD. CaiD. LiY. FangW. Hydroxysafflor yellow A alleviates myocardial ischemia/reperfusion in hyperlipidemic animals through the suppression of TLR4 signaling.Sci. Rep.2016613531910.1038/srep3531927731393
    [Google Scholar]
  54. ZhangWB YangF WangY Inhibition of HDAC6 attenuates LPS-induced inflammation in macrophages by regulating oxidative stress and suppressing the TLR4-MAPK/NF-κB pathways.Biomed Pharmacother.2019117109166
    [Google Scholar]
  55. ZhangZ.M. WangY.C. ChenL. LiZ. Protective effects of the suppressed NF‐κB/TLR4 signaling pathway on oxidative stress of lung tissue in rat with acute lung injury.Kaohsiung J. Med. Sci.201935526527610.1002/kjm2.1206531001923
    [Google Scholar]
  56. SperanskiiA.I. KostyukS.V. KalashnikovaE.A. VeikoN.N. Enrichment of extracellular DNA from the cultivation medium of human peripheral blood mononuclears with genomic CpG rich fragments results in increased cell production of IL-6 and TNF-a via activation of the NF-kB signaling pathway.Biomed. Khim.201662333134010.18097/PBMC2016620333127420628
    [Google Scholar]
  57. BaiX. ChenS. XuK. JinY. NiuX. XieL. QiuY. LiuX.Z. SunY. N-Acetylcysteine combined with dexamethasone treatment improves sudden sensorineural hearing loss and attenuates hair cell death caused by ROS stress.Front. Cell Dev. Biol.20219965948610.3389/fcell.2021.65948633816510
    [Google Scholar]
  58. YaoY. GuoQ. LuoW. YangM. LiuJ. HouJ. SheW. Inflammatory indicators in peripheral blood in sudden sensorineural hearing loss patients with different audiogram shapes.Ear Nose Throat J.20231022909510.1177/0145561322113211536250504
    [Google Scholar]
  59. StevenS. FrenisK. OelzeM. KalinovicS. KunticM. Bayo JimenezM.T. Vujacic-MirskiK. HelmstädterJ. Kröller-SchönS. MünzelT. DaiberA. Vascular inflammation and oxidative stress: major triggers for cardiovascular disease.Oxid. Med. Cell. Longev.2019201912610.1155/2019/709215131341533
    [Google Scholar]
  60. KaramB.S. Chavez-MorenoA. KohW. AkarJ.G. AkarF.G. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes.Cardiovasc. Diabetol.201716112010.1186/s12933‑017‑0604‑928962617
    [Google Scholar]
  61. QuarantaN. De CeglieV. D’EliaA. Endothelial dysfunction in idiopathic sudden sensorineural hearing loss: A review.Audiology Res.20166115110.4081/audiores.2016.15127588164
    [Google Scholar]
  62. ShaitoA. AramouniK. AssafR. ParentiA. OrekhovA. YazbiA.E. PintusG. EidA.H. Oxidative stress-induced endothelial dysfunction in cardiovascular diseases.Front Biosci (Landmark Ed) 2022273010510.31083/j.fbl270310535345337
    [Google Scholar]
  63. ZhangX. ZhengY. WangZ. GanJ. YuB. LuB. JiangX. Melatonin as a therapeutic agent for alleviating endothelial dysfunction in cardiovascular diseases: Emphasis on oxidative stress.Biomed. Pharmacother.202316711547510.1016/j.biopha.2023.11547537722190
    [Google Scholar]
  64. LiR. SomasodiranM. SunT. ChenC. LongM. XuD. Efficacy of low extra-abdominal aortic block in cesarean section for placenta accreta spectrum disorders and its effect on the expression of MDA and SOD.Zhong Nan Da Xue Xue Bao Yi Xue Ban20224781129113536097781
    [Google Scholar]
  65. HuJ.P. ZhaoX.P. MaX.Z. WangY. ZhengL.J. Effects of cigarette smoke on aerobic capacity and serum MDA content and SOD activity of animal.Int. J. Clin. Exp. Med.20147114461446525550969
    [Google Scholar]
  66. FetoniA.R. PacielloF. RolesiR. PaludettiG. TroianiD. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling.Free Radic. Biol. Med.2019135135465910.1016/j.freeradbiomed.2019.02.02230802489
    [Google Scholar]
  67. QuarantaN. RamunniA. De LucaC. BresciaP. DambraP. De TullioG. VaccaA. QuarantaA. Endothelial progenitor cells in sudden sensorineural hearing loss.Acta Otolaryngol.2011131434735010.3109/00016489.2010.53699021171834
    [Google Scholar]
  68. CadoniG. GaetaniE. PicciottiP.M. ArzaniD. QuartaM. GiannantonioS. PaludettiG. BocciaS. A case‐control study on proinflammatory genetic polymorphisms on sudden sensorineural hearing loss.Laryngoscope20151251E28E3210.1002/lary.2474325345762
    [Google Scholar]
  69. MasudaM. KanzakiS. MinamiS. KikuchiJ. KanzakiJ. SatoH. OgawaK. Correlations of inflammatory biomarkers with the onset and prognosis of idiopathic sudden sensorineural hearing loss.Otol. Neurotol.20123371142115010.1097/MAO.0b013e318263541722872174
    [Google Scholar]
  70. YoonS.H. KimM.E. KimH.Y. LeeJ.S. JangC.H. Inflammatory cytokines and mononuclear cells in sudden sensorineural hearing loss.J. Laryngol. Otol.201913329510110.1017/S002221511900010030739608
    [Google Scholar]
  71. MiaoL. St ClairD.K. Regulation of superoxide dismutase genes: Implications in disease.Free Radic. Biol. Med.200947434435610.1016/j.freeradbiomed.2009.05.01819477268
    [Google Scholar]
  72. DangX. HeB. NingQ. LiuY. GuoJ. NiuG. ChenM. Alantolactone suppresses inflammation, apoptosis and oxidative stress in cigarette smoke-induced human bronchial epithelial cells through activation of Nrf2/HO-1 and inhibition of the NF-κB pathways.Respir. Res.20202119510.1186/s12931‑020‑01358‑432321531
    [Google Scholar]
  73. TsikasD. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges.Anal. Biochem.2017524524133010.1016/j.ab.2016.10.02127789233
    [Google Scholar]
  74. MenonB. RamalingamK. KumarR. Evaluating the role of oxidative stress in acute ischemic stroke.J. Neurosci. Rural Pract.202011115615910.1055/s‑0039‑340267532140020
    [Google Scholar]
  75. LiG.M. ChenJ.R. ZhangH.Q. CaoX.Y. SunC. PengF. YinY.P. LinZ. YuL. ChenY. TangY.L. XieX.F. PengC. Update on pharmacological activities, security, and pharmacokinetics of rhein.Evid. Based Complement. Alternat. Med.2021202111810.1155/2021/458241234457021
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010311334240816101114
Loading
/content/journals/cpb/10.2174/0113892010311334240816101114
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test