Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

One of the most common malignancies in women, breast cancer accounts for nearly 25% of all cancer cases. Breast cancer is a diverse cancer form that exhibits variability in both morphology and molecular characteristics and is linked to numerous risk factors. Although various approaches and research are ongoing in the treatment and prevention of breast cancer, medication resistance in the current breast cancer treatment contributes to the disease's relapse and recurrence. Phytoactive molecules are the subject of growing research in both breast cancer prevention and treatment, but currently used conventional medicines and techniques limit their application. In recent years, significant advancements have been made in the field of nanotechnology, which has proven to be essential in the fight against drug resistance. The transport of synthetic and natural anticancer molecules nanocarriers has recently been added to breast cancer therapy, greatly alleviating the constraints of the current approach. In light of these developments, interest in nano-delivery studies of phytoactive molecules has also increased. In this review, research of phytoactive molecules for breast cancers along with their clinical studies and nanoformulations, was presented from current and future perspectives.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010299183240529094844
2024-06-07
2025-09-03
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  2. YousefniaS. Seyed ForootanF. Seyed ForootanS. Nasr EsfahaniM.H. GureA.O. GhaediK. Mechanistic pathways of malignancy in breast cancer stem cells.Front. Oncol.20201045210.3389/fonc.2020.0045232426267
    [Google Scholar]
  3. MascaraM. ConstantinouC. Global perceptions of women on breast cancer and barriers to screening.Curr. Oncol. Rep.20212377410.1007/s11912‑021‑01069‑z33937940
    [Google Scholar]
  4. KennedyD.A. HartJ. SeelyD. Cost effectiveness of natural health products: A systematic review of randomized clinical trials.Evid. Based Complement. Alternat. Med.20096329730410.1093/ecam/nem16718955290
    [Google Scholar]
  5. FattahiS. ArdekaniA.M. ZabihiE. AbedianZ. MostafazadehA. PourbagherR. Akhavan-NiakiH. Antioxidant and apoptotic effects of an aqueous extract of Urtica dioica on the MCF-7 human breast cancer cell line.Asian Pac. J. Cancer Prev.20131495317532310.7314/APJCP.2013.14.9.531724175819
    [Google Scholar]
  6. LiuR.H. Dietary bioactive compounds and their health implications.J. Food Sci.201378s1Suppl. 1A18A2510.1111/1750‑3841.1210123789932
    [Google Scholar]
  7. PetricR. BraicuC. RadulyL. DragosN. DumitrascuD. Berindan-NegoeI. ZanoagaO. MonroigP. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers.OncoTargets Ther.2015882053206610.2147/OTT.S8359726273208
    [Google Scholar]
  8. Abu BakarM.F. SaifudinA. CaoP. Mohd EsaN. Herbal medicine for prevention and therapy in breast cancer.J Evid Based Complementary Altern Med20212021976058610.1155/2021/9760586
    [Google Scholar]
  9. ParkJ. JeongD. SongM. KimB. Recent advances in anti-metastatic approaches of herbal medicines in 5 major cancers: From traditional medicine to modern drug discovery.Antioxidants202110452710.3390/antiox1004052733801741
    [Google Scholar]
  10. BarayaY.S. WongK.K. YaacobN.S. The immunomodulatory potential of selected bioactive plant-based compounds in breast cancer: A review.Anticancer. Agents Med. Chem.201717677078310.2174/187152061666616081711124227539316
    [Google Scholar]
  11. ShinH.R. KimJ.Y. YunT.K. MorganG. VainioH. The cancer-preventive potential of Panax ginseng: A review of human and experimental evidence.Cancer Causes Control200011656557610.1023/A:100898020058310880039
    [Google Scholar]
  12. SharmaG.N. DaveR. SanadyaJ. SharmaP. SharmaK.K. Various types and management of breast cancer: An overview.J. Adv. Pharm. Technol. Res.20101210912622247839
    [Google Scholar]
  13. AkramM. IqbalM. DaniyalM. KhanA.U. Awareness and current knowledge of breast cancer.Biol. Res.20175013310.1186/s40659‑017‑0140‑928969709
    [Google Scholar]
  14. HongR. XuB. Breast cancer: An up‐to‐date review and future perspectives.Cancer Commun. (Lond.)2022421091393610.1002/cac2.1235836074908
    [Google Scholar]
  15. CohenS.Y. StollC.R. AnandarajahA. DoeringM. ColditzG.A. Modifiable risk factors in women at high risk of breast cancer: A systematic review.Breast Cancer Res.20232514510.1186/s13058‑023‑01636‑137095519
    [Google Scholar]
  16. Hilakivi-ClarkeL. Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters.Breast Cancer Res.2014162339410.1186/bcr364925032259
    [Google Scholar]
  17. KenslerK.H. SankarV.N. WangJ. ZhangX. RubadueC.A. BakerG.M. ParkerJ.S. HoadleyK.A. StancuA.L. PyleM.E. CollinsL.C. HunterD.J. EliassenA.H. HankinsonS.E. TamimiR.M. HengY.J. PAM50 molecular intrinsic subtypes in the nurses’ health study cohorts.Cancer Epidemiol. Biomarkers Prev.201928479880610.1158/1055‑9965.EPI‑18‑086330591591
    [Google Scholar]
  18. GaoJ.J. SwainS.M. Luminal a breast cancer and molecular assays: A review.Oncologist201823555656510.1634/theoncologist.2017‑053529472313
    [Google Scholar]
  19. WaksA.G. WinerE.P. Breast cancer treatment: A review.JAMA2019321328830010.1001/jama.2018.1932330667505
    [Google Scholar]
  20. SmolarzB. NowakA.Z. RomanowiczH. Breast cancer—epidemiology, classification, pathogenesis and treatment (Review of literature).Cancers (Basel)20221410256910.3390/cancers1410256935626173
    [Google Scholar]
  21. ŁukasiewiczS. CzeczelewskiM. FormaA. BajJ. SitarzR. StanisławekA. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-An updated review.Cancers (Basel)20211317428710.3390/cancers1317428734503097
    [Google Scholar]
  22. HarbeckN. Penault-LlorcaF. CortesJ. GnantM. HoussamiN. PoortmansP. RuddyK. TsangJ. CardosoF. Breast cancer.Nat. Rev. Dis. Prim.20195660111-210.1038/s41572‑019‑0111‑2
    [Google Scholar]
  23. KalwaniyaD.S. GairolaM. GuptaS. PawanG. Ductal carcinoma in situ: A detailed review of current practices.Cureus2023154e3793210.7759/cureus.3793237220466
    [Google Scholar]
  24. BonevV.V. Ductal carcinoma in situ: Current and future management for the surgeon and non-surgeon: A narrative review.AME Surg J20211272710.21037/asj‑21‑20
    [Google Scholar]
  25. van SeijenM. LipsE.H. ThompsonA.M. Nik-ZainalS. FutrealA. HwangE.S. VerschuurE. LaneJ. JonkersJ. ReaD.W. WesselingJ. Ductal carcinoma in situ: To treat or not to treat, that is the question.Br. J. Cancer2019121428529210.1038/s41416‑019‑0478‑631285590
    [Google Scholar]
  26. SurabhiD.M. WilsonJ.C. SinghM. GreenL. Recognizing invasive breast carcinoma of no special type with medullary pattern.Radiol. Case Rep.20231851788179210.1016/j.radcr.2023.01.05236923390
    [Google Scholar]
  27. WilsonN. IronsideA. DianaA. OikonomidouO. Lobular breast cancer: A review.Front. Oncol.20211059139910.3389/fonc.2020.59139933520704
    [Google Scholar]
  28. DaiX. LiT. BaiZ. YangY. LiuX. ZhanJ. ShiB. Breast cancer intrinsic subtype classification, clinical use and future trends.Am. J. Cancer Res.20155102929294326693050
    [Google Scholar]
  29. SørlieT. PerouC.M. TibshiraniR. AasT. GeislerS. JohnsenH. HastieT. EisenM.B. van de RijnM. JeffreyS.S. ThorsenT. QuistH. MateseJ.C. BrownP.O. BotsteinD. LønningP.E. Børresen-DaleA.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.Proc. Natl. Acad. Sci. USA20019819108691087410.1073/pnas.19136709811553815
    [Google Scholar]
  30. YersalO. BarutcaS. Biological subtypes of breast cancer: Prognostic and therapeutic implications.World J. Clin. Oncol.20145341242410.5306/wjco.v5.i3.41225114856
    [Google Scholar]
  31. AysolaK. DesaiA. WelchC. XuJ. QinY. ReddyV. MatthewsR. OwensC. OkoliJ. BeechD.J. PiyathilakeC.J. ReddyS.P. RaoV.N. Triple negative breast cancer - An overview.Hereditary Genet20132013Suppl 200110.4172/2161‑1041.S2‑001
    [Google Scholar]
  32. ZagamiP. CareyL.A. Triple negative breast cancer: Pitfalls and progress.NPJ Breast Cancer2022819510.1038/s41523‑022‑00468‑035987766
    [Google Scholar]
  33. AlmansourN.M. Triple-negative breast cancer: A brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence.Front. Mol. Biosci.2022983641710.3389/fmolb.2022.83641735145999
    [Google Scholar]
  34. KumarH. GuptaN.V. JainR. MadhunapantulaS.V. BabuC.S. KesharwaniS.S. DeyS. JainV. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer.J Adv Res.20235427129210.1016/j.jare.2023.02.005
    [Google Scholar]
  35. BozorgiA. KhazaeiS. KhademiA. KhazaeiM. Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells.Iran. J. Basic Med. Sci.202023897098310.22038/ijbms.2020.43745.1027032952942
    [Google Scholar]
  36. OvadjeP. RomaA. SteckleM. NicolettiL. ArnasonJ.T. PandeyS. Advances in the research and development of natural health products as main stream cancer therapeutics.Evid. Based Complement. Alternat. Med.2015201511210.1155/2015/75134825883673
    [Google Scholar]
  37. ShareefM. AshrafM.A. SarfrazM. Natural cures for breast cancer treatment.Saudi Pharm. J.201624323324010.1016/j.jsps.2016.04.01827275107
    [Google Scholar]
  38. HelmsS. Cancer prevention and therapeutics: Panax ginseng.Altern. Med. Rev.20049325927415387718
    [Google Scholar]
  39. ScherbakovA.M. AndreevaO.E. Apigenin inhibits growth of breast cancer cells: The role of ERα and HER2/neu.Acta Nat. (Engl. Ed.)20157313313910.32607/20758251‑2015‑7‑3‑133‑13926483970
    [Google Scholar]
  40. SeoH.S. KuJ.M. ChoiH.S. WooJ.K. LeeB.H. KimD.S. SongH.J. JangB.H. ShinY.C. KoS.G. Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells.Oncol. Rep.201738271572410.3892/or.2017.575228656316
    [Google Scholar]
  41. MaashiM.S. Al-MualmM. Al-AwsiG.R.L. OpulenciaM.J.C. Al-GazallyM.E. AbdullaevB. AbdelbassetW.K. AnsariM.J. JalilA.T. AlsaikhanF. ShalabyM.N. MustafaY.F. Apigenin alleviates resistance to doxorubicin in breast cancer cells by acting on the JAK/STAT signaling pathway.Mol. Biol. Rep.20224998777878410.1007/s11033‑022‑07727‑035804214
    [Google Scholar]
  42. LeeH.H. JungJ. MoonA. KangH. ChoH. Antitumor and anti-invasive effect of apigenin on human breast carcinoma through suppression of IL-6 expression.Int. J. Mol. Sci.20192013314310.3390/ijms2013314331252615
    [Google Scholar]
  43. QianK. TangC. ChenL. ZhengS. ZhaoY. MaL. XuL. FanL. YuJ. TanH. SunY. ShenL. LuY. LiuQ. LiuY. XiongY. Berberine reverses breast cancer multidrug resistance based on fluorescence pharmacokinetics in vitro and in vivo.ACS Omega2021616106451065410.1021/acsomega.0c0628834056218
    [Google Scholar]
  44. PanY. ZhangF. ZhaoY. ShaoD. ZhengX. ChenY. HeK. LiJ. ChenL. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer.J. Cancer2017891679168910.7150/jca.1910628775788
    [Google Scholar]
  45. WenC. WuL. FuL. ZhangX. ZhouH. Berberine enhances the anti-tumor activity of tamoxifen in drug-sensitive MCF-7 and drug-resistant MCF-7/TAM cells.Mol. Med. Rep.20161432250225610.3892/mmr.2016.549027432642
    [Google Scholar]
  46. XieJ. XuY. HuangX. ChenY. FuJ. XiM. WangL. Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway.Tumour Biol.20153621279128810.1007/s13277‑014‑2754‑725352028
    [Google Scholar]
  47. HuS. XuY. MengL. HuangL. SunH. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells.Exp. Ther. Med.20181621266127210.3892/etm.2018.634530116377
    [Google Scholar]
  48. YoonI.S. ParkJ.H. KangH.J. ChoeJ.H. GohM.S. KimD.D. ChoH.J. Poly(d,l-lactic acid)-glycerol-based nanoparticles for curcumin delivery.Int. J. Pharm.20154881-2707710.1016/j.ijpharm.2015.04.04625900098
    [Google Scholar]
  49. LiC.L. HuangC.W. KoC.J. FangS.Y. Ou-YangF. PanM.R. LuoC.W. HouM.F. Curcumol suppresses triple-negative breast cancer metastasis by attenuating anoikis resistance via inhibition of Skp2-mediated transcriptional addiction.Anticancer Res.202040105529553810.21873/anticanres.1456532988876
    [Google Scholar]
  50. ZengC. FanD. XuY. LiX. YuanJ. YangQ. ZhouX. LuJ. ZhangC. HanJ. GuJ. GaoY. SunL. WangS. Curcumol enhances the sensitivity of doxorubicin in triple-negative breast cancer via regulating the miR-181b-2-3p-ABCC3 axis.Biochem. Pharmacol.202017411379510.1016/j.bcp.2020.11379531926937
    [Google Scholar]
  51. ChenH.S. BaiM.H. ZhangT. LiG.D. LiuM. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells.Int. J. Oncol.20154641730173810.3892/ijo.2015.287025647396
    [Google Scholar]
  52. YousufM. ShamsiA. KhanP. ShahbaazM. AlAjmiM.F. HussainA. HassanG.M. IslamA. Rizwanul HaqueQ.M. HassanMI. Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of Cyclin-Dependent Kinase 6.Int J Mol Sci.20202110352610.3390/ijms21103526
    [Google Scholar]
  53. KaurH. GhoshS. KumarP. BasuB. NagpalK. Ellagic acid-loaded, tween 80-coated, chitosan nanoparticles as a promising therapeutic approach against breast cancer: In-vitro and in-vivo study.Life Sci.202128411992710.1016/j.lfs.2021.11992734492262
    [Google Scholar]
  54. WangS. ChangX. ZhangJ. LiJ. WangN. YangB. PanB. ZhengY. WangX. OuH. WangZ. Ursolic acid inhibits breast cancer metastasis by suppressing glycolytic metabolism via activating SP1/Caveolin-1 signaling.Front. Oncol.20211174558410.3389/fonc.2021.74558434568078
    [Google Scholar]
  55. LiaoW.L. LiuY.F. YingT.H. ShiehJ.C. HungY.T. LeeH.J. ShenC.Y. ChengC.W. Inhibitory effects of ursolic acid on the stemness and progression of human breast cancer cells by modulating Argonaute-2.Int. J. Mol. Sci.202224136610.3390/ijms2401036636613808
    [Google Scholar]
  56. LuoJ. HuY.L. WangH. Ursolic acid inhibits breast cancer growth by inhibiting proliferation, inducing autophagy and apoptosis, and suppressing inflammatory responses via the PI3K/AKT and NF-κB signaling pathways in vitro..Exp. Ther. Med.20171443623363110.3892/etm.2017.496529042957
    [Google Scholar]
  57. KehkashanA.Q. DarA. BinaS.S. KabirN. HumaA. ShakilA. ShaistaE. ShaziaH. SabiraB. Anticancer activity of ocimum basilicum and the effect of ursolic acid on the cytoskeleton of MCF-7 human breast cancer cells.Lett. Drug Des. Discov.201071010.2174/1570180811007010726
    [Google Scholar]
  58. TsaiK.J. TsaiH.Y. TsaiC.C. ChenT.Y. HsiehT.H. ChenC.L. MbuyisaL. HuangY.B. LinM.W. Luteolin inhibits breast cancer stemness and enhances chemosensitivity through the Nrf2-mediated pathway.Molecules20212621645210.3390/molecules2621645234770867
    [Google Scholar]
  59. WuL. LinY. GaoS. WangY. PanH. WangZ. PozzoliniM. YangF. ZhangH. YangY. XiaoL. XuY. Luteolin inhibits triple-negative breast cancer by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling.Front. Pharmacol.202314120084310.3389/fphar.2023.120084337346292
    [Google Scholar]
  60. LinD. KuangG. WanJ. ZhangX. LiH. GongX. LiH. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression.Oncol. Rep.201737289590210.3892/or.2016.531127959422
    [Google Scholar]
  61. WangR. YangL. LiS. YeD. YangL. LiuQ. ZhaoZ. CaiQ. TanJ. LiX. Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), Chemokine Receptor Type 4 (CXCR4), Mucin 1 (MUC1), and Epithelial Cell Adhesion Molecule (EpCAM).Med. Sci. Monit.20182441242010.12659/MSM.90802229353288
    [Google Scholar]
  62. HashemzaeiM. FarA.D. YariA. HeraviR.E. TabrizianK. TaghdisiS.M. SadeghS.E. TsarouhasK. KouretasD. TzanakakisG. NikitovicD. AnisimovN.Y. SpandidosD.A. TsatsakisA.M. RezaeeR. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo.Oncol. Rep.201738281982810.3892/or.2017.576628677813
    [Google Scholar]
  63. NiazvandF. OrazizadehM. KhorsandiL. AbbaspourM. MansouriE. KhodadadiA. Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells.Medicina (Kaunas)201955411410.3390/medicina5504011431013662
    [Google Scholar]
  64. ZanL. ChenQ. ZhangL. LiX. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25.Bioengineered201910137438210.1080/21655979.2019.165732731431131
    [Google Scholar]
  65. HongO.Y. NohE.M. JangH.Y. LeeY.R. LeeB.K. JungS.H. KimJ.S. YounH.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway.Oncol. Lett.201714144144610.3892/ol.2017.610828693189
    [Google Scholar]
  66. MoradzadehM. HosseiniA. ErfanianS. RezaeiH. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and Telomerase.Pharmacol. Rep.201769592492810.1016/j.pharep.2017.04.00828646740
    [Google Scholar]
  67. FanP. FanS. WangH. MaoJ. ShiY. IbrahimM.M. MaW. YuX. HouZ. WangB. LiL. Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway.Stem Cell Res. Ther.20134614610.1186/scrt35724331293
    [Google Scholar]
  68. ZhaoQ. ZhaoM. ParrisA.B. XingY. YangX. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells.Int. J. Oncol.20164931203121010.3892/ijo.2016.358827574003
    [Google Scholar]
  69. UllahM.F. AhmadA. ZubairH. KhanH.Y. WangZ. SarkarF.H. HadiS.M. Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species.Mol. Nutr. Food Res.201155455355910.1002/mnfr.20100032921462322
    [Google Scholar]
  70. TaoC.C. WuY. GaoX. QiaoL. YangY. LiF. ZouJ. WangY.H. ZhangS.Y. LiC.L. ZhangY.Y. SunX.D. The antitumor effects of icaritin against breast cancer is related to estrogen receptors.Curr. Mol. Med.2021211738510.2174/156652402066620053021244032472997
    [Google Scholar]
  71. GaoS. ZhangX. LiuJ. JiF. ZhangZ. MengQ. ZhangQ. HanX. WuH. YinY. LvY. ShiW. Icariin induces triple-negative breast cancer cell apoptosis and suppresses invasion by inhibiting the JNK/c-Jun signaling pathway.Drug Des. Devel. Ther.20231782183610.2147/DDDT.S39888736969705
    [Google Scholar]
  72. YinL. QiX.W. LiuX.Z. YangZ.Y. CaiR.L. CuiH.J. ChenL. YuS.C. Icaritin enhances the efficacy of cetuximab against triple‑negative breast cancer cells.Oncol. Lett.20201963950395810.3892/ol.2020.1149632382339
    [Google Scholar]
  73. HuangW.C. SuH.H. FangL.W. WuS.J. LiouC.J. Licochalcone A inhibits cellular motility by suppressing e-cadherin and MAPK signaling in breast cancer.Cells20198321810.3390/cells803021830841634
    [Google Scholar]
  74. ChouguleM.B. PatelA.R. JacksonT. SinghM. Antitumor activity of Noscapine in combination with Doxorubicin in triple negative breast cancer.PLoS One201163e1773310.1371/journal.pone.001773321423660
    [Google Scholar]
  75. DoddapaneniR. PatelK. ChowdhuryN. SinghM. Reversal of drug-resistance by noscapine chemo-sensitization in docetaxel resistant triple negative breast cancer.Sci. Rep.2017711582410.1038/s41598‑017‑15531‑129158480
    [Google Scholar]
  76. XiaoX. HouX. ShiW. HuC. CuiY. HuJ. PiaoZ. ZhuX. LiQ. XuF. Oxymatrine inhibits proliferation and apoptosis of human breast cancer cells through the regulation of miRNA-140-5P.Am. J. Transl. Res.20211312136741368235035706
    [Google Scholar]
  77. ChenY. ChenL. ZhangJ.Y. ChenZ.Y. Ting-tingL. ZhangY.Y. FuL.Y. FanS.Q. ZhangM.Q. GanS. ZhangN. ShenX.C. Oxymatrine reverses epithelial-mesenchymal transition in breast cancer cells by depressing αⅤβ3 integrin/FAK/PI3K/Akt signaling activation.OncoTargets Ther.2019126253626510.2147/OTT.S20905631496729
    [Google Scholar]
  78. GreenshieldsA.L. DoucetteC.D. SuttonK.M. MaderaL. AnnanH. YaffeP.B. KnickleA.F. DongZ. HoskinD.W. Piperine inhibits the growth and motility of triple-negative breast cancer cells.Cancer Lett.2015357112914010.1016/j.canlet.2014.11.01725444919
    [Google Scholar]
  79. MotiwalaM.N. RangariV.D. Combined effect of paclitaxel and piperine on a MCF-7 breast cancer cell line in vitro: Evidence of a synergistic interaction.Synergy2015211610.1016/j.synres.2015.04.001
    [Google Scholar]
  80. RadJ.G. HoskinD.W. Delivery of Apoptosis-inducing Piperine to Triple-negative Breast Cancer Cells via Co-polymeric Nanoparticles.Anticancer Res.202040268969410.21873/anticanres.1399832014909
    [Google Scholar]
  81. El-ShehawyA.A. ElmetwalliA. El-FarA.H. MosallamS.A.E.R. SalamaA.F. BabalghithA.O. MahmoudM.A. MohanyH. GaberM. El-SewedyT. Thymoquinone, piperine, and sorafenib combinations attenuate liver and breast cancers progression: Epigenetic and molecular docking approaches.BMC Complementary Medicine and Therapies20232316910.1186/s12906‑023‑03872‑636870998
    [Google Scholar]
  82. LaiL. FuQ. LiuY. JiangK. GuoQ. ChenQ. YanB. WangQ. ShenJ. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model.Acta Pharmacol. Sin.201233452353010.1038/aps.2011.20922388073
    [Google Scholar]
  83. Mad-AdamN. GraidistP. SaetangJ. RattanabureeT. TanawattanasuntornT. DokduangS. TarapornS. Chompunud Na AyudhyaC. Immunomodulatory effects of low piperine fractional Piper nigrum extract on breast cancer prevention.Eur. J. Cancer2022174S4510.1016/S0959‑8049(22)00921‑2
    [Google Scholar]
  84. WakimotoR. OnoM. TakeshimaM. HiguchiT. NakanoS. Differential anticancer activity of pterostilbene against three subtypes of human breast cancer cells.Anticancer Res.201737116153615910.21873/anticanres.1206429061796
    [Google Scholar]
  85. ChakrabortyA. BodipatiN. DemonacosM.K. PeddintiR. GhoshK. RoyP. Long term induction by pterostilbene results in autophagy and cellular differentiation in MCF-7 cells via ROS dependent pathway.Mol. Cell. Endocrinol.20123551254010.1016/j.mce.2012.01.00922273805
    [Google Scholar]
  86. MannalP. McDonaldD. McFaddenD. Pterostilbene and tamoxifen show an additive effect against breast cancer in vitro.Am. J. Surg.2010200557758010.1016/j.amjsurg.2010.07.02221056131
    [Google Scholar]
  87. ZouY. WangX. BiD. FuJ. HanJ. GuoY. FengL. HanM. Pterostilbene nanoparticles with small particle size show excellent anti-breast cancer activity in vitro and in vivo..Nanotechnology2021323232510210.1088/1361‑6528/abfdec33946061
    [Google Scholar]
  88. ZhaoY.N. CaoY.N. SunJ. LiangZ. WuQ. CuiS.H. ZhiD.F. GuoS.T. ZhenY.H. ZhangS.B. Anti-breast cancer activity of resveratrol encapsulated in liposomes.J. Mater. Chem. B Mater. Biol. Med.202081273710.1039/C9TB02051A31746932
    [Google Scholar]
  89. ALkharashiN.A. Efficacy of resveratrol against breast cancer and hepatocellular carcinoma cell lines.Saudi Med. J.202344324625210.15537/smj.2023.44.3.2022076836940961
    [Google Scholar]
  90. SajadimajdS. AghazF. KhazaeiM. RayganiA.V. The anti-cancer effect of resveratrol nano-encapsulated supplements against breast cancer via the regulation of oxidative stress.J. Microencapsul.202340531832910.1080/02652048.2023.219802637017511
    [Google Scholar]
  91. KimY.N. ChoeS.R. ChoK.H. ChoD.Y. KangJ. ParkC.G. LeeH.Y. Resveratrol suppresses breast cancer cell invasion by inactivating a RhoA/YAP signaling axis.Exp. Mol. Med.2017492e29610.1038/emm.2016.15128232662
    [Google Scholar]
  92. Ferraz da CostaD.C. CamposN.P.C. SantosR.A. Guedes-da-SilvaF.H. Martins-DinisM.M.D.C. ZanphorlinL. RamosC. RangelL.P. SilvaJ.L. Resveratrol prevents p53 aggregation in vitro and in breast cancer cells.Oncotarget2018949291122912210.18632/oncotarget.2563130018739
    [Google Scholar]
  93. WangJ. HuangP. PanX. XiaC. ZhangH. ZhaoH. YuanZ. LiuJ. MengC. LiuF. Resveratrol reverses TGF ‐β1‐mediated invasion and metastasis of breast cancer cells via the SIRT3 / AMPK /autophagy signal axis.Phytother. Res.202337121123010.1002/ptr.760836086852
    [Google Scholar]
  94. ZhangY. LuQ. LiN. XuM. MiyamotoT. LiuJ. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway.NPJ Breast Cancer2022814010.1038/s41523‑022‑00402‑435332167
    [Google Scholar]
  95. CastroN.P. RangelM.C. MerchantA.S. MacKinnonG. CuttittaF. SalomonD.S. KimY.S. Sulforaphane suppresses the growth of triple-negative breast cancer stem-like cells in vitro and in vivo.Cancer Prev. Res. (Phila.)201912314715810.1158/1940‑6207.CAPR‑18‑024130679159
    [Google Scholar]
  96. HussainA. MohsinJ. PrabhuS.A. BegumS. NusriQ.E.A. HarishG. JavedE. KhanM.A. SharmaC. Sulforaphane inhibits growth of human breast cancer cells and augments the therapeutic index of the chemotherapeutic drug, gemcitabine.Asian Pac. J. Cancer Prev.201314105855586010.7314/APJCP.2013.14.10.585524289589
    [Google Scholar]
  97. Saavedra-LeosM.Z. Jordan-AlejandreE. Puente-RiveraJ. Silva-CázaresM.B. Molecular pathways related to sulforaphane as adjuvant treatment: A nanomedicine perspective in breast cancer.Medicina (Kaunas)20225810137710.3390/medicina5810137736295538
    [Google Scholar]
  98. WulandariA.A. ChoiriA.A. Fitria WidiandaniT. Thymoquinone and its derivatives against breast cancer with HER2 positive: In silico studies of ADMET, docking and QSPR.J. Basic Clin. Physiol. Pharmacol.202132439340110.1515/jbcpp‑2020‑043134214298
    [Google Scholar]
  99. AlshaibiH.F. AldarmahiN.A. AlkhattabiN.A. AlsufianiH.M. TarbiahN.I. Studying the anticancer effects of thymoquinone on breast cancer cells through natural killer cell activity.BioMed Res. Int.202220221810.1155/2022/921864036199754
    [Google Scholar]
  100. Yıldırımİ.H. AzzawriA.A. DuranT. Thymoquinone induces apoptosis via targeting the Bax/BAD and Bcl-2 pathway in breast cancer cells.Dicle Tıp Dergisi201946341141710.5798/dicletip.620329
    [Google Scholar]
  101. MoubarakM.M. ChanouhaN. Abou IbrahimN. KhalifeH. Gali-MuhtasibH. Thymoquinone anticancer activity is enhanced when combined with royal jelly in human breast cancer.World J. Clin. Oncol.202112534235410.5306/wjco.v12.i5.34234131566
    [Google Scholar]
  102. SaddiqA.A. El-FarA.H. MohamedS.A. AlmaghrabiO.A. MousaS.A. Curcumin and thymoquinone combination attenuates breast cancer cell lines’ progression.Integr. Cancer Ther.20222110.1177/1534735422109953735583244
    [Google Scholar]
  103. ShanmugamM.K. AhnK.S. HsuA. WooC.C. YuanY. TanK.H.B. ChinnathambiA. AlahmadiT.A. AlharbiS.A. KohA.P.F. ArfusoF. HuangR.Y.J. LimL.H.K. SethiG. KumarA.P. Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis.Front. Pharmacol.20189129410.3389/fphar.2018.0129430564115
    [Google Scholar]
  104. ChavdaV.P. NallaL.V. BalarP. BezbaruahR. ApostolopoulosV. SinglaR.K. KhadelaA. VoraL. UverskyV.N. Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer.Cancers (Basel)2023154102310.3390/cancers1504102336831369
    [Google Scholar]
  105. AhmadR. SrivastavaS. GhoshS. KhareS.K. Phytochemical delivery through nanocarriers: A review.Colloids Surf. B Biointerfaces202119711138910.1016/j.colsurfb.2020.11138933075659
    [Google Scholar]
  106. Abu SamaanT.M. SamecM. LiskovaA. KubatkaP. BüsselbergD. Paclitaxel’s mechanistic and clinical effects on breast cancer.Biomolecules201991278910.3390/biom912078931783552
    [Google Scholar]
  107. MaP. MumperR.J. Paclitaxel nano-delivery systems: A comprehensive review.J. Nanomed. Nanotechnol.201342100016410.4172/2157‑7439.100016424163786
    [Google Scholar]
  108. LinX. WangQ. DuS. GuanY. QiuJ. ChenX. YuanD. ChenT. Nanoparticles for co-delivery of paclitaxel and curcumin to overcome chemoresistance against breast cancer.J. Drug Deliv. Sci. Technol.20237910405010.1016/j.jddst.2022.104050
    [Google Scholar]
  109. KumarA. KaurV. SinghA. MishraN. Development and characterization of paclitaxel and embelin loaded solid lipid nanoparticles for breast cancer.J. Drug Deliv. Ther.2020101606810.22270/jddt.v10i1.3840
    [Google Scholar]
  110. NawaraH.M. AfifyS.M. HassanG. ZahraM.H. SenoA. SenoM. Paclitaxel-based chemotherapy targeting cancer stem cells from mono-to combination therapy.Biomedicines20219550010.3390/biomedicines905050034063205
    [Google Scholar]
  111. JinC. WuH. LiuJ. BaiL. GuoG. The effect of paclitaxel-loaded nanoparticles with radiation on hypoxic MCF-7 cells.J. Clin. Pharm. Ther.2007321414710.1111/j.1365‑2710.2007.00796.x17286788
    [Google Scholar]
  112. BhardwajV. AnkolaD.D. GuptaS.C. SchneiderM. LehrC.M. KumarM.N.V.R. PLGA nanoparticles stabilized with cationic surfactant: Safety studies and application in oral delivery of paclitaxel to treat chemical-induced breast cancer in rat.Pharm. Res.200926112495250310.1007/s11095‑009‑9965‑419756974
    [Google Scholar]
  113. NooriS. Rezaei TaviraniM. DeraviN. Mahboobi RabbaniM.I. ZarghiA. Naringenin enhances the anti-cancer effect of cyclophosphamide against MDA-MB-231 breast cancer cells via targeting the STAT3 signaling pathway.Iran. J. Pharm. Res.202019312213310.22037/ijpr.2020.113103.1411233680016
    [Google Scholar]
  114. MadureiraM.B. ConcatoV.M. CruzE.M.S. Bitencourt de MoraisJ.M. InoueF.S.R. Concimo SantosN. GonçalvesM.D. Cremer de SouzaM. Basso ScandolaraT. Fontana MezoniM. GalvaniM. Rodrigues Ferreira SeivaF. PanisC. Miranda-SaplaM.M. PavanelliW.R. Naringenin and hesperidin as promising alternatives for prevention and co-adjuvant therapy for breast cancer.Antioxidants202312358610.3390/antiox1203058636978836
    [Google Scholar]
  115. LiH. YangB. HuangJ. XiangT. YinX. WanJ. LuoF. ZhangL. LiH. RenG. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway.Toxicol. Lett.2013220321922810.1016/j.toxlet.2013.05.00623694763
    [Google Scholar]
  116. YıldırımM. AcetÖ. YetkinD. AcetB.Ö. KarakocV. OdabasıM. Anti-cancer activity of naringenin loaded smart polymeric nanoparticles in breast cancer.J. Drug Deliv. Sci. Technol.20227410355210.1016/j.jddst.2022.103552
    [Google Scholar]
  117. AskarM.A. El ShawiO.E. Abou zaidO.A.R. MansourN.A. HanafyA.M. Breast cancer suppression by curcumin-naringenin-magnetic-nano-particles: In vitro and in vivo studies.Tumour Biol.202143122524710.3233/TUB‑21150634542050
    [Google Scholar]
  118. RajamaniS. RadhakrishnanA. SengodanT. ThangaveluS. Augmented anticancer activity of naringenin-loaded TPGS polymeric nanosuspension for drug resistive MCF-7 human breast cancer cells.Drug Dev. Ind. Pharm.201844111752176110.1080/03639045.2018.149644529968480
    [Google Scholar]
  119. KhaledS.S. SolimanH.A. Abdel-GabbarM. AhmedN.A. AttiaK.A.H.A. MahranH.A. El-NahassE.S. AhmedO.M. The preventive effects of naringin and naringenin against paclitaxel-induced nephrotoxicity and cardiotoxicity in male wistar rats.Evid. Based Complement. Alternat. Med.2022202211110.1155/2022/873981536212979
    [Google Scholar]
  120. ZhuX. LiJ. NingH. YuanZ. ZhongY. WuS. ZengJ.Z. α-Mangostin induces apoptosis and inhibits metastasis of breast cancer cells via regulating rxrα-akt signaling pathway.Front. Pharmacol.20211273965810.3389/fphar.2021.73965834539418
    [Google Scholar]
  121. KritsanawongS. InnajakS. ImotoM. WatanapokasinR. Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells.Int. J. Oncol.20164852155216510.3892/ijo.2016.339926892433
    [Google Scholar]
  122. Cruz-GregorioA. Aranda-RiveraA.K. Aparicio-TrejoO.E. Medina-CamposO.N. SciuttoE. FragosoG. Pedraza-ChaverriJ. α‐Mangostin induces oxidative damage, mitochondrial dysfunction, and apoptosis in a triple‐negative breast cancer model.Phytother. Res.20233783394340710.1002/ptr.781237012651
    [Google Scholar]
  123. LiP. TianW. MaX. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells.Mol. Cancer201413113810.1186/1476‑4598‑13‑13824894151
    [Google Scholar]
  124. PhamD.T. SaelimN. TiyaboonchaiW. Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy.Colloids Surf. B Biointerfaces201918170571310.1016/j.colsurfb.2019.06.01131228853
    [Google Scholar]
  125. MeylinaL. MuchtaridiM. JoniI.M. ElaminK.M. WathoniN. Hyaluronic acid-coated chitosan nanoparticles as an active targeted carrier of alpha mangostin for breast cancer cells.Polymers (Basel)2023154102510.3390/polym1504102536850308
    [Google Scholar]
  126. HerdianaY. WathoniN. ShamsuddinS. MuchtaridiM. α-Mangostin nanoparticles cytotoxicity and cell death modalities in breast cancer cell lines.Molecules20212617511910.3390/molecules2617511934500560
    [Google Scholar]
  127. BenjakulR. KongkaneramitL. SarisutaN. MoongkarndiP. Müller-GoymannC.C. Cytotoxic effect and mechanism inducing cell death of α-mangostin liposomes in various human carcinoma and normal cells.Anticancer Drugs201526882483410.1097/CAD.000000000000023525811966
    [Google Scholar]
  128. ZhuL. XueL. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells.Oncol. Res.201927662963410.3727/096504018X1522801855943429739490
    [Google Scholar]
  129. ChoiE.J. AhnW.S. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells.Nutr. Res. Pract.20082432232510.4162/nrp.2008.2.4.32220016737
    [Google Scholar]
  130. LiS. YanT. DengR. JiangX. XiongH. WangY. YuQ. WangX. ChenC. ZhuY. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1.OncoTargets Ther.2017104809481910.2147/OTT.S14088629042792
    [Google Scholar]
  131. AghazadehT. BakhtiariN. RadI.A. RamezaniF. Formulation of kaempferol in nanostructured lipid carriers (Nlcs): A delivery platform to sensitization of mda-mb468 breast cancer cells to paclitaxel.Biointerface Res. Appl. Chem.2021116145911460110.33263/BRIAC116.1459114601
    [Google Scholar]
  132. BharathiD. RanjithkumarR. NandagopalJ.G.T. DjearamaneS. LeeJ. WongL.S. Green synthesis of chitosan/silver nanocomposite using kaempferol for triple negative breast cancer therapy and antibacterial activity.Environ. Res.2023238Pt 111710910.1016/j.envres.2023.11710937696324
    [Google Scholar]
  133. BiniendaA. ZiolkowskaS. PluciennikE. The anticancer properties of silibinin: Its molecular mechanism and therapeutic effect in breast cancer.Anticancer. Agents Med. Chem.202020151787179610.2174/187152062066619122014274131858905
    [Google Scholar]
  134. MolaviO. NarimaniF. AsiaeeF. SharifiS. TarhrizV. ShayanfarA. HejaziM. LaiR. Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy.Pharm. Biol.201755172973910.1080/13880209.2016.127097228027688
    [Google Scholar]
  135. BayramD. ÇetinE.S. KaraM. ÖzgöçmenM. CandanI.A. The apoptotic effects of silibinin on MDA-MB-231 and MCF-7 human breast carcinoma cells.Hum. Exp. Toxicol.201736657358610.1177/096032711665810527402681
    [Google Scholar]
  136. LiuY. XieX. HouX. ShenJ. ShiJ. ChenH. HeY. WangZ. FengN. Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis.J. Nanobiotechnology20201818310.1186/s12951‑020‑00638‑x32473632
    [Google Scholar]
  137. PourgholiA. DadashpourM. MousapourA. Firouzi AmandiA. ZarghamiN. Anticancer potential of silibinin loaded polymeric nanoparticles against breast cancer cells: Insight into the apoptotic genes targets.Asian Pac. J. Cancer Prev.20212282587259610.31557/APJCP.2021.22.8.258734452574
    [Google Scholar]
  138. SunH. SuJ. MengQ. YinQ. ZhangZ. YuH. ZhangP. WangS. LiY. Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro.Acta Pharmacol. Sin.201637794194910.1038/aps.2016.2027133295
    [Google Scholar]
  139. NawazQ. Fuentes-ChandíaM. TharmalingamV. Ur RehmanM.A. Leal-EgañaA. BoccacciniA.R. Silibinin releasing mesoporous bioactive glass nanoparticles with potential for breast cancer therapy.Ceram. Int.20204618291112911910.1016/j.ceramint.2020.08.083
    [Google Scholar]
  140. MavrogiannisA.V. KokkinopoulouI. KontosC.K. SiderisD.C. Effect of vinca alkaloids on the expression levels of micrornas targeting apoptosis-related genes in breast cancer cell lines.Curr. Pharm. Biotechnol.201919131076108610.2174/138920101966618111210320430417784
    [Google Scholar]
  141. WangY. DouL. HeH. ZhangY. ShenQ. Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance.Mol. Pharm.201411388589410.1021/mp400547u24483832
    [Google Scholar]
  142. BahadoriF. TopçuG. EroğluM.S. ÖnyükselH. A new lipid-based nano formulation of vinorelbine.AAPS PharmSciTech20141551138114810.1208/s12249‑014‑0146‑324871553
    [Google Scholar]
  143. YanX. QiM. LiP. ZhanY. ShaoH. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action.Cell Biosci.2017715010.1186/s13578‑017‑0179‑x29034071
    [Google Scholar]
  144. Al-OtaibiA.M. Al-GebalyA.S. AlmeerR. AlbasherG. Al-QahtaniW.S. Abdel MoneimA.E. Potential of green-synthesized selenium nanoparticles using apigenin in human breast cancer MCF-7 cells.Environ. Sci. Pollut. Res. Int.20222931475394754810.1007/s11356‑022‑19166‑235182347
    [Google Scholar]
  145. ZafarA. AlruwailiN.K. ImamS.S. AlsaidanO.A. AhmedM.M. YasirM. WarsiM.H. AlqurainiA. GhoneimM.M. AlshehriS. Development and optimization of hybrid polymeric nanoparticles of apigenin: Physicochemical characterization, antioxidant activity and cytotoxicity evaluation.Sensors (Basel)2022224136410.3390/s2204136435214260
    [Google Scholar]
  146. WangY. LiuY. DuX. MaH. YaoJ. The anti-cancer mechanisms of berberine: A review.Cancer Manag. Res.20201269570210.2147/CMAR.S24232932099466
    [Google Scholar]
  147. ChiuC.F. FuR.H. HsuS. YuY.H.A. YangS.F. TsaoT.C.Y. ChangK.B. YehC.A. TangC.M. HuangS.C. HungH.S. delivery capacity and anticancer ability of the berberine-loaded gold nanoparticles to promote the apoptosis effect in breast cancer.Cancers (Basel)20211321531710.3390/cancers1321531734771481
    [Google Scholar]
  148. LooY.S. MadheswaranT. RajendranR. BoseR.J.C. Encapsulation of berberine into liquid crystalline nanoparticles to enhance its solubility and anticancer activity in MCF7 human breast cancer cells.J. Drug Deliv. Sci. Technol.20205710175610.1016/j.jddst.2020.101756
    [Google Scholar]
  149. TaebpourM. ArastehF. AkhlaghiM. HaghirosadatB.F. OroojalianF. TofighiD. Fabrication and characterization of PLGA polymeric nanoparticles containing Berberine and its cytotoxicity on breast cancer cell (MCF-7).Nanomedicine Research Journal.20216439640810.22034/nmrj.2021.04.009
    [Google Scholar]
  150. OmbredaneA.S. SilvaV.R.P. AndradeL.R. PinheiroW.O. SimonellyM. OliveiraJ.V. PinheiroA.C. GonçalvesG.F. FeliceG.J. GarciaM.P. CamposP.M. LuzG.V.S. JoanittiG.A. In vivo efficacy and toxicity of curcumin nanoparticles in breast cancer treatment: A systematic review.Front. Oncol.20211161290310.3389/fonc.2021.61290333767985
    [Google Scholar]
  151. KumariM. SharmaN. ManchandaR. GuptaN. SyedA. BahkaliA.H. NimeshS. PGMD/curcumin nanoparticles for the treatment of breast cancer.Sci. Rep.2021111382410.1038/s41598‑021‑81701‑x33589661
    [Google Scholar]
  152. JithanA.V. MadhaviK. MadhaviM. PrabhakarK. Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer.Int. J. Pharm. Investig.20111211912510.4103/2230‑973X.8243223071931
    [Google Scholar]
  153. ChauhanS. YallapuM. OthmanS. CurtisE. BauerN. Chauhan JaggiM. Kumar Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications.Int. J. Nanomedicine201271761177910.2147/IJN.S2929022619526
    [Google Scholar]
  154. BehroozaghdamM. DehghaniM. ZabolianA. KamaliD. JavanshirS. Hasani SadiF. HashemiM. TabariT. RashidiM. MirzaeiS. ZarepourA. ZarrabiA. De GreefD. BishayeeA. Resveratrol in breast cancer treatment: From cellular effects to molecular mechanisms of action.Cell. Mol. Life Sci.2022791153910.1007/s00018‑022‑04551‑436194371
    [Google Scholar]
  155. Pirzadeh-NaeeniS. MozdianfardM.R. ShojaosadatiS.A. KhorasaniA.C. SalehT. A comparative study on schizophyllan and chitin nanoparticles for ellagic acid delivery in treating breast cancer.Int. J. Biol. Macromol.202014438038810.1016/j.ijbiomac.2019.12.07931837368
    [Google Scholar]
  156. AliO.M. BekhitA.A. KhattabS.N. HelmyM.W. Abdel-GhanyY.S. TelebM. ElzoghbyA.O. Synthesis of lactoferrin mesoporous silica nanoparticles for pemetrexed/ellagic acid synergistic breast cancer therapy.Colloids Surf. B Biointerfaces202018811082410.1016/j.colsurfb.2020.11082432023511
    [Google Scholar]
  157. WangL. YinQ. LiuC. TangY. SunC. ZhuangJ. Nanoformulations of ursolic acid: A modern natural anticancer molecule.Front. Pharmacol.20211270612110.3389/fphar.2021.70612134295253
    [Google Scholar]
  158. JinH. PiJ. YangF. JiangJ. WangX. BaiH. ShaoM. HuangL. ZhuH. YangP. LiL. LiT. CaiJ. ChenZ.W. Folate-chitosan nanoparticles loaded with ursolic acid confer anti-breast cancer activities in vitro and in vivo.Sci. Rep.2016613078210.1038/srep3078227469490
    [Google Scholar]
  159. LiuC.H. WongS.H. TaiC.J. TaiC.J. PanY.C. HsuH.Y. RichardsonC.D. LinL.T. Ursolic acid and its nanoparticles are potentiators of oncolytic measles virotherapy against breast cancer cells.Cancers (Basel)202113113610.3390/cancers1301013633406633
    [Google Scholar]
  160. IslamF. IslamM.M. Khan MeemA.F. NafadyM.H. IslamM.R. AkterA. MitraS. AlhumaydhiF.A. EmranT.B. KhusroA. Simal-GandaraJ. EftekhariA. KarimiF. BaghayeriM. Multifaceted role of polyphenols in the treatment and management of neurodegenerative diseases.Chemosphere2022307Pt 313602010.1016/j.chemosphere.2022.13602035985383
    [Google Scholar]
  161. MalS. SahaT. HalderA. PaidesettyS.K. DasS. WuiW.T. ChatterjiU. RoyP. EGF-conjugated bio-safe luteolin gold nanoparticles induce cellular toxicity and cell death mediated by site-specific rapid uptake in human triple negative breast cancer cells.J. Drug Deliv. Sci. Technol.20238010414810.1016/j.jddst.2022.104148
    [Google Scholar]
  162. WangY. WangQ. FengW. YuanQ. QiX. ChenS. YaoP. DaiQ. XiaP. ZhangD. SunF. Folic acid-modified ROS-responsive nanoparticles encapsulating luteolin for targeted breast cancer treatment.Drug Deliv.20212811695170810.1080/10717544.2021.196335134402706
    [Google Scholar]
  163. KollurS.P. PrasadS.K. PradeepS. VeerapurR. PatilS.S. AmachawadiR.G. SR.P. LamraouiG. Al-KheraifA.A. ElgorbanA.M. SyedA. ShivamalluC. Luteolin-fabricated zno nanostructures showed plk-1 mediated anti-breast cancer activity.Biomolecules202111338510.3390/biom1103038533807771
    [Google Scholar]
  164. VazG.R. CarrascoM.C.F. BatistaM.M. BarrosP.A.B. OliveiraM.C. Muccillo-BaischA.L. YurgelV.C. ButtiniF. SoaresF.A.A. CordeiroL.M. FachelF. TeixeiraH.F. BidoneJ. de OliveiraP.D. SonvicoF. DoraC.L. Curcumin and quercetin-loaded lipid nanocarriers: Development of omega-3 mucoadhesive nanoemulsions for intranasal administration.Nanomaterials (Basel)2022127107310.3390/nano1207107335407191
    [Google Scholar]
  165. ZhouY. ChenD. XueG. YuS. YuanC. HuangM. JiangL. Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA.RSC Advances20201057345173452610.1039/D0RA04231E35514369
    [Google Scholar]
  166. AskarM.A. El-NasharH.A.S. Al-AzzawiM.A. RahmanS.S.A. ElshawiO.E. Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer.Breast Cancer (Auckl.)20221610.1177/1178223422108672835359610
    [Google Scholar]
  167. ShabaniH. KaramiM.H. KolourJ. SayyahiZ. ParvinM.A. SoghalaS. BaghiniS.S. MardasiM. ChopaniA. MoulaviP. FarkhondehT. DarroudiM. KabiriM. SamarghandianS. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches.Biomed. Pharmacother.202316511497210.1016/j.biopha.2023.11497237481931
    [Google Scholar]
  168. MehannaM.M. SarieddineR. AlwattarJ.K. ChouaibR. Gali-MuhtasibH. Anticancer activity of thymoquinone cubic phase nanoparticles against human breast cancer: Formulation, cytotoxicity and subcellular localization.Int. J. Nanomedicine2020159557957010.2147/IJN.S26379733293807
    [Google Scholar]
  169. SoniP. KaurJ. TikooK. Dual drug-loaded paclitaxel–thymoquinone nanoparticles for effective breast cancer therapy.J. Nanopart. Res.20151711810.1007/s11051‑014‑2821‑4
    [Google Scholar]
  170. BhattacharyaS. AhirM. PatraP. MukherjeeS. GhoshS. MazumdarM. ChattopadhyayS. DasT. ChattopadhyayD. AdhikaryA. PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a.Biomaterials2015519110710.1016/j.biomaterials.2015.01.00725771001
    [Google Scholar]
  171. Jabbarzadeh KaboliP. Afzalipour KhoshkbejariM. MohammadiM. AbiriA. MokhtarianR. VazifemandR. AmanollahiS. Yazdi SaniS. LiM. ZhaoY. WuX. ShenJ. ChoC.H. XiaoZ. Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer – contradictory effects and future perspectives.Biomed. Pharmacother.202012110963510.1016/j.biopha.2019.10963531739165
    [Google Scholar]
  172. DanafarH. SharafiA. Kheiri ManjiliH. AndalibS. Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells.Pharm. Dev. Technol.201722564265110.3109/10837450.2016.114629626916923
    [Google Scholar]
  173. KeshandehghanA. NikkhahS. TahermansouriH. Heidari-KeshelS. GardanehM. Co-treatment with sulforaphane and nano-metformin molecules accelerates apoptosis in HER2+ breast cancer cells by inhibiting key molecules.Nutr. Cancer202072583584810.1080/01635581.2019.165507331474154
    [Google Scholar]
  174. WangW. ZhangL. ChenT. GuoW. BaoX. WangD. RenB. WangH. LiY. WangY. ChenS. TangB. YangQ. ChenC. Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells.Molecules20172211181410.3390/molecules2211181429068422
    [Google Scholar]
  175. ParkS.Y. ChaeS.Y. ParkJ.O. LeeK.J. ParkG. Gold-conjugated resveratrol nanoparticles attenuate the invasion and MMP-9 and COX-2 expression in breast cancer cells.Oncol. Rep.20163563248325610.3892/or.2016.471627035791
    [Google Scholar]
  176. LiuX. LiuJ. XuS. LiX. WangZ. GaoX. TangB. XuK. Gold nanoparticles functionalized with au-se-bonded peptides used as gatekeepers for the off-target release of resveratrol in the treatment of triple-negative breast cancer.ACS Appl. Mater. Interfaces20231522529253710.1021/acsami.2c1022136595474
    [Google Scholar]
  177. AlyS. El-KamelA.H. ShetaE. El-HabashyS.E. Chondroitin/Lactoferrin-dual functionalized pterostilbene-solid lipid nanoparticles as targeted breast cancer therapy.Int. J. Pharm.202364212316310.1016/j.ijpharm.2023.12316337353100
    [Google Scholar]
  178. HanafyN.A.N. AbdelbadeaR.H. AbdelazizA.E. MazyedE.A. Formulation and optimization of folate-bovine serum albumin-coated ethoniosomes of pterostilbene as a targeted drug delivery system for lung cancer: In vitro and in vivo demonstrations.Cancer Nanotechnol.20231414910.1186/s12645‑023‑00197‑4
    [Google Scholar]
  179. KutbiH.I. KammounA.K. Farag El-TelbanyD. Amelioration of pterostilbene antiproliferative, proapoptotic, and oxidant potentials in human breast cancer MCF7 cells using zein nanocomposites.Int. J. Nanomedicine2021163059307110.2147/IJN.S30397533953555
    [Google Scholar]
  180. AbdelhamedS. YokoyamaS. RefaatA. OguraK. YagitaH. AwaleS. SaikiI. Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells.Anticancer Res.20143441893189924692724
    [Google Scholar]
  181. KazmiI. Al-AbbasiF.A. ImamS.S. AfzalM. NadeemM.S. AltaybH.N. AlshehriS. Formulation of piperine nanoparticles: In vitro breast cancer cell line and in vivo evaluation.Polymers (Basel)2022147134910.3390/polym1407134935406223
    [Google Scholar]
  182. AhmadiF. AkbariJ. SaeediM. SeyedabadiM. EbrahimnejadP. GhasemiS. NokhodchiA. Efficient synergistic combination effect of curcumin with piperine by polymeric magnetic nanoparticles for breast cancer treatment.J. Drug Deliv. Sci. Technol.20238610462410.1016/j.jddst.2023.104624
    [Google Scholar]
  183. PachauriM. GuptaE.D. GhoshP.C. Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy.J. Drug Deliv. Sci. Technol.20152926928210.1016/j.jddst.2015.08.009
    [Google Scholar]
  184. Rahmanian-DevinP. Baradaran RahimiV. JaafariM.R. GolmohammadzadehS. Sanei-farZ. AskariV.R. Noscapine, an emerging medication for different diseases: A mechanistic review.Evid. Based Complement. Alternat. Med.2021202111610.1155/2021/840251734880922
    [Google Scholar]
  185. EsnaashariS.S. MuhammadnejadS. AmanpourS. AmaniA. A combinational approach towards treatment of breast cancer: An analysis of noscapine-loaded polymeric nanoparticles and doxorubicin.AAPS PharmSciTech202021516610.1208/s12249‑020‑01710‑332504144
    [Google Scholar]
  186. Satya PrakashS. MirzaeiM. MalhotraM. KulamarvaA. PrakashS. Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: Preparation and in vitro analysis.Int. J. Nanomedicine2010552553210.2147/IJN.S1044320957217
    [Google Scholar]
  187. GuoY. ZhangX. MengJ. WangZ.Y. An anticancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells.Eur. J. Pharmacol.20116582-311412210.1016/j.ejphar.2011.02.00521376032
    [Google Scholar]
  188. WangY. HuangT. LiH. FuJ. AoH. LuL. HanM. GuoY. YueF. WangX. Hydrous icaritin nanorods with excellent stability improves the in vitro and in vivo activity against breast cancer.Drug Deliv.202027122823710.1080/10717544.2020.171687732003229
    [Google Scholar]
  189. BhatS.S. PrasadS.K. ShivamalluC. PrasadK.S. SyedA. ReddyP. CullC.A. AmachawadiR.G. Genistein: A potent anti-breast cancer agent.Curr. Issues Mol. Biol.20214331502151710.3390/cimb4303010634698063
    [Google Scholar]
  190. KomeilI.A. AbdallahO.Y. El-RefaieW.M. Surface modified genistein phytosome for breast cancer treatment: In-vitro appraisal, pharmacokinetics, and in-vivo antitumor efficacy.Eur. J. Pharm. Sci.202217910629710.1016/j.ejps.2022.10629736156294
    [Google Scholar]
  191. MarínV. BurgosV. PérezR. MariaD.A. PardiP. PazC. The potential role of epigallocatechin-3-gallate (EGCG) in breast cancer treatment.Int. J. Mol. Sci.202324131073710.3390/ijms24131073737445915
    [Google Scholar]
  192. FarabegoliF. GranjaA. MagalhãesJ. PurgatoS. VoltattorniM. PinheiroM. Epigallocatechin-3-gallate delivered in nanoparticles increases cytotoxicity in three breast carcinoma cell lines.ACS Omega2022746418724188110.1021/acsomega.2c0182936440117
    [Google Scholar]
  193. de PaceR.C.C. LiuX. SunM. NieS. ZhangJ. CaiQ. GaoW. PanX. FanZ. WangS. Anticancer activities of ( − )-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells.J. Liposome Res.201323318719610.3109/08982104.2013.78802323600473
    [Google Scholar]
  194. MiatmokoA. MianingE.A. SariR. HendradiE. Nanoparticles use for delivering ursolic acid in cancer therapy: A scoping review.Front. Pharmacol.20211278722610.3389/fphar.2021.78722635002719
    [Google Scholar]
  195. ChanE.W.C. SoonC.Y. TanJ.B.L. WongS.K. HuiY.W. Ursolic acid: An overview on its cytotoxic activities against breast and colorectal cancer cells.J. Integr. Med.201917315516010.1016/j.joim.2019.03.00330928277
    [Google Scholar]
  196. WahiA. BishnoiM. RainaN. SinghM.A. VermaP. GuptaP.K. KaurG. TuliH.S. GuptaM. Recent updates on nano-phyto-formulations based therapeutic intervention for cancer treatment.Oncol Res.2023321194710.32604/or.2023.042228
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010299183240529094844
Loading
/content/journals/cpb/10.2174/0113892010299183240529094844
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test