Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Food safety is a global concern with significant public health implications. Improper food handling can harbor a wide range of pathogenic organisms. Antimicrobial agents are crucial for controlling microbes and ensuring food safety and human health. The growing demand for natural, safe, and sustainable food preservation methods has driven research into using plant antimicrobials as alternatives to synthetic preservatives. The food industry is now exploring innovative approaches that combine various physical methods with multiple natural antimicrobials. This review aims to outline the evolving applications of plant antimicrobials in the food industry. It discusses strategies for managing bacteria and categorizes different plant antimicrobials, providing insights into their mechanisms of action and structures. This review offers a comprehensive overview of antimicrobial peptides (AMPs), detailing their structural characteristics, mechanisms of action, various types, and applications in food packaging fabrication and explaining how they contribute to food preservation. It highlights the synergistic and additive benefits of plant antimicrobials and their successful integration with food technologies like nanotechnology, which enhances the hurdle effect, improving food safety and extending shelf life. The review also emphasizes the importance of antimicrobial peptides and the need for further research in this area. Safety assessment and regulatory considerations are discussed as well. By addressing these gaps, plant antimicrobials have the potential to pave the way for more effective, safe, and sustainable food preservation strategies in the future.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010310982240613055746
2024-06-25
2025-09-03
Loading full text...

Full text loading...

References

  1. PintoL. Tapia-RodríguezM.R. BaruzziF. Ayala-ZavalaJ.F. Plant antimicrobials for food quality and safety: Recent views and future challenges.Foods20231212231510.3390/foods12122315 37372527
    [Google Scholar]
  2. MahmudJ. KhanR.A. Characterization of natural antimicrobials in food system.Adv. Microbiol.201881189491610.4236/aim.2018.811060
    [Google Scholar]
  3. BerdejoD. PagánE. MerinoN. García-GonzaloD. PagánR. Emerging mutant populations of Listeria monocytogenes EGD-e under selective pressure of Thymbra capitata essential oil question its use in food preservation.Food Res. Int.202114511040310.1016/j.foodres.2021.110403 34112406
    [Google Scholar]
  4. MasudM.H. JoardderM.U.H. AnannoA.A. NasifS. Feasibility study and optimization of solar-assisted intermittent microwave–convective drying condition for potato.Eur. Food Res. Technol.202224851335134910.1007/s00217‑022‑03957‑5
    [Google Scholar]
  5. KhamenehB. IranshahyM. SoheiliV. Fazly BazzazB.S. Review on plant antimicrobials: A mechanistic viewpoint.Antimicrob. Resist. Infect. Control20198111810.1186/s13756‑019‑0559‑6 31346459
    [Google Scholar]
  6. LiaoM. RenX. GaoQ. LiuN. TangF. WangG. CaoH. Anti-fungal activity of moso bamboo (Phyllostachys pubescens) leaf extract and its development into a botanical fungicide to control pepper phytophthora blight.Sci. Rep.2021111414610.1038/s41598‑021‑83598‑y 33603051
    [Google Scholar]
  7. ShahR.M. JadhavS.R. Editorial: Plant-based antimicrobials and their role in food safety.Front. Sustain. Food Syst.20237117305210.3389/fsufs.2023.1173052
    [Google Scholar]
  8. McClementsD.J. Nanotechnology approaches for improving the healthiness and sustainability of the modern food supply.ACS Omega2020546296232963010.1021/acsomega.0c04050 33251398
    [Google Scholar]
  9. BalasubramaniamV.G. RamakrishnanS.R. AntonyU. Opportunities and challenges of plant extracts in food industry.Plant Extracts: Applications in the Food IndustryElsevier B.V.202229531510.1016/B978‑0‑12‑822475‑5.00002‑8
    [Google Scholar]
  10. KhaT.C. LeL.T. Plant extracts: Antimicrobial properties, mechanisms of action and applications.Advanced Antimicrobial Materials and Applications. Environmental and Microbial Biotechnology. Inamuddin AhamedM.I. PrasadR. SingaporeSpringer202127328310.1007/978‑981‑15‑7098‑8_11
    [Google Scholar]
  11. Van SeventerJ.M. HochbergN.S. Principles of infectious diseases: Transmission, diagnosis, prevention, and control.International Encyclopedia of Public Health.Boston, MA, USABoston University School of Public Health2017223910.1016/B978‑0‑12‑803678‑5.00516‑6
    [Google Scholar]
  12. DoronS. GorbachS.L. Bacterial infections: Overview.International Encyclopedia of Public Health.Boston, MA, USATufts Medical Center2008273282
    [Google Scholar]
  13. SinghS. ShaliniR. Effect of hurdle technology in food preservation: A review.Crit. Rev. Food Sci. Nutr.201656464164910.1080/10408398.2012.761594 25222150
    [Google Scholar]
  14. AbdelhamidA.G. El-DougdougN.K. Controlling foodborne pathogens with natural antimicrobials by biological control and antivirulence strategies.Heliyon202069e0502010.1016/j.heliyon.2020.e05020 32995651
    [Google Scholar]
  15. HamadS.H. Factors affecting the growth of microorganisms in food.Prog. Nutr.2012201240542710.1002/9781119962045.ch20
    [Google Scholar]
  16. PisoschiA.M. PopA. GeorgescuC. TurcuşV. OlahN.K. MatheE. An overview of natural antimicrobials role in food.Eur. J. Med. Chem.201814392293510.1016/j.ejmech.2017.11.095 29227932
    [Google Scholar]
  17. DavidsonP.M. CritzerF.J. TaylorT.M. Naturally occurring antimicrobials for minimally processed foods.Annu. Rev. Food Sci. Technol.2013416319010.1146/annurev‑food‑030212‑182535
    [Google Scholar]
  18. LabrieS.J. SamsonJ.E. MoineauS. Bacteriophage resistance mechanisms.Nat. Rev. Microbiol.20108531732710.1038/nrmicro2315 20348932
    [Google Scholar]
  19. O’BryanC.A. CrandallP.G. RickeS.C. NdahetuyeJ.B. Lactic acid bacteria (LAB) as antimicrobials in food products: Types and mechanisms of action.Handbook of natural antimicrobials for food safety and qualityWoodhead Publishing20156117129
    [Google Scholar]
  20. SorrentinoE. SucciM. TipaldiL. PannellaG. MaiuroL. SturchioM. CoppolaR. TremonteP. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles.Int. J. Food Microbiol.201826618318910.1016/j.ijfoodmicro.2017.11.026 29227905
    [Google Scholar]
  21. de MenezesI.R.A. CoutinhoH.D.M. PinheiroP.G. SantiagoG.M.P. da SilvaF.E.F. de AraújoA.C.J. de OliveiraC.R.T. FreitasP.R. RochaJ.E. de Araújo NetoJ.B. da SilvaM.M.C. TintinoS.R. da CostaJ.G.M. Antibacterial activity and inhibition against Staphylococcus aureus NorA efflux pump by ferulic acid and its esterified derivatives.Asian Pac. J. Trop. Biomed.202111940541310.4103/2221‑1691.321130
    [Google Scholar]
  22. LiJ. ZhaoN. XuR. LiG. DongH. WangB. LiZ. FanM. WeiX. Deciphering the antibacterial activity and mechanism of p-coumaric acid against Alicyclobacillus acidoterrestris and its application in apple juice.Int. J. Food Microbiol.202237810982210.1016/j.ijfoodmicro.2022.109822 35772259
    [Google Scholar]
  23. BorgesA. FerreiraC. SaavedraM.J. SimõesM. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria.Microb. Drug Resist.201319425626510.1089/mdr.2012.0244 23480526
    [Google Scholar]
  24. FanP. HuberD.J. SuZ. HuM. GaoZ. LiM. ShiX. ZhangZ. Effect of postharvest spray of apple polyphenols on the quality of fresh-cut red pitaya fruit during shelf life.Food Chem.2018243192510.1016/j.foodchem.2017.09.103 29146327
    [Google Scholar]
  25. SkrozaD. ŠimatV. Smole MožinaS. KatalinićV. BobanN. Generalić MekinićI. Interactions of resveratrol with other phenolics and activity against food‐borne pathogens.Food Sci. Nutr.2019772312231810.1002/fsn3.1073 31367359
    [Google Scholar]
  26. AdamczakA. OżarowskiM. KarpińskiT.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants.J. Clin. Med.20199110910.3390/jcm9010109 31906141
    [Google Scholar]
  27. AnJ.Y. WangL.T. LvM.J. WangJ.D. CaiZ.H. WangY.Q. ZhangS. YangQ. FuY.J. An efficiency strategy for extraction and recovery of ellagic acid from waste chestnut shell and its biological activity evaluation.Microchem. J.202116010561610.1016/j.microc.2020.105616
    [Google Scholar]
  28. MatejczykM. ŚwisłockaR. GolonkoA. LewandowskiW. HawrylikE. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds.Adv. Med. Sci.2018631142110.1016/j.advms.2017.07.003 28818744
    [Google Scholar]
  29. LiW. ChenH. XuB. WangY. ZhangC. CaoY. XingX. Research progress on classification, sources and functions of dietary polyphenols for prevention and treatment of chronic diseases.J. Fut. Food.20233428930510.1016/j.jfutfo.2023.03.001
    [Google Scholar]
  30. KırmusaoğluS. Sensitizing of β-lactam resistance by tannic acid in methicillin-resistant S. aureus.World J. Microbiol. Biotechnol.20193545710.1007/s11274‑019‑2637‑6 30900046
    [Google Scholar]
  31. ZhouT. WeiC. LanW. ZhaoY. PanY. SunX. WuV.C.H. The effect of Chinese wild blueberry fractions on the growth and membrane integrity of various foodborne pathogens.J. Food Sci.20208551513152210.1111/1750‑3841.15077 32243587
    [Google Scholar]
  32. PecynaP. WargulaJ. MuriasM. KucinskaM. More than resveratrol: New insights into stilbene-based compounds.Biomolecules2020108111110.3390/biom10081111 32726968
    [Google Scholar]
  33. De FilippisB. AmmazzalorsoA. AmorosoR. GiampietroL. Stilbene derivatives as new perspective in antifungal medicinal chemistry.Drug Dev. Res.201980328529310.1002/ddr.21525 30790326
    [Google Scholar]
  34. PezzutoJ.M. Resveratrol: Twenty years of growth, development and controversy.Biomol. Ther.201927111410.4062/biomolther.2018.176 30332889
    [Google Scholar]
  35. CaiX. QiJ. XuZ. HuangL. LiY. RenX. KongQ. Three stilbenes make difference to the antifungal effects on ochratoxin A and its precursor production of Aspergillus carbonarius.Food Microbiol.202210310396710.1016/j.fm.2021.103967 35082059
    [Google Scholar]
  36. LiuL. YuJ. ShenX. CaoX. ZhanQ. GuoY. YuF. Resveratrol enhances the antimicrobial effect of polymyxin B on Klebsiella pneumoniae and Escherichia coli isolates with polymyxin B resistance.BMC Microbiol.202020130610.1186/s12866‑020‑01995‑1 33045992
    [Google Scholar]
  37. SinghD. ChauhanN. KoliM. NayakS.K. SubramanianM. Dimer stilbene, a resveratrol analogue exhibits synergy with antibiotics that target protein synthesis in eradicating Staphylococcus aureus infection.Biochimie202220112813810.1016/j.biochi.2022.06.006 35772578
    [Google Scholar]
  38. TaillisD. BecissaO. Pébarthé-CourrouilhA. RenoufE. Palos-PintoA. RichardT. CluzetS. Antifungal activities of a grapevine byproduct extract enriched in complex stilbenes and stilbenes metabolization by Botrytis cinerea.J. Agric. Food Chem.202371114488449710.1021/acs.jafc.2c07843 36912343
    [Google Scholar]
  39. DiasM.C. PintoD.C.G.A. SilvaA.M.S. Plant flavonoids: Chemical characteristics and biological activity.Molecules20212617537710.3390/molecules26175377 34500810
    [Google Scholar]
  40. VuoloM.M. LimaV.S. JuniorM.R.M. Phenolic compounds: Structure, classification, and antioxidant power.Bioact.Compd2019335010.1016/B978‑0‑12‑814774‑0.00002‑5
    [Google Scholar]
  41. WenQ.H. WangR. ZhaoS.Q. ChenB.R. ZengX.A. Inhibition of biofilm formation of foodborne Staphylococcus aureus by the citrus flavonoid naringenin.Foods20211011261410.3390/foods10112614 34828898
    [Google Scholar]
  42. MahmudA.R. EmaT.I. SiddiqueeM.F.R. ShahriarA. AhmedH. Mosfeq-Ul-HasanM. RahmanN. IslamR. UddinM.R. MizanM.F.R. Natural flavonols: Actions, mechanisms, and potential therapeutic utility for various diseases.Beni. Suef Univ. J. Basic Appl. Sci.20231214710.1186/s43088‑023‑00387‑4 37216013
    [Google Scholar]
  43. TaheriY. SuleriaH.A.R. MartinsN. SytarO. BeyatliA. YeskaliyevaB. SeitimovaG. SalehiB. SemwalP. PainuliS. KumarA. AzziniE. MartorellM. SetzerW.N. MaroyiA. Sharifi-RadJ. Myricetin bioactive effects: Moving from preclinical evidence to potential clinical applications.BMC Compl. Med. Therap.202020124110.1186/s12906‑020‑03033‑z 32738903
    [Google Scholar]
  44. PeriferakisA. PeriferakisK. BadarauI.A. PetranE.M. PopaD.C. CaruntuA. CostacheR.S. ScheauC. CaruntuC. CostacheD.O. Kaempferol: Antimicrobial properties, sources, clinical, and traditional applications.Int. J. Mol. Sci.202223231505410.3390/ijms232315054 36499380
    [Google Scholar]
  45. OuyangJ. SunF. FengW. XieY. RenL. ChenY. Antimicrobial activity of galangin and its effects on murein hydrolases of vancomycin-intermediate Staphylococcus aureus (VISA) strain Mu50.Chemotherapy2018631202810.1159/000481658 29145175
    [Google Scholar]
  46. DurazzoA. LucariniM. SoutoE.B. CicalaC. CaiazzoE. IzzoA.A. NovellinoE. SantiniA. Polyphenols: A concise overview on the chemistry, occurrence, and human health.Phytother. Res.20193392221224310.1002/ptr.6419 31359516
    [Google Scholar]
  47. BhattacharyaD. BhattacharyaS. PatraM.M. ChakravortyS. SarkarS. ChakrabortyW. KoleyH. GachhuiR. Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens.Curr. Microbiol.201673688589610.1007/s00284‑016‑1136‑3 27638313
    [Google Scholar]
  48. Gutiérrez-GrijalvaE. Picos-SalasM. Leyva-LópezN. Criollo-MendozaM. Vazquez-OlivoG. HerediaJ. Flavonoids and phenolic acids from oregano: Occurrence, biological activity and health benefits.Plants201771210.3390/plants7010002 29278371
    [Google Scholar]
  49. Duda-MadejA. SteckoJ. SobierajJ. SzymańskaN. KozłowskaJ. Naringenin and its derivatives—health-promoting phytobiotic against resistant bacteria and fungi in humans.Antibiotics20221111162810.3390/antibiotics11111628 36421272
    [Google Scholar]
  50. SongH.S. BhatiaS.K. GuravR. ChoiT.R. KimH.J. ParkY.L. HanY.H. ParkJ.Y. LeeS.M. ParkS.L. Naringenin as an antibacterial reagent controlling of biofilm formation and fatty acid metabolism in MRSA.bioRxiv20200898304910.1101/2020.03.08.983049
    [Google Scholar]
  51. KozłowskaJ. GrelaE. BaczyńskaD. GrabowieckaA. AniołM. Novel O-alkyl derivatives of naringenin and their oximes with antimicrobial and anticancer activity.Molecules201924467910.3390/molecules24040679 30769816
    [Google Scholar]
  52. GórniakI. BartoszewskiR. KróliczewskiJ. Comprehensive review of antimicrobial activities of plant flavonoids.Phytochem. Rev.201918124127210.1007/s11101‑018‑9591‑z
    [Google Scholar]
  53. JeyarajE.J. LimY.Y. ChooW.S. Antioxidant, cytotoxic, and antibacterial activities of Clitoria ternatea flower extracts and anthocyanin-rich fraction.Sci. Rep.20221211489010.1038/s41598‑022‑19146‑z 36050436
    [Google Scholar]
  54. CannalireR. MachadoD. FelicettiT. Santos CostaS. MassariS. ManfroniG. BarrecaM.L. TabarriniO. CoutoI. ViveirosM. SabatiniS. CecchettiV. Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium.Eur. J. Med. Chem.201714032133010.1016/j.ejmech.2017.09.014 28964936
    [Google Scholar]
  55. HeinrichM. MahJ. AmirkiaV. Alkaloids used as medicines: Structural phytochemistry meets biodiversity: An update and forward look.Molecules2021267183610.3390/molecules26071836 33805869
    [Google Scholar]
  56. OthmanL. SleimanA. Abdel-MassihR.M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants.Front. Microbiol.20191091110.3389/fmicb.2019.00911 31156565
    [Google Scholar]
  57. El-ZaharK.M. Al-JamaanM.E. Al-MutairiF.R. Al-HudiabA.M. Al-EinziM.S. MohamedA.A.Z. Antioxidant, antibacterial, and antifungal activities of the ethanolic extract obtained from Berberis vulgaris roots and leaves.Molecules20222718611410.3390/molecules27186114 36144846
    [Google Scholar]
  58. HeN. WangP. WangP. MaC. KangW. Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica(Linn).Lam. BMC Complement. Altern. Med.201818126110.1186/s12906‑018‑2317‑3 30257662
    [Google Scholar]
  59. IqbalA. KhanR.S. ShehryarK. ImranA. AliF. AttiaS. ShahS. MiiM. Antimicrobial peptides as effective tools for enhanced disease resistance in plants.Plant Cell Tissue Organ Cult.2019139111510.1007/s11240‑019‑01668‑6
    [Google Scholar]
  60. Barbosa PelegriniP. del SartoR.P. SilvaO.N. FrancoO.L. Grossi-de-SaM.F. Antibacterial peptides from plants: What they are and how they probably work.Biochem. Res. Int.201120111910.1155/2011/250349
    [Google Scholar]
  61. YountN.Y. YeamanM.R. Peptide antimicrobials: Cell wall as a bacterial target.Ann. N. Y. Acad. Sci.20131277112713810.1111/nyas.12005 23302022
    [Google Scholar]
  62. HancockR.E.W. SahlH.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.Nat. Biotechnol.200624121551155710.1038/nbt1267 17160061
    [Google Scholar]
  63. TamJ. WangS. WongK. TanW. Antimicrobial peptides from plants.Pharmaceuticals20158471175710.3390/ph8040711 26580629
    [Google Scholar]
  64. MajewskiJ. StecB. X-ray scattering studies of model lipid membrane interacting with purothionin provide support for a previously proposed mechanism of membrane lysis.Eur. Biophys. J.20103981155116510.1007/s00249‑009‑0568‑0 19997910
    [Google Scholar]
  65. De LuccaA.J. ClevelandT.E. WedgeD.E. Plant-derived antifungal proteins and peptides.Can. J. Microbiol.200551121001101410.1139/w05‑063 16462858
    [Google Scholar]
  66. LiuF. ZhangX. LuC. ZengX. LiY. FuD. WuG. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis.J. Exp. Bot.201566195663568110.1093/jxb/erv313 26139823
    [Google Scholar]
  67. HerbelV. Sieber-FrankJ. WinkM. The antimicrobial peptide snakin-2 is upregulated in the defense response of tomatoes (Solanum lycopersicum) as part of the jasmonate-dependent signaling pathway.J. Plant Physiol.20172081610.1016/j.jplph.2016.10.006 27888675
    [Google Scholar]
  68. Rodríguez-DecuadroS. Barraco-VegaM. DansP.D. PandolfiV. Benko-IsepponA.M. CecchettoG. Antimicrobial and structural insights of a new snakin-like peptide isolated from Peltophorum dubium (Fabaceae).Amino Acids20185091245125910.1007/s00726‑018‑2598‑3 29948342
    [Google Scholar]
  69. SlavokhotovaA.A. ShelenkovA.A. AndreevY.A. OdintsovaT.I. Hevein-like antimicrobial peptides of plants.Biochemistry201782131659167410.1134/S0006297917130065 29523064
    [Google Scholar]
  70. SlavokhotovaA.A. RogozhinE.A. Defense peptides from the α-hairpinin family are components of plant innate immunity.Front. Plant Sci.20201146510.3389/fpls.2020.00465 32391035
    [Google Scholar]
  71. SousaD. PortoW. SilvaM. da SilvaT. FrancoO. Influence of cysteine and tryptophan substitution on DNA-binding activity on maize α-hairpinin antimicrobial peptide.Molecules2016218106210.3390/molecules21081062 27529210
    [Google Scholar]
  72. BergwerffA.A. DebastS.B. Modernization of control of pathogenic micro-organisms in the food-chain requires a durable role for immunoaffinity-based detection methodology: A review.Foods202110483210.3390/foods10040832 33920486
    [Google Scholar]
  73. SilvaM. LidonF. Food preservatives: An overview on applications and side effects.Emir. J. Food Agric.201628636637310.9755/ejfa.2016‑04‑351
    [Google Scholar]
  74. SalimA. DeianaP. FancelloF. MolinuM.G. SantonaM. ZaraS. Antimicrobial and antibiofilm activities of pomegranate peel phenolic compounds: Varietal screening through a multivariate approach.J. Biores. Bioprod.20238214616110.1016/j.jobab.2023.01.006
    [Google Scholar]
  75. RongaiD. SabatiniN. PulciniP. Di MarcoC. StorchiL. MarroneA. Effect of pomegranate peel extract on shelf life of strawberries: Computational chemistry approaches to assess antifungal mechanisms involved.J. Food Sci. Technol.20185572702271110.1007/s13197‑018‑3192‑0 30042586
    [Google Scholar]
  76. LothaR. SundaramoorthyN.S. ShamprasadB.R. NagarajanS. SivasubramanianA. Plant nutraceuticals (Quercetrin and Afzelin) capped silver nanoparticles exert potent antibiofilm effect against food borne pathogen Salmonella enterica serovar Typhi and curtail planktonic growth in zebrafish infection model.Microb. Pathog.201812010911810.1016/j.micpath.2018.04.044 29715535
    [Google Scholar]
  77. KolouchováI. MaťátkováO. PaldrychováM. KodešZ. KvasničkováE. SiglerK. ČejkováA. ŠmidrkalJ. DemnerováK. MasákJ. Resveratrol, pterostilbene, and baicalein: plant-derived anti-biofilm agents.Folia Microbiol.201863326127210.1007/s12223‑017‑0549‑0 28971316
    [Google Scholar]
  78. SutakwaA. NadiaL.S. SuharmanS. Addition of blue pea flower (Clitoria ternatea L.) extract increase antioxidant activity in yogurt from various types of milk.Jurnal Agercolere202131313710.37195/jac.v3i1.123
    [Google Scholar]
  79. Vidana GamageG.C. LimY.Y. ChooW.S. Anthocyanins from Clitoria ternatea Flower: Biosynthesis, extraction, stability, antioxidant activity, and applications.Front. Plant Sci.20211279230310.3389/fpls.2021.792303 34975979
    [Google Scholar]
  80. WongJ.X. RamliS. DesaS. ChenS.N. Use of Centella asiatica extract in reducing microbial contamination and browning effect in fresh cut fruits and vegetables during storage: A potential alternative of synthetic preservatives.Lebensm. Wiss. Technol.202115111222910.1016/j.lwt.2021.112229
    [Google Scholar]
  81. ChoiJ.S. LeeY.R. HaY.M. SeoH.J. KimY.H. ParkS.M. SohnJ.H. Antibacterial effect of grapefruit seed extract (GSE) on Makgeolli-brewing microorganisms and its application in the preservation of fresh Makgeolli.J. Food Sci.2014796M1159M116710.1111/1750‑3841.12469 24773577
    [Google Scholar]
  82. WaithakaP.N. GathuruE.M. GithaigaB.M. KimaniS.N. Control of passion fruit fungal diseases using essential oils extracted from rosemary (Rosmarinus officinalis) and eucalyptus (Eucalyptus agglomerata) in Egerton University Main Campus Njoro, Kenya.Int. J. Microbiol.201720171610.1155/2017/2814581 28458692
    [Google Scholar]
  83. LeeS. KimH. BeuchatL.R. KimY. RyuJ.H. Synergistic antimicrobial activity of oregano and thyme thymol essential oils against Leuconostoc citreum in a laboratory medium and tomato juice.Food Microbiol.20209010348910.1016/j.fm.2020.103489 32336377
    [Google Scholar]
  84. AdukwuE.C. AllenS.C.H. PhillipsC.A. The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus.J. Appl. Microbiol.201211351217122710.1111/j.1365‑2672.2012.05418.x 22862808
    [Google Scholar]
  85. Kumar PandeyV. ShamsR. SinghR. DarA.H. PandiselvamR. RusuA.V. TrifM. A comprehensive review on clove (Caryophyllus aromaticus L.) essential oil and its significance in the formulation of edible coatings for potential food applications.Front. Nutr.2022998767410.3389/fnut.2022.987674 36185660
    [Google Scholar]
  86. SumalanR.M. KuganovR. ObistioiuD. PopescuI. RadulovI. AlexaE. NegreaM. SalimzodaA.F. SumalanR.L. CocanI. Assessment of mint, basil, and lavender essential oil vapor-phase in antifungal protection and lemon fruit quality.Molecules2020258183110.3390/molecules25081831 32316315
    [Google Scholar]
  87. AlmeidaE.T.C. de SouzaG.T. de Sousa GuedesJ.P. BarbosaI.M. de SousaC.P. CastellanoL.R.C. MagnaniM. de SouzaE.L. Mentha piperita L. essential oil inactivates spoilage yeasts in fruit juices through the perturbation of different physiological functions in yeast cells.Food Microbiol.201982202910.1016/j.fm.2019.01.023 31027774
    [Google Scholar]
  88. Gómez-MaldonadoD. Lobato-CallerosC. Aguirre-MandujanoE. Leyva-MirS.G. Robles-YerenaL. Vernon-CarterE.J. Antifungal activity of mango kernel polyphenols on mango fruit infected by anthracnose.Lebensm. Wiss. Technol.202012610933710.1016/j.lwt.2020.109337
    [Google Scholar]
  89. HemegH.A. MoussaI.M. IbrahimS. DawoudT.M. AlhajiJ.H. MubarakA.S. KabliS.A. AlsubkiR.A. TawfikA.M. MaroufS.A. Antimicrobial effect of different herbal plant extracts against different microbial population.Saudi J. Biol. Sci.202027123221322710.1016/j.sjbs.2020.08.015 33304127
    [Google Scholar]
  90. EzzatA. SzabóS. SzabóZ. HegedűsA. BerényiD. HolbI.J. Temporal patterns and inter-correlations among physical and antioxidant attributes and enzyme activities of apricot fruit inoculated with Monilinia laxa under salicylic acid and methyl jasmonate treatments under shelf-life conditions.J. Fungi20217534110.3390/jof7050341 33925014
    [Google Scholar]
  91. ChenC.H. YinH.B. UpadhayayA. BrownS. VenkitanarayananK. Efficacy of plant-derived antimicrobials for controlling Salmonella Schwarzengrund on dry pet food.Int. J. Food Microbiol.20192961710.1016/j.ijfoodmicro.2019.02.007 30818250
    [Google Scholar]
  92. CordeiroT. ViegasO. SilvaM. MartinsZ.E. FernandesI. FerreiraI.M.L.P.V.O. PinhoO. MateusN. CalhauC. Inhibitory effect of vinegars on the formation of polycyclic aromatic hydrocarbons in charcoal-grilled pork.Meat Sci.202016710808310.1016/j.meatsci.2020.108083 32402836
    [Google Scholar]
  93. NowakA. CzyzowskaA. EfenbergerM. KralaL. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products.Food Microbiol.20165914214910.1016/j.fm.2016.06.004 27375255
    [Google Scholar]
  94. TamkutėL. GilB.M. CarballidoJ.R. PukalskienėM. VenskutonisP.R. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products.Food Res. Int.2019120385110.1016/j.foodres.2019.02.025 31000252
    [Google Scholar]
  95. ZhangH. WuJ. GuoX. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality.Food Sci. Hum. Wellness201651394810.1016/j.fshw.2015.11.003
    [Google Scholar]
  96. DewiG. NairD.V.T. PeichelC. JohnsonT.J. NollS. Kollanoor JohnyA. Effect of lemongrass essential oil against multidrug-resistant Salmonella Heidelberg and its attachment to chicken skin and meat.Poult. Sci.2021100710111610.1016/j.psj.2021.101116 34089940
    [Google Scholar]
  97. KaramL. ChehabR. OsailiT.M. SavvaidisI.N. Antimicrobial effect of thymol and carvacrol added to a vinegar-based marinade for controlling spoilage of marinated beef (Shawarma) stored in air or vacuum packaging.Int. J. Food Microbiol.202033210876910.1016/j.ijfoodmicro.2020.108769 32622249
    [Google Scholar]
  98. YadavS.K. Tissue science & engineering realizing the potential of nanotechnology for agriculture and food technology.J. Tissue Sci. Eng.20178181110.4172/2157‑7552.1000195
    [Google Scholar]
  99. AuthorityE.F.S. The potential risks arising from nanoscience and nanotechnologies on food and feed safety.EFSA J.20097395810.2903/j.efsa.2009.958
    [Google Scholar]
  100. HeX. DengH. HwangH. The current application of nanotechnology in food and agriculture.J. Food Drug Anal.201927112110.1016/j.jfda.2018.12.002 30648562
    [Google Scholar]
  101. RhimJ.W. ParkH.M. HaC.S. Bio-nanocomposites for food packaging applications.Prog. Polym. Sci.20133810-111629165210.1016/j.progpolymsci.2013.05.008
    [Google Scholar]
  102. MorrisM.A. PadmanabhanS.C. Cruz-RomeroM.C. CumminsE. KerryJ.P. Development of active, nanoparticle, antimicrobial technologies for muscle-based packaging applications.Meat Sci.201713216317810.1016/j.meatsci.2017.04.234 28499770
    [Google Scholar]
  103. PyrgiotakisG. VasanthakumarA. GaoY. EleftheriadouM. ToledoE. DeAraujoA. McDevittJ. HanT. MainelisG. MitchellR. DemokritouP. Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS).Environ. Sci. Technol.20154963737374510.1021/es505868a 25695127
    [Google Scholar]
  104. KhanS.T. Al-KhedhairyA.A. MusarratJ. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: A review.J. Nanopart. Res.201517627610.1007/s11051‑015‑3074‑6
    [Google Scholar]
  105. RodriguesS.M. DemokritouP. DokoozlianN. HendrenC.O. KarnB. MauterM.S. SadikO.A. SafarpourM. UnrineJ.M. ViersJ. WelleP. WhiteJ.C. WiesnerM.R. LowryG.V. Nanotechnology for sustainable food production: Promising opportunities and scientific challenges.Environ. Sci. Nano20174476778110.1039/C6EN00573J
    [Google Scholar]
  106. WenP. ZhuD.H. FengK. LiuF.J. LouW.Y. LiN. ZongM.H. WuH. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β -cyclodextrin inclusion complex for antimicrobial packaging.Food Chem.2016196996100410.1016/j.foodchem.2015.10.043 26593582
    [Google Scholar]
  107. RaiM. JogeeP.S. IngleA.P. Emerging nanotechnology for detection of mycotoxins in food and feed.Int. J. Food Sci. Nutr.201566436337010.3109/09637486.2015.1034251 26001087
    [Google Scholar]
  108. AuthorityE.F.S. Outcome of the public consultation on the draft guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health.EFSA20181571430E10.2903/sp.efsa.2018.EN‑1430
    [Google Scholar]
  109. LynchI. DawsonK.A. Protein–nanoparticle interactions.Nano-Enabled Medical Applications.Taylor and Francis2020231250
    [Google Scholar]
  110. ChaudhryQ. CastleL. Safety assessment of nano‐and microscale delivery vehicles for bioactive ingredients.Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients.Wiley Online Library201534835710.1002/9781118462157.ch21
    [Google Scholar]
  111. BowmanD. ChaudhryQ. GergelyA. Evidence‐based regulation of food nanotechnologies: A perspective from the European Union and United States.Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients.Wiley Online Library201535837410.1002/9781118462157.ch22
    [Google Scholar]
  112. PavelaR. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects: A review.Plant Prot. Sci.201652422924110.17221/31/2016‑PPS
    [Google Scholar]
  113. DavidM. ŞerbanA. PopaC. FlorescuM. A nanoparticle-based label-free sensor for screening the relative antioxidant capacity of hydrosoluble plant extracts.Sensors201919359010.3390/s19030590 30704125
    [Google Scholar]
  114. MonagasM. BrendlerT. BrinckmannJ. DentaliS. GafnerS. GiancasproG. JohnsonH. KababickJ. MaC. Oketch-RabahH. PaisP. SarmaN. MarlesR. Understanding plant to extract ratios in botanical extracts.Front. Pharmacol.20221398197810.3389/fphar.2022.981978 36249773
    [Google Scholar]
  115. FibigrJ. ŠatínskýD. SolichP. Current trends in the analysis and quality control of food supplements based on plant extracts.Anal. Chim. Acta2018103611510.1016/j.aca.2018.08.017 30253819
    [Google Scholar]
  116. PandeyG. Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India.Environ. Technol. Innov.20181129930710.1016/j.eti.2018.06.012
    [Google Scholar]
  117. BonatiA. Formulation of plant extracts into dosage forms.The medicinal Plant IndustryRoutledge. Taylor and Francis201710711410.1201/9780203736395‑9
    [Google Scholar]
  118. SinghH.P. SharmaS. ChauhanS.B. KaurI. Clinical trials of traditional herbal medicines in India: Current status and challenges.Int. J. Pharmacogn.2014141542110.13040/IJPSR.0975‑8232.IJP.1(7).415‑421
    [Google Scholar]
  119. NagarajanK. GhaiR. VarshneyG. GroverP. GenoveseC. D’AngeliF. GoelR. PrasadT. KalaivaniM. TeotiaA.K. Identification of potent bioassay guided terpenoid and glycoside root fractions of astragalus candolleanus against clinically significant bacterial strains.Int. J. Microbiol.2022202211010.1155/2022/4584799 35528313
    [Google Scholar]
  120. SinghV. KatiyarD. AliM. Comparative study of volatile constituents and antimicrobial activities of leaves and fruit peels of Citrus sinensis Linn.J. Phytopharmacol.20154210210510.31254/phyto.2015.4208
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010310982240613055746
Loading
/content/journals/cpb/10.2174/0113892010310982240613055746
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test