Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Traumatic and inherited cataract spiking blindness is caused by accumulated deposition of mutant eye lens protein or lens microarchitecture alteration. A traumatic cataract is a clouding of the eye’s natural lens that occurs as a result of physical trauma to the eye. This trauma can be caused by various incidents such as blunt force injury, penetration by a foreign object, or a significant impact on the eye area. Inheritance cataracts or hereditary cataracts are cataracts that are genetically inherited from one or both parents. Complications following cataract surgery encompass various adverse outcomes such as inflammation, infection, bleeding, swelling, drooping eyelid, glaucoma, secondary cataracts, and complete loss of vision. The main purpose of the review is to highlight common pathophysiology associated with traumatic and inherited cataracts. Also, the review discusses diagnosis and treatment strategies for such cataract types by targeting their key pathological hallmarks. γD-crystallin plays a crucial role in maintaining the optical properties of the lens during the life span of an individual. Carbamazepine, Resveratrol, and Myricetin (CRM) are effectively bound at the γD-crystallin binding site and thereby could minimize misfolding and aggregation of γD-crystallin. miR-202, miR-193b, miR-135a, miR-365, and miR-376a had the highest levels of abundance in the aqueous humor of individuals diagnosed with cataracts. The validation of these miRs will provide more insights into their functional roles and may be used for diagnostic purposes. The effective CRM combination as a multidrug formulation may postpone both traumatic and inherited cataracts and protect the eye from blindness.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010303094240613105517
2024-06-25
2025-09-04
Loading full text...

Full text loading...

References

  1. ShielsA. HejtmancikJ.F. Biology of inherited cataracts and opportunities for treatment.Annu. Rev. Vis. Sci.20195112314910.1146/annurev‑vision‑091517‑034346 31525139
    [Google Scholar]
  2. MoreauK.L. KingJ.A. Protein misfolding and aggregation in cataract disease and prospects for prevention.Trends Mol. Med.201218527328210.1016/j.molmed.2012.03.005 22520268
    [Google Scholar]
  3. RemingtonL.A. Clinical Anatomy and Physiology of the Visual System.3rd edElsevier201110.1016/C2009‑0‑56108‑9
    [Google Scholar]
  4. SaikaS. IkedaK. YamanakaO. SatoM. MuragakiY. OhnishiY. OoshimaA. NakajimaY. NamikawaK. KiyamaH. FlandersK.C. RobertsA.B. Transient adenoviral gene transfer of Smad7 prevents injury-induced epithelial–mesenchymal transition of lens epithelium in mice.Lab. Invest.200484101259127010.1038/labinvest.3700151 15258599
    [Google Scholar]
  5. JiangJ. ShihanM.H. WangY. DuncanM.K. Lens epithelial cells initiate an inflammatory response following cataract surgery.Invest. Ophthalmol. Vis. Sci.201859124986499710.1167/iovs.18‑25067 30326070
    [Google Scholar]
  6. BisevacJ. AnisimovaN.S. NagymihályR. KristianslundO. KattaK. NoerA. SharafetdinovI.H. DrolsumL. MoeM.C. MalyuginB.E. PetrovskiG. Long-term myofibroblast persistence in the capsular bag contributes to the late spontaneous in-the-bag intraocular lens dislocation.Sci. Rep.20201012053210.1038/s41598‑020‑77207‑7 33239706
    [Google Scholar]
  7. Types of Cataract | National Eye InstituteAvailable from: https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/cataracts/types-cataract (accessed 2023-12-06).
  8. KuhnF. Posttraumatic Glaucoma.Ocular Traumatology.StatPearls Publishing200845146310.1007/978‑3‑540‑33825‑3_28
    [Google Scholar]
  9. BellS.J. OluonyeN. HardingP. MoosajeeM. Congenital cataract: A guide to genetic and clinical management.Therap. Adv. Rare. Dis.2020110.1177/2633004020938061 37180497
    [Google Scholar]
  10. BerryV. GeorgiouM. FujinamiK. QuinlanR. MooreA. MichaelidesM. Inherited cataracts: Molecular genetics, clinical features, disease mechanisms and novel therapeutic approaches.Br. J. Ophthalmol.2020104101331133710.1136/bjophthalmol‑2019‑315282 32217542
    [Google Scholar]
  11. ShielsA. HejtmancikJ.F. Inherited cataracts: Genetic mechanisms and pathways new and old.Exp. Eye Res.202120910866210.1016/j.exer.2021.108662 34126080
    [Google Scholar]
  12. BloemendalH. de JongW. JaenickeR. LubsenN.H. SlingsbyC. TardieuA. Ageing and vision: Structure, stability and function of lens crystallins.Prog. Biophys. Mol. Biol.200486340748510.1016/j.pbiomolbio.2003.11.012 15302206
    [Google Scholar]
  13. ShangF. TaylorA. Role of the ubiquitin-proteasome in protein quality control and signaling: Implication in the pathogenesis of eye diseases.Prog. Mol. Biol. Transl. Sci.201210934739610.1016/B978‑0‑12‑397863‑9.00010‑9 22727427
    [Google Scholar]
  14. Benavides-AguilarJ.A. Morales-RodríguezJ.I. Ambriz-GonzálezH. Ruiz-ManriquezL.M. BanerjeeA. PathakS. DuttaroyA.K. PaulS. The regulatory role of microRNAs in common eye diseases: A brief review.Front. Genet.202314115211010.3389/fgene.2023.1152110 37065488
    [Google Scholar]
  15. KarahanE. ErD. KaynakS. An overview of Nd:YAG laser capsulotomy.Med. Hypothesis Discov. Innov. Ophthalmol.2014324550 25738159
    [Google Scholar]
  16. NagyZ.Z. KránitzK. TakacsA. FilkornT. GergelyR. KnorzM.C. Intraocular femtosecond laser use in traumatic cataracts following penetrating and blunt trauma.J. Refract. Surg.201228215115310.3928/1081597X‑20120120‑01 22313435
    [Google Scholar]
  17. ShielsA. HejtmancikJ.F. Mutations and mechanisms in congenital and age-related cataracts.Exp. Eye Res.20171569510210.1016/j.exer.2016.06.011 27334249
    [Google Scholar]
  18. LinH. OuyangH. ZhuJ. HuangS. LiuZ. ChenS. CaoG. LiG. SignerR.A.J. XuY. ChungC. ZhangY. LinD. PatelS. WuF. CaiH. HouJ. WenC. JafariM. LiuX. LuoL. ZhuJ. QiuA. HouR. ChenB. ChenJ. GranetD. HeichelC. ShangF. LiX. KrawczykM. Skowronska-KrawczykD. WangY. ShiW. ChenD. ZhongZ. ZhongS. ZhangL. ChenS. MorrisonS.J. MaasR.L. ZhangK. LiuY. Lens regeneration using endogenous stem cells with gain of visual function.Nature2016531759432332810.1038/nature17181 26958831
    [Google Scholar]
  19. ShoshanyN. HejtmancikF. ShielsA. DatilesM.B. Congenital and Hereditary Cataracts: Epidemiology and Genetics.Pediatric Cataract Surgery and IOL Implantation.ChamSpringer202032310.1007/978‑3‑030‑38938‑3_1
    [Google Scholar]
  20. SelfJ.E. TaylorR. SoleboA.L. BiswasS. ParulekarM. Dev BormanA. AshworthJ. McClenaghanR. AbbottJ. O’FlynnE. HildebrandD. LloydI.C. Cataract management in children: A review of the literature and current practice across five large UK centres.Eye (Lond.)202034122197221810.1038/s41433‑020‑1115‑6 32778738
    [Google Scholar]
  21. VermaR. KhannaP. PrinjaS. RajputM. AroraV. The national programme for control of blindness in India.Australas. Med. J.2011411310.4066/AMJ.2011.505 23393496
    [Google Scholar]
  22. YiJ. YunJ. LiZ.K. XuC.T. PanB.R. Epidemiology and molecular genetics of congenital cataracts.Int. J. Ophthalmol.20114442243210.3980/J.ISSN.2222‑3959.2011.04.20 22553694
    [Google Scholar]
  23. VajpayeeR.B. JoshiS. SaxenaR. GuptaS.K. Epidemiology of cataract in India: Combating plans and strategies.Ophthalmic Res.1999312869210.1159/000055518 9933769
    [Google Scholar]
  24. ThrimawithanaT.R. RupenthalI.D. RäschS.S. LimJ.C. MortonJ.D. BuntC.R. Drug delivery to the lens for the management of cataracts.Adv. Drug Deliv. Rev.201812618519410.1016/j.addr.2018.03.009 29604375
    [Google Scholar]
  25. AstburyN. NyamaiL.A. Detecting and managing complications in cataract patients.Community Eye Health20162994272910.20959/wjpr20178‑7693 27833260
    [Google Scholar]
  26. WongT.Y. Regular review: Effect of increasing age on cataract surgery outcomes in very elderly patients.BMJ200132272941104110610.1136/bmj.322.7294.1104 11337443
    [Google Scholar]
  27. HejtmancikJ.F. RiazuddinS.A. McGrealR. LiuW. CveklA. ShielsA. Lens Biology and Biochemistry.Prog. Mol. Biol. Transl. Sci.201513416920110.1016/bs.pmbts.2015.04.007 26310155
    [Google Scholar]
  28. SharmaK.K. SanthoshkumarP. Lens aging: Effects of crystallins.Biochim. Biophys. Acta, Gen. Subj.20091790101095110810.1016/j.bbagen.2009.05.008 19463898
    [Google Scholar]
  29. LouM.F. WangG-M. WuF. RaghavachariN. ReddanJ.R. Thioltransferase is present in the lens epithelial cells as a highly oxidative stress-resistant enzyme.Exp. Eye Res.199866447748510.1006/exer.1997.0464 9593640
    [Google Scholar]
  30. JiaZ.K. FuC.X. WangA.L. YaoK. ChenX.J. Cataract-causing allele in CRYAA (Y118D) proceeds through endoplasmic reticulum stress in mouse model.Zool. Res.202142330030910.24272/j.issn.2095‑8137.2020.354 33929105
    [Google Scholar]
  31. CaiS.P. WangX-Z. WangY. HeF. FanN. WengJ-N. ZhangJ-H. LiuX-Y. LiuX.Y. A mutated CRYGD associated with congenital coralliform cataracts in two Chinese pedigrees.Int. J. Ophthalmol.202114680080410.18240/ijo.2021.06.03 34150533
    [Google Scholar]
  32. ZhangW. CaiH.C. LiF.F. XiY.B. MaX. YanY.B. The congenital cataract-linked G61C mutation destabilizes γD-crystallin and promotes non-native aggregation.PLoS One201165e2056410.1371/journal.pone.0020564 21655238
    [Google Scholar]
  33. MuldersS.M. PrestonG.M. DeenP.M.T. GugginoW.B. van OsC.H. AgreP. Water channel properties of major intrinsic protein of lens.J. Biol. Chem.1995270159010901610.1074/jbc.270.15.9010 7536742
    [Google Scholar]
  34. BerryV. FrancisP. ReddyM.A. CollyerD. VithanaE. MacKayI. DawsonG. CareyA.H. MooreA. BhattacharyaS.S. QuinlanR.A. Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans.Am. J. Hum. Genet.20016951141114510.1086/324158 11577372
    [Google Scholar]
  35. ValleixS. NedelecB. RigaudiereF. DighieroP. PouliquenY. RenardG. Le GargassonJ.F. DelpechM. H244R VSX1 is associated with selective cone ON bipolar cell dysfunction and macular degeneration in a PPCD family.Invest. Ophthalmol. Vis. Sci.2006471485410.1167/iovs.05‑0479 16384943
    [Google Scholar]
  36. OlichonA. GuillouE. DelettreC. LandesT. Arnauné-PelloquinL. EmorineL.J. MilsV. DaloyauM. HamelC. Amati-BonneauP. BonneauD. ReynierP. LenaersG. BelenguerP. Mitochondrial dynamics and disease, OPA1.Biochim. Biophys. Acta Mol. Cell Res.200617635-650050910.1016/j.bbamcr.2006.04.003 16737747
    [Google Scholar]
  37. ReynierP. Amati-BonneauP. VernyC. OlichonA. SimardG. GuichetA. BonnemainsC. MalecazeF. MalingeM.C. PelletierJ.B. CalvasP. DollfusH. BelenguerP. MalthièryY. LenaersG. BonneauD. OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract.J. Med. Genet.2004419e110e11010.1136/jmg.2003.016576 15342707
    [Google Scholar]
  38. GJA1 gap junction protein alpha 1 [Homo sapiens (human)] : Gene: NCBIAvailable from: https://www.ncbi.nlm.nih.gov/gene/2697 (accessed 2023-12-08).
  39. ZhangJ. YangG. ZhuY. PengX. LiT. LiuL. Relationship of Cx43 regulation of vascular permeability to osteopontin-tight junction protein pathway after sepsis in rats.Am. J. Physiol. Regul. Integr. Comp. Physiol.20183141R1R1110.1152/ajpregu.00443.2016 28978514
    [Google Scholar]
  40. BerthoudV.M. GaoJ. MinogueP.J. JaraO. MathiasR.T. BeyerE.C. Connexin mutants compromise the lens circulation and cause cataracts through biomineralization.Int. J. Mol. Sci.20202116582210.3390/ijms21165822 32823750
    [Google Scholar]
  41. ShenJ. WuQ. YouJ. ZhangX. ZhuL. XiaX. XueC. TianX. Characterization of a novel Gja8 (Cx50) mutation in a new cataract rat model.Invest. Ophthalmol. Vis. Sci.20236471810.1167/iovs.64.7.18 37294706
    [Google Scholar]
  42. HeruyeS.H. Maffofou NkenyiL.N. SinghN.U. YalzadehD. NgeleK.K. Njie-MbyeY.F. OhiaS.E. OpereC.A. Current trends in the pharmacotherapy of cataracts.Pharmaceuticals20201311510.3390/ph13010015 31963166
    [Google Scholar]
  43. OkoyeG.S. GurnaniB. Traumatic Cataract.StatPearls2023
    [Google Scholar]
  44. HejtmancikJ.F. Congenital cataracts and their molecular genetics.Semin. Cell Dev. Biol.200819213414910.1016/j.semcdb.2007.10.003 18035564
    [Google Scholar]
  45. GonosE.S. KapetanouM. SereikaiteJ. BartoszG. NaparłoK. GrzesikM. Sadowska-BartoszI. Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging.Aging201810586890110.18632/aging.101450 29779015
    [Google Scholar]
  46. Dalle-DonneI. AldiniG. CariniM. ColomboR. RossiR. MilzaniA. Protein carbonylation, cellular dysfunction, and disease progression.J. Cell. Mol. Med.200610238940610.1111/j.1582‑4934.2006.tb00407.x 16796807
    [Google Scholar]
  47. CiechanoverA. SchwartzA.L. The ubiquitin-proteasome pathway: The complexity and myriad functions of proteins death.Proc. Natl. Acad. Sci.19989562727273010.1073/pnas.95.6.2727 9501156
    [Google Scholar]
  48. CappadociaL. LimaC.D. Ubiquitin-like protein conjugation: Structures, chemistry, and mechanism.Chem. Rev.2018118388991810.1021/acs.chemrev.6b00737 28234446
    [Google Scholar]
  49. ShangF. TaylorA. Ubiquitin–proteasome pathway and cellular responses to oxidative stress.Free Radic. Biol. Med.201151151610.1016/j.freeradbiomed.2011.03.031 21530648
    [Google Scholar]
  50. BejaranoE. WeinbergJ. ClarkM. TaylorA. RowanS. BejaranoE. WeinbergJ. ClarkM. TaylorA. RowanS. WhitcombE.A. Redox regulation in age-related cataracts: Roles for glutathione, vitamin C, and the NRF2 signaling pathway.Nutrients20231515337510.3390/nu15153375
    [Google Scholar]
  51. OkaM. KudoH. SugamaN. AsamiY. TakehanaM. The function of filensin and phakinin in lens transparency.Mol. Vis.200814815822 18449355
    [Google Scholar]
  52. MüllerM. BhattacharyaS.S. MooreT. PrescottQ. WedigT. HerrmannH. MaginT.M. Dominant cataract formation in association with a vimentin assembly disrupting mutation.Hum. Mol. Genet.20091861052105710.1093/hmg/ddn440 19126778
    [Google Scholar]
  53. ThornellE. AquilinaA. Regulation of αA- and αB-crystallins via phosphorylation in cellular homeostasis.Cell. Mol. Life Sci.201572214127413710.1007/s00018‑015‑1996‑x 26210153
    [Google Scholar]
  54. KisicB. MiricD. ZoricL. RasicJ.V. GrbicR. PopovicL.M. ArsicA.M. Xanthine oxidase activity in patients with age-related cataract associated with hypertension.Braz. J. Med. Biol. Res.2018515e612910.1590/1414‑431x20176129 29590254
    [Google Scholar]
  55. OshimaA. Structure and closure of connexin gap junction channels.FEBS Lett.201458881230123710.1016/j.febslet.2014.01.042 24492007
    [Google Scholar]
  56. SzondyZ. Korponay-SzabóI. KirályR. SarangZ. TsayG.J. Transglutaminase 2 in human diseases.Biomedicine2017731510.1051/bmdcn/2017070315 28840829
    [Google Scholar]
  57. HayashiJ. CarverJ.A. The multifaceted nature of αB-crystallin.Cell Stress Chaperones202025463965410.1007/s12192‑020‑01098‑w 32383140
    [Google Scholar]
  58. Cabral-PachecoG.A. Garza-VelozI. Castruita-De la RosaC. Ramirez-AcuñaJ.M. Perez-RomeroB.A. Guerrero-RodriguezJ.F. Martinez-AvilaN. Martinez-FierroM.L. The roles of matrix metalloproteinases and their inhibitors in human diseases.Int. J. Mol. Sci.20202124973910.3390/ijms21249739 33419373
    [Google Scholar]
  59. WaszczykowskaA. PodgórskiM. WaszczykowskiM. Gerlicz- Kowalczuk, Z.; Jurowski, P. Matrix metalloproteinases MMP-2 and MMP-9, their inhibitors TIMP-1 and TIMP-2, vascular endothelial growth factor and sVEGFR-2 as predictive markers of ischemic retinopathy in patients with systemic sclerosis—case series report.Int. J. Mol. Sci.20202122870310.3390/ijms21228703 33218057
    [Google Scholar]
  60. West-MaysJ.A. PinoG. Matrix metalloproteinases as mediators of primary and secondary cataracts.Expert Rev. Ophthalmol.20072693193810.1586/17469899.2.6.931 19018298
    [Google Scholar]
  61. WeikelK.A. GarberC. BaburinsA. TaylorA. Nutritional modulation of cataract.Nutr. Rev.2014721304710.1111/nure.12077 24279748
    [Google Scholar]
  62. NitaM. GrzybowskiA. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults.Oxid. Med. Cell. Longev.2016201612310.1155/2016/3164734 26881021
    [Google Scholar]
  63. ShangF. LuM. DudekE. ReddanJ. TaylorA. VitaminC. VitaminE. Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2.Free Radic. Biol. Med.200334552153010.1016/S0891‑5849(02)01304‑7 12614841
    [Google Scholar]
  64. BerthoudV.M. BeyerE.C. Oxidative stress, lens gap junctions, and cataracts.Antioxid. Redox Signal.200911233935310.1089/ars.2008.2119 18831679
    [Google Scholar]
  65. Prasad PandaS. KesharwaniA. Micronutrients/miRs/ATP networking in mitochondria: Clinical intervention with ferroptosis, cuproptosis, and calcium burden.Mitochondrion20237111610.1016/j.mito.2023.05.003 37172668
    [Google Scholar]
  66. QuanY. DuY. TongY. GuS. JiangJ.X. Connexin gap junctions and hemichannels in modulating lens redox homeostasis and oxidative stress in cataractogenesis.Antioxidants2021109137410.3390/antiox10091374
    [Google Scholar]
  67. RajasekaranN.S. ConnellP. ChristiansE.S. YanL.J. TaylorR.P. OroszA. ZhangX.Q. StevensonT.J. PeshockR.M. LeopoldJ.A. BarryW.H. LoscalzoJ. OdelbergS.J. BenjaminI.J. Dysregulation of glutathione homeostasis causes oxido-reductive stress and cardiomyopathy in R120GCryAB mice.Cell2007130342710.1016/j.cell.2007.06.044 17693254
    [Google Scholar]
  68. PescosolidoN. BarbatoA. GiannottiR. KomaihaC. LenarduzziF. Age-related changes in the kinetics of human lenses: Prevention of the cataract.Int. J. Ophthalmol.20169101506151710.18240/ijo.2016.10.23 27803872
    [Google Scholar]
  69. AndleyU. Effects of alpha-crystallin on lens cell function and cataract pathology.Curr. Mol. Med.20099788789210.2174/156652409789105598 19860667
    [Google Scholar]
  70. IslamS. DoM.T. FrankB.S. HomG.L. WheelerS. FujiokaH. WangB. MinochaG. SellD.R. FanX. LampiK.J. MonnierV.M. α-Crystallin chaperone mimetic drugs inhibit lens γ-crystallin aggregation: Potential role for cataract prevention.J. Biol. Chem.20222981010241710.1016/j.jbc.2022.102417 36037967
    [Google Scholar]
  71. CargnelloM. RouxP.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.Microbiol. Mol. Biol. Rev.2011751508310.1128/MMBR.00031‑10 21372320
    [Google Scholar]
  72. PearsonG. RobinsonF. Beers GibsonT. XuB. KarandikarM. BermanK. CobbM.H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions.Endocr. Rev.200122215318310.1210/edrv.22.2.0428 11294822
    [Google Scholar]
  73. SonY. CheongY.K. KimN.H. ChungH.T. KangD.G. PaeH.O. Mitogen-activated protein kinases and reactive oxygen species: How Can ROS activate MAPK pathways?J. Signal Transduct.201120111610.1155/2011/792639 21637379
    [Google Scholar]
  74. LingappanK. NF-κB in oxidative stress.Curr. Opin. Toxicol.20187818610.1016/j.cotox.2017.11.002 29862377
    [Google Scholar]
  75. YamaokaR. KanadaF. NagayaM. TakashimaM. TakamuraY. InataniM. OkiM. Analysis of cataract-regulated genes using chemical DNA damage induction in a rat ex vivo model.PLoS One20221712e027345610.1371/journal.pone.0273456 36477544
    [Google Scholar]
  76. ShaoD.W. ZhuX.Q. HuoL. SunW. PanP. ChenW. WangH. LiuB. The significance of Akt/NF-κb signaling pathway in the posterior cataract animal model.Bratisl. Med. J.2017118742342610.4149/BLL_2017_082 28766353
    [Google Scholar]
  77. AdhikariA.S. SinghB.N. RaoK.S. RaoC.M. αB-crystallin, a small heat shock protein, modulates NF-κB activity in a phosphorylation-dependent manner and protects muscle myoblasts from TNF-α induced cytotoxicity.Biochim. Biophys. Acta Mol. Cell Res.2011181381532154210.1016/j.bbamcr.2011.04.009 21640763
    [Google Scholar]
  78. SáezJ.C. BerthoudV.M. BrañesM.C. MartínezA.D. BeyerE.C. Plasma membrane channels formed by connexins: their regulation and functions.Physiol. Rev.20038341359140010.1152/physrev.00007.2003 14506308
    [Google Scholar]
  79. ChoudhuryS.P. BanoS. SenS. SuchalK. KumarS. NikolajeffF. DeyS.K. SharmaV. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson’s disease.NPJ Parkinsons Dis.2022816610.1038/s41531‑022‑00324‑9 35650269
    [Google Scholar]
  80. BeyerE.C. EbiharaL. BerthoudV.M. Connexin mutants and cataracts.Front. Pharmacol.201344310.3389/fphar.2013.00043 23596416
    [Google Scholar]
  81. DuY. TongY. QuanY. WangG. ChengH. GuS. JiangJ.X. Protein kinase A activation alleviates cataract formation via increased gap junction intercellular communication.iScience202326310611410.1016/j.isci.2023.106114 36852280
    [Google Scholar]
  82. V, S.; A, A. Age related or senile cataract: Pathology, mechanism and management.Austin J. Clin. Ophthalmol.2016321067
    [Google Scholar]
  83. GongX.D. WangY. HuX.B. ZhengS.Y. FuJ.L. NieQ. WangL. HouM. XiangJ.W. XiaoY. GaoQ. BaiY.Y. LiuY.Z. LiD.W.C. Aging-dependent loss of GAP junction proteins Cx46 and Cx50 in the fiber cells of human and mouse lenses accounts for the diminished coupling conductance.Aging20211313175681759110.18632/aging.203247 34226295
    [Google Scholar]
  84. HuZ. RiquelmeM.A. GuS. JiangJ.X. Regulation of connexin gap junctions and hemichannels by calcium and calcium binding protein calmodulin.Int. J. Mol. Sci.20202121819410.3390/ijms21218194
    [Google Scholar]
  85. PunR. KimM.H. NorthB.J. Role of Connexin 43 phosphorylation on Serine-368 by PKC in cardiac function and disease.Front. Cardiovasc. Med.20239108013110.3389/fcvm.2022.1080131 36712244
    [Google Scholar]
  86. TetenborgS. WangH.Y. NemitzL. DeppingA. EspejoA.B. AseervathamJ. BedfordM.T. Janssen-BienholdU. O’BrienJ. DedekK. Phosphorylation of Connexin36 near the C-terminus switches binding affinities for PDZ-domain and 14–3–3 proteins in vitro.Sci. Rep.20201011837810.1038/s41598‑020‑75375‑0 33110101
    [Google Scholar]
  87. LampeP.D. LauA.F. The effects of connexin phosphorylation on gap junctional communication.Int. J. Biochem. Cell Biol.20043671171118610.1016/S1357‑2725(03)00264‑4 15109565
    [Google Scholar]
  88. Cosentino-GomesD. Rocco-MachadoN. Meyer-FernandesJ.R. Cell signaling through protein kinase C oxidation and activation.Int. J. Mol. Sci.2012139106971072110.3390/ijms130910697 23109817
    [Google Scholar]
  89. LinD. LobellS. JewellA. TakemotoD.J. Differential phosphorylation of connexin46 and connexin50 by H2O2 activation of protein kinase Cgamma.Mol. Vis.200410688695 15467523
    [Google Scholar]
  90. WagnerL.M. SalehS.M. BoyleD.J. TakemotoD.J. Effect of protein kinase Cgamma on gap junction disassembly in lens epithelial cells and retinal cells in culture.Mol. Vis.200285966 11951087
    [Google Scholar]
  91. LinD. TakemotoD.J. Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions.J. Biol. Chem.200528014136821369310.1074/jbc.M407762200 15642736
    [Google Scholar]
  92. AllenD. VasavadaA. Cataract and surgery for cataract.BMJ2006333755912813210.1136/bmj.333.7559.128 16840470
    [Google Scholar]
  93. FungW.E. Phacoemulsification.Ophthalmology1978851465110.1016/S0161‑6420(78)35695‑5 305555
    [Google Scholar]
  94. MinassianD.C. RosenP. DartJ.K. ReidyA. DesaiP. SidhuM. KaushalS. WingateN. Extracapsular cataract extraction compared with small incision surgery by phacoemulsification: a randomised trial.Br. J. Ophthalmol.200185782282910.1136/bjo.85.7.822 11423457
    [Google Scholar]
  95. de SilvaS.R. RiazY. EvansJ.R. Phacoemulsification with posterior chamber intraocular lens versus extracapsular cataract extraction (ECCE) with posterior chamber intraocular lens for age-related cataract.Cochrane Libr.201420141CD00881210.1002/14651858.CD008812.pub2 24474622
    [Google Scholar]
  96. GogateP.M. DeshpandeM. WormaldR.P. DeshpandeR. KulkarniS.R. Extracapsular cataract surgery compared with manual small incision cataract surgery in community eye care setting in western India: A randomised controlled trial.Br. J. Ophthalmol.200387666767210.1136/bjo.87.6.667 12770957
    [Google Scholar]
  97. VivekanandU. MohantyP. PrasanV.V. Conventional extracapsular cataract extraction and its importance in the present day ophthalmic practice.Oman J. Ophthalmol.20158317517810.4103/0974‑620X.169906 26903724
    [Google Scholar]
  98. RuhswurmI. RigalK. SanouJ. Manual small incision cataract surgery.Spektrum Augenheilkd.2020345-616617210.1007/s00717‑020‑00461‑7
    [Google Scholar]
  99. ErdurmuşM. SimavliH. AydinB. Cataracts: An Overview.Handbook of Nutrition, Diet and the Eye.Academic Press2014212810.1016/B978‑0‑12‑401717‑7.00003‑4
    [Google Scholar]
  100. Cataract surgery risks: Symptoms, treatment, and moreAvailable from: https://www.medicalnewstoday.com/articles/cataract-surgery-risks (accessed 2023-12-11).
  101. KangH.K. LuffA.J. Management of retinal detachment: A guide for non-ophthalmologists.BMJ200833676551235124010.1136/bmj.39581.525532.47 18511798
    [Google Scholar]
  102. Carbamazepine _ C15H12N2O _ CID 2554 : PubChemAvailable from: https://pubchem.ncbi.nlm.nih.gov/compound/Carbamazepine (accessed 2023-12-11).
  103. ElsherbinyN.M. Abdel-MottalebY. ElkazazA.Y. AtefH. LashineR.M. YoussefA.M. EzzatW. El-GhaieshS.H. ElshaerR.E. El-ShafeyM. ZaitoneS.A. Carbamazepine alleviates retinal and optic nerve neural degeneration in diabetic mice via nerve growth factor-induced PI3K/Akt/mTOR Activation.Front. Neurosci.201913108910.3389/fnins.2019.01089 31736682
    [Google Scholar]
  104. KroppM. GolubnitschajaO. MazurakovaA. KoklesovaL. SargheiniN. VoT.T.K.S. de ClerckE. PolivkaJ.Jr PotuznikP. PolivkaJ. StetkarovaI. KubatkaP. ThumannG. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications—risks and mitigation.EPMA J.2023141214210.1007/s13167‑023‑00314‑8 36866156
    [Google Scholar]
  105. Myricetin | C15H10O8 | CID 5281672 - PubChemAvailable from: https://pubchem.ncbi.nlm.nih.gov/compound/Myricetin (accessed 2023-12-11).
  106. SemwalD. SemwalR. CombrinckS. ViljoenA. Myricetin: A dietary molecule with diverse biological activities.Nutrients2016829010.3390/nu8020090 26891321
    [Google Scholar]
  107. LaabichA. ManmotoC.C. KuksaV. LeungD.W. VissvesvaranG.P. KarligaI. KamatM. ScottI.L. FawziA. KubotaR. Protective effects of myricetin and related flavonols against A2E and light mediated-cell death in bovine retinal primary cell culture.Exp. Eye Res.200785115416510.1016/j.exer.2007.04.003 17544396
    [Google Scholar]
  108. SunF. ZhengZ. LanJ. LiX. LiM. SongK. WuX. New micelle myricetin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment.Drug Deliv.201926157558510.1080/10717544.2019.1622608 31172843
    [Google Scholar]
  109. HouY. ZhangF. LanJ. SunF. LiJ. LiM. SongK. WuX. Ultra-small micelles based on polyoxyl 15 hydroxystearate for ocular delivery of myricetin: optimization, in vitro, and in vivo evaluation.Drug Deliv.201926115816710.1080/10717544.2019.1568624 30822157
    [Google Scholar]
  110. SalehiB. MishraA. NigamM. SenerB. KilicM. Sharifi-RadM. FokouP. MartinsN. Sharifi-RadJ. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines6030091 30205595
    [Google Scholar]
  111. ZhangY. ZhangZ. MousaviM. MolianiA. BahmanY. BagheriH. Resveratrol inhibits glioblastoma cells and chemoresistance progression through blockade P-glycoprotein and targeting AKT/PTEN signaling pathway.Chem. Biol. Interact.202337611040910.1016/j.cbi.2023.110409 36804490
    [Google Scholar]
  112. ZhouD.D. LuoM. HuangS.Y. SaimaitiA. ShangA. GanR.Y. LiH.B. Effects and mechanisms of resveratrol on aging and age-related diseases.Oxid. Med. Cell. Longev.2021202111510.1155/2021/9932218 34336123
    [Google Scholar]
  113. DoganayS. BorazanM. IrazM. CigremisY. The effect of resveratrol in experimental cataract model formed by sodium selenite.Curr. Eye Res.200631214715310.1080/02713680500514685 16500765
    [Google Scholar]
  114. BrylA. FalkowskiM. ZorenaK. MrugaczM. The role of resveratrol in eye diseases: A review of the literature.Nutrients20221414297410.3390/nu14142974 35889930
    [Google Scholar]
  115. ChenP. YaoZ. HeZ. Resveratrol protects against high glucose induced oxidative damage in human lens epithelial cells by activating autophagy.Exp. Ther. Med.202121544010.3892/etm.2021.9871 33747177
    [Google Scholar]
  116. HigashiY. HigashiK. MoriA. SakamotoK. IshiiK. NakaharaT. Anti-cataract effect of resveratrol in high-glucose-treated streptozotocin-induced diabetic rats.Biol. Pharm. Bull.201841101586159210.1248/bpb.b18‑00328 30270328
    [Google Scholar]
  117. MrugaczM. Pony-UramM. BrylA. ZorenaK. Current approach to the pathogenesis of diabetic cataracts.Int. J. Mol. Sci.2023247631710.3390/ijms24076317 37047290
    [Google Scholar]
  118. HilliardA. MendoncaP. RussellT.D. SolimanK.F.A. The protective effects of flavonoids in cataract formation through the activation of Nrf2 and the inhibition of MMP-9.Nutrients20201212365110.3390/nu12123651
    [Google Scholar]
  119. KushwahN. BoraK. MauryaM. PavlovichM.C. ChenJ. Oxidative stress and antioxidants in age-related macular degeneration.Antioxidants2023127137910.3390/antiox12071379
    [Google Scholar]
  120. AhmedS.M.U. LuoL. NamaniA. WangX.J. TangX. Nrf2 signaling pathway: Pivotal roles in inflammation.Biochim. Biophys. Acta Mol. Basis Dis.20171863258559710.1016/j.bbadis.2016.11.005 27825853
    [Google Scholar]
  121. EvansJ.A. MendoncaP. SolimanK.F.A. Involvement of Nrf2 activation and NF-kB pathway inhibition in the antioxidant and anti-inflammatory effects of hesperetin in activated BV-2 microglial cells.Brain Sci.2023138114410.3390/brainsci13081144
    [Google Scholar]
  122. Abu-AmeroK. KondkarA. ChalamK. Resveratrol and ophthalmic diseases.Nutrients20168420010.3390/nu8040200 27058553
    [Google Scholar]
  123. KangH. HuangD. KangG. YangX. LiH. LiuS. GouW. LiuL. QiuY. 5-Nitro-2-(3-phenylpropylamino) benzoic acid inhibits the proliferation and migration of lens epithelial cells by blocking CaMKII signaling.Acta Med. Okayama202276441542110.18926/AMO/63896 36123156
    [Google Scholar]
  124. KonopińskaJ. MłynarczykM. DmuchowskaD.A. ObuchowskaI. Posterior capsule opacification: A review of experimental studies.J. Clin. Med.20211013284710.3390/jcm10132847 34199147
    [Google Scholar]
  125. CatalanottoC. CogoniC. ZardoG. MicroRNA in control of gene expression: An overview of nuclear functions.Int. J. Mol. Sci.20161710171210.3390/ijms17101712 27754357
    [Google Scholar]
  126. BhaskaranM. MohanM. MicroRNAs.Vet. Pathol.201451475977410.1177/0300985813502820 24045890
    [Google Scholar]
  127. IveyK.N. SrivastavaD. microRNAs as developmental regulators.Cold Spring Harb. Perspect. Biol.201577a00814410.1101/cshperspect.a008144 26134312
    [Google Scholar]
  128. LiuC.H. HuangS. BrittonW.R. ChenJ. MicroRNAs in vascular eye diseases.Int. J. Mol. Sci.202021264910.3390/ijms21020649 31963809
    [Google Scholar]
  129. DunmireJ.J. LagourosE. BouhenniR.A. JonesM. EdwardD.P. MicroRNA in aqueous humor from patients with cataract.Exp. Eye Res.2013108687110.1016/j.exer.2012.10.016 23146683
    [Google Scholar]
  130. RaghunathA. PerumalE. Micro-RNAs and their roles in eye disorders.Ophthalmic Res.201553416918610.1159/000371853 25832915
    [Google Scholar]
  131. KimY.J. LeeW.J. KoB.W. LimH.W. YeonY. AhnS.J. LeeB.R. Investigation of MicroRNA expression in anterior lens capsules of senile cataract patients and MicroRNA differences according to the cataract type.Transl. Vis. Sci. Technol.20211021410.1167/tvst.10.2.14 34003899
    [Google Scholar]
  132. MrowickaM. MrowickiJ. KucharskaE. SmigielskaB. SzaflikJ.P. SzaflikJ. MajsterekI. The role of oxidative stress and the importance of miRNAs as potential biomarkers in the development of age-related macular degeneration.Processes202198132810.3390/pr9081328
    [Google Scholar]
  133. SivakJ.G. Development of the Ocular Lens.Optom. Vis. Sci.200582979910.1097/01.opx.0000178358.98820.b9
    [Google Scholar]
  134. KuboE. FatmaN. AkagiY. BeierD.R. SinghS.P. SinghD.P. TAT-mediated PRDX6 protein transduction protects against eye lens epithelial cell death and delays lens opacity.Am. J. Physiol. Cell Physiol.20082943C842C85510.1152/ajpcell.00540.2007 18184874
    [Google Scholar]
  135. VasavadaA.R. RajS.M. KaidJ.S.R. VasavadaV.A. VasavadaV.A. Post-operative capsular opacification: a review.Int. J. Biomed. Sci.20073423725010.59566/IJBS.2007.3237 23675049
    [Google Scholar]
  136. KuboE. ShibataT. SinghD. SasakiH. Roles of TGF β and FGF Signals in the Lens: Tropomyosin regulation for posterior capsule opacity.Int. J. Mol. Sci.20181910309310.3390/ijms19103093 30304871
    [Google Scholar]
  137. HataA. ChenY.G. TGF-β signaling from receptors to smads.Cold Spring Harb. Perspect. Biol.201689a02206110.1101/cshperspect.a022061 27449815
    [Google Scholar]
  138. VincentT. NeveE.P.A. JohnsonJ.R. KukalevA. RojoF. AlbanellJ. PietrasK. VirtanenI. PhilipsonL. LeopoldP.L. CrystalR.G. de HerrerosA.G. MoustakasA. PetterssonR.F. FuxeJ.A. SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition.Nat. Cell Biol.200911894395010.1038/ncb1905 19597490
    [Google Scholar]
  139. SmithA.J.O. EldredJ.A. WormstoneI.M. Resveratrol inhibits wound healing and lens fibrosis: A putative candidate for posterior capsule opacification prevention.Invest. Ophthalmol. Vis. Sci.201960123863387710.1167/iovs.18‑26248 31529119
    [Google Scholar]
  140. HoffmannA. HuangY. Suetsugu-MakiR. RingelbergC.S. TomlinsonC.R. Del Rio-TsonisK. TsonisP.A. Implication of the miR-184 and miR-204 competitive RNA network in control of mouse secondary cataract.Mol. Med.201218352853810.2119/molmed.2011.00463 22270329
    [Google Scholar]
  141. ConteI. CarrellaS. AvellinoR. KaraliM. Marco-FerreresR. BovolentaP. BanfiS. miR-204 is required for lens and retinal development viaMeis2 targeting.Proc. Natl. Acad. Sci.201010735154911549610.1073/pnas.0914785107 20713703
    [Google Scholar]
  142. HuangJ. ZhaoL. XingL. ChenD. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation.Stem Cells201028235736410.1002/stem.288 20039258
    [Google Scholar]
  143. WangY. LiW. ZangX. ChenN. LiuT. TsonisP.A. HuangY. MicroRNA-204-5p regulates epithelial-to-mesenchymal transition during human posterior capsule opacification by targeting SMAD4.Invest. Ophthalmol. Vis. Sci.201354132333210.1167/iovs.12‑10904 23221074
    [Google Scholar]
  144. DongN. XuB. BenyaS.R. TangX. RETRACTED ARTICLE: MiRNA-26b inhibits the proliferation, migration, and epithelial–mesenchymal transition of lens epithelial cells.Mol. Cell. Biochem.20143961-222923810.1007/s11010‑014‑2158‑4 25063219
    [Google Scholar]
  145. KuboE. HasanovaN. SasakiH. SinghD.P. Dynamic and differential regulation in the micro RNA expression in the developing and mature cataractous rat lens.J. Cell. Mol. Med.20131791146115910.1111/jcmm.12094 23844765
    [Google Scholar]
  146. WeberJ.A. BaxterD.H. ZhangS. HuangD.Y. How HuangK. Jen LeeM. GalasD.J. WangK. The microRNA spectrum in 12 body fluids.Clin. Chem.201056111733174110.1373/clinchem.2010.147405 20847327
    [Google Scholar]
  147. YuX. ZhengH. ChanM.T.V. WuW.K.K. MicroRNAs: New players in cataract.Am. J. Transl. Res.20179938963903 28979668
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010303094240613105517
Loading
/content/journals/cpb/10.2174/0113892010303094240613105517
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): diagnosis; inheritance cataracts; miRs; Traumatic cataract; treatment; γ D-crystallin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test