Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Nanotechnology exhibits a wide range of applications in the domain of disease therapy, diagnosis, biological detection, and environmental safeguards. The cross-linked polymeric nanosponges (NSs) are a nanoscale drug carrier system with a 3D porous structure and high entrapment efficacy. NSs up to the fourth generation are currently accessible and can serve as a delivery system for both hydrophilic and hydrophobic drugs. The delivery system exhibits superiority over alternative methods due to its ability to achieve controlled and targeted drug delivery. The colloidal structure of NSs facilitates the encapsulation of a wide range of agents such as proteins and peptides, enzymes, antineoplastic drugs, volatile oil, vaccines, DNA, . NSs efficiently overcome the challenges associated with drug toxicity and poor aqueous solubility. NS formulations have been explored for various applications like gaseous encapsulation, enzyme immobilization, antifungal therapy, poison absorbent, water purification, . This review provides a comprehensive analysis regarding methods of synthesis, distinct polymeric NSs, mechanism of drug release, factors affecting NS development, applications, and patents filed in the field of NSs. Herein, the recently developed NS formulations, their potential in cancer therapy, and current progressions of NS for SARS-CoV-2 management are also deliberated with special attention, focusing on the significant challenges and future directions.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010307169240619061808
2024-07-08
2025-09-01
Loading full text...

Full text loading...

References

  1. AmidonG.L. LennernäsH. ShahV.P. CrisonJ.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability.Pharm. Res.199512341342010.1023/A:1016212804288 7617530
    [Google Scholar]
  2. GaberD.A. AlhuwaymiliA.S. AlhawasH.S. AlmutiriA.A. AlsubaiyelA.M. AbdounS.A. AlmutairiR.A. Synthesized nano particles of glimepiride via spray freezing into cryogenic liquid: Characterization, antidiabetic activity, and bioavailability.Drug Deliv.202229136437310.1080/10717544.2021.2018524 35068278
    [Google Scholar]
  3. Merisko-LiversidgeE. LiversidgeG.G. CooperE.R. Nanosizing: A formulation approach for poorly-water-soluble compounds.Eur. J. Pharm. Sci.200318211312010.1016/S0928‑0987(02)00251‑8 12594003
    [Google Scholar]
  4. Karaźniewicz-ŁadaM. BąbaK. DolatowskiF. DobrowolskaA. RakickaM. The polymorphism of statins and its effect on their physicochemical properties.Polim. Med.2018482778210.17219/pim/102978 30916495
    [Google Scholar]
  5. IravaniS. VarmaR.S. Nanosponges for drug delivery and cancer therapy: Recent advances.Nanomaterials20221214244010.3390/nano12142440 35889665
    [Google Scholar]
  6. HuangY.C. ChenB.H. A comparative study on improving streptozotocin-induced type 2 diabetes in rats by hydrosol, extract and nanoemulsion prepared from cinnamon leaves.Antioxidants20221212910.3390/antiox12010029 36670891
    [Google Scholar]
  7. SoaresP.I.P. RomãoJ. MatosR. SilvaJ.C. BorgesJ.P. Design and engineering of magneto-responsive devices for cancer theranostics: Nano to macro perspective.Prog. Mater. Sci.202111610074210.1016/j.pmatsci.2020.100742
    [Google Scholar]
  8. JosephX. AkhilV. ArathiA. MohananP.V. Nanobiomaterials in support of drug delivery related issues.Mater. Sci. Eng. B202227911568010.1016/j.mseb.2022.115680
    [Google Scholar]
  9. SajjadiM. NasrollahzadehM. JalehB. SoufiG.J. IravaniS. Carbon-based nanomaterials for targeted cancer nanotherapy: Recent trends and future prospects.J. Drug Target.202129771674110.1080/1061186X.2021.1886301 33566719
    [Google Scholar]
  10. CarrionC.C. NasrollahzadehM. SajjadiM. JalehB. SoufiG.J. IravaniS. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities.Int. J. Biol. Macromol.202117819322810.1016/j.ijbiomac.2021.02.123 33631269
    [Google Scholar]
  11. IravaniS. VarmaR.S. Plant pollen grains: A move towards green drug and vaccine delivery systems.Nano-Micro Lett.202113112810.1007/s40820‑021‑00654‑y 34138347
    [Google Scholar]
  12. IravaniS. VarmaR.S. Important roles of oligo-and polysaccharides against sars-cov-2: Recent advances.Appl. Sci.2021118351210.3390/app11083512
    [Google Scholar]
  13. IravaniS. VarmaR.S. Nanosponges for water treatment: Progress and challenges.Appl. Sci.2022129418210.3390/app12094182
    [Google Scholar]
  14. WangY. PisapatiA.V. ZhangX.F. ChengX. Recent developments in nanomaterial‐based shear‐sensitive drug delivery systems.Adv. Healthc. Mater.20211013200219610.1002/adhm.202002196 34076369
    [Google Scholar]
  15. IravaniS. Nanophotocatalysts against viruses and antibiotic-resistant bacteria: Recent advances.Crit. Rev. Microbiol.2022481678210.1080/1040841X.2021.1944053 34176402
    [Google Scholar]
  16. IravaniS. Nano- and biosensors for the detection of SARS-CoV-2: Challenges and opportunities.Mater. Adv.2020193092310310.1039/D0MA00702A
    [Google Scholar]
  17. OsmaniR. HaniU. BhosaleR. KulkarniP. ShanmuganathanS. Nanosponge carriers-an archetype swing in cancer therapy: A comprehensive review.Curr. Drug Targets201618110811810.2174/1389450116666151001105449 26424399
    [Google Scholar]
  18. AlongiJ. PoskovicM. FracheA. TrottaF. Role of β-cyclodextrin nanosponges in polypropylene photooxidation.Carbohydr. Polym.201186112713510.1016/j.carbpol.2011.04.022
    [Google Scholar]
  19. UpadhyayR.K. Drug delivery systems, CNS protection, and the blood brain barrier.BioMed Res. Int.2014201413710.1155/2014/869269 25136634
    [Google Scholar]
  20. DombeS. ShiroteP. Nanosponges encapsulated phytochemicals for targeting cancer: A review.Curr. Drug Targets202122444346210.2174/1389450121999201012201455 33045959
    [Google Scholar]
  21. DengJ. ChenQ.J. LiW. ZuberiZ. FengJ.X. LinQ.L. RenJ.L. LuoF.J. DingQ.M. ZengX.X. MaL. YinH.Q. ZhengX.M. Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: Recent progress from a material and drug delivery.J. Mater. Sci.202156105995601510.1007/s10853‑020‑05646‑8
    [Google Scholar]
  22. WangH. YapaA.S. KariyawasamN.L. ShresthaT.B. KalubowilageM. WendelS.O. YuJ. PyleM. BaselM.T. MalalasekeraA.P. ToledoY. OrtegaR. ThapaP.S. HuangH. SunS.X. SmithP.E. TroyerD.L. BossmannS.H. Rationally designed peptide nanosponges for cell-based cancer therapy.Nanomedicine20171382555256410.1016/j.nano.2017.07.004 28754467
    [Google Scholar]
  23. AllahyariS. ZahednezhadF. KhatamiM. HashemzadehN. Zakeri-MilaniP. TrottaF. Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes.J. Drug Deliv. Sci. Technol.20226710293110.1016/j.jddst.2021.102931
    [Google Scholar]
  24. MenezesP.P. AndradeT.A. FrankL.A. de SouzaE.P.B.S.S. TrindadeG.G.G. TrindadeI.A.S. SerafiniM.R. GuterresS.S. AraújoA.A.S. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals.Int. J. Pharm.201955931232810.1016/j.ijpharm.2019.01.041 30703500
    [Google Scholar]
  25. GalbisE. de-PazM.V. IglesiasN. LacroixB. AlcudiaA. GalbisJ.A. Core cross-linked nanoparticles from self-assembling polyfma-based micelles. Encapsulation of lipophilic molecules.Eur. Polym. J.20178940641810.1016/j.eurpolymj.2017.02.032
    [Google Scholar]
  26. DhimanP. BhatiaM. Pharmaceutical applications of cyclodextrins and their derivatives.J. Incl. Phenom. Macrocycl. Chem.2020983-417118610.1007/s10847‑020‑01029‑3
    [Google Scholar]
  27. GuoL. GaoG. LiuX. LiuF. Preparation and characterization of TiO2 nanosponge.Mater. Chem. Phys.20081112-332232510.1016/j.matchemphys.2008.04.016
    [Google Scholar]
  28. GhoshS. JagirdarB.R. Synthesis and mechanism of formation of metal nanosponges and their catalytic and hydrogen sorption properties.ChemistrySelect20183257184719410.1002/slct.201801562
    [Google Scholar]
  29. LiuQ.Q. WangL. XiaoA.G. YuH.J. TanQ.H. A hyper-cross-linked polystyrene with nano-pore structure.Eur. Polym. J.20084482516252210.1016/j.eurpolymj.2008.05.033
    [Google Scholar]
  30. BryantJ.L. Silicon nanosponge particlesU.S. Patent 20060251561A12013
  31. UtzeriG. MatiasP.M.C. MurtinhoD. ValenteA.J.M. Cyclodextrin-based nanosponges: Overview and opportunities.Front Chem.20221085940610.3389/fchem.2022.859406 35402388
    [Google Scholar]
  32. TiwariK. BhattacharyaS. The ascension of nanosponges as a drug delivery carrier: Preparation, characterization, and applications.J. Mater. Sci. Mater. Med.20223332810.1007/s10856‑022‑06652‑9 35244808
    [Google Scholar]
  33. MoinA. RoohiN.K.F. RizviS.M.D. AshrafS.A. SiddiquiA.J. PatelM. AhmedS.M. GowdaD.V. AdnanM. Design and formulation of polymeric nanosponge tablets with enhanced solubility for combination therapy.RSC Advances20201057348693488410.1039/D0RA06611G 35514416
    [Google Scholar]
  34. GaberD.A. RadwanM.A. AlzughaibiD.A. AlailJ.A. AljumahR.S. AloqlaR.M. AlkhalifahS.A. AbdounS.A. Formulation and evaluation of Piroxicam nanosponge for improved internal solubility and analgesic activity.Drug Deliv.2023301217420810.1080/10717544.2023.2174208 36744372
    [Google Scholar]
  35. KrabicováI. AppletonS.L. TannousM. HotiG. CalderaF. Rubin PedrazzoA. CeconeC. CavalliR. TrottaF. History of cyclodextrin nanosponges.Polymers2020125112210.3390/polym12051122 32423091
    [Google Scholar]
  36. PawarS. ShendeP. A comprehensive patent review on β-cyclodextrin cross-linked nanosponges for multiple applications.Recent Pat. Nanotechnol.2020141758910.2174/1872210513666190603083930 31161998
    [Google Scholar]
  37. CalderaF. TannousM. CavalliR. ZanettiM. TrottaF. Evolution of cyclodextrin nanosponges.Int. J. Pharm.2017531247047910.1016/j.ijpharm.2017.06.072 28645630
    [Google Scholar]
  38. SharmaK. KadianV. KumarA. MahantS. RaoR. Evaluation of solubility, photostability and antioxidant activity of ellagic acid cyclodextrin nanosponges fabricated by melt method and microwave-assisted synthesis.J. Food Sci. Technol.202259389890810.1007/s13197‑021‑05085‑6 35153320
    [Google Scholar]
  39. CiesielskaA. CiesielskiW. GirekB. GirekT. KozielK. KulawikD. LagiewkaJ. Biomedical application of cyclodextrin polymers cross-linked via dianhydrides of carboxylic acids.Appl. Sci.20201023846310.3390/app10238463
    [Google Scholar]
  40. Leudjo TakaA. Fosso-KankeuE. PillayK. Yangkou MbiandaX. Metal nanoparticles decorated phosphorylated carbon nanotube/cyclodextrin nanosponge for trichloroethylene and Congo red dye adsorption from wastewater.J. Environ. Chem. Eng.20208310360210.1016/j.jece.2019.103602
    [Google Scholar]
  41. SherjeA.P. DravyakarB.R. KadamD. JadhavM. Cyclodextrin-based nanosponges: A critical review.Carbohydr. Polym.2017173374910.1016/j.carbpol.2017.05.086 28732878
    [Google Scholar]
  42. LemboD. TrottaF. CavalliR. Cyclodextrin-based nanosponges as vehicles for antiviral drugs: Challenges and perspectives.Nanomedicine201813547748010.2217/nnm‑2017‑0383 29376455
    [Google Scholar]
  43. CovielloV. SartiniS. QuattriniL. BaraldiC. GamberiniM.C. La MottaC. Cyclodextrin-based nanosponges for the targeted delivery of the anti-restenotic agent DB103: A novel opportunity for the local therapy of vessels wall subjected to percutaneous intervention.Eur. J. Pharm. Biopharm.201711727628510.1016/j.ejpb.2017.04.028 28456606
    [Google Scholar]
  44. Lo MeoP. LazzaraG. LiottaL. RielaS. NotoR. Cyclodextrin–calixarene co-polymers as a new class of nanosponges.Polym. Chem.20145154499451010.1039/C4PY00325J
    [Google Scholar]
  45. MassaroM. CinàV. LabbozzettaM. LazzaraG. Lo MeoP. PomaP. RielaS. NotoR. Chemical and pharmaceutical evaluation of the relationship between triazole linkers and pore size on cyclodextrin–calixarene nanosponges used as carriers for natural drugs.RSC Advances2016656508585086610.1039/C6RA06143E
    [Google Scholar]
  46. CinàV. RussoM. LazzaraG. Chillura MartinoD. Lo MeoP. Pre- and post-modification of mixed cyclodextrin-calixarene co-polymers: A route towards tunability.Carbohydr. Polym.20171571393140310.1016/j.carbpol.2016.11.018 27987848
    [Google Scholar]
  47. JagtapS.R. BhusnureO.G. MujewarI.N. GholveS.B. PanchabaiV.B. Nanosponges: A novel trend for targeted drug delivery.J. Drug Deliv. Ther.20199931938
    [Google Scholar]
  48. YurtdaşG. DemirelM. GençL. Inclusion complexes of fluconazole with β-cyclodextrin: physicochemical characterization and in vitro evaluation of its formulation.J. Incl. Phenom. Macrocycl. Chem.2011703-442943510.1007/s10847‑010‑9908‑z
    [Google Scholar]
  49. KaurS. KumarS. The nanosponges: An innovative drug delivery system.Asian J. Pharm. Clin. Res.2019127606710.22159/ajpcr.2019.v12i7.33879
    [Google Scholar]
  50. PatelB. BagadeO. RamtekeK. PatelR. AwsarkarV. An assessment on preparations, characterization, and poles apart appliances of nanosponge.Int. J. Pharm. Tech. Res.20146720922101
    [Google Scholar]
  51. AlmutairyB.K. AlshetailiA. AlaliA.S. AhmedM.M. AnwerM.K. AboudzadehM.A. Design of olmesartan medoxomil-loaded nanosponges for hypertension and lung cancer treatments.Polymers20211314227210.3390/polym13142272 34301030
    [Google Scholar]
  52. KrishnaA.V.M. GowdaV.D.P. KarkiR. Formulation and evaluation of nanosponges loaded bifonazole for fungal infection.Antiinfect. Agents2021191647510.2174/2211352518999200711164437
    [Google Scholar]
  53. MukherjeeB. Nanosize drug delivery system.Curr. Pharm. Biotechnol.201414151221122110.2174/138920101415140804121008 25106648
    [Google Scholar]
  54. SharmaR. WalkerR.B. PathakK. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel.Indian J. Pharm. Res. Educ.20114512531
    [Google Scholar]
  55. EmbilK. NachtS. The microsponge® delivery system (MDS): A topical delivery system with reduced irritancy incorporating multiple triggering mechanisms for the release of actives.J. Microencapsul.199613557558810.3109/02652049609026042 8864994
    [Google Scholar]
  56. PandyaK.D. ShahN.V. GohilD.Y. SethA.K. AundhiaC.J. PatelS.S. Development of risedronate sodium-loaded nanosponges by experimental design: Optimization and in vitro characterization.Indian J. Pharm. Sci.2019812309316
    [Google Scholar]
  57. RodriguesK. NadafS. RarokarN. GuravN. JagtapP. MaliP. AyyanarM. KalaskarM. GuravS. QBD approach for the development of hesperetin loaded colloidal nanosponges for sustained delivery: In-vitro, ex-vivo, and in-vivo assessment.OpenNano2022710004510.1016/j.onano.2022.100045
    [Google Scholar]
  58. ChenH. XuH. WangC. KangH. HaynesC.L. MahanthappaM.K. SunC.C. Novel quasi-emulsion solvent diffusion-based spherical cocrystallization strategy for simultaneously improving the manufacturability and dissolution of indomethacin.Cryst. Growth Des.202020106752676210.1021/acs.cgd.0c00876
    [Google Scholar]
  59. MahaparaleP.R. IkamS.A.N. ChavanM.S. Development and evaluation of terbinafine hydrochloride polymeric microsponges for topical drug delivery.Indian J. Pharm. Sci.20188061086109210.4172/pharmaceutical‑sciences.1000459
    [Google Scholar]
  60. MaghsoodiM. NokhodchiA. Agglomeration of celecoxib by quasi emulsion solvent diffusion method: Effect of stabilizer.Adv. Pharm. Bull.20166460761610.15171/apb.2016.075 28101468
    [Google Scholar]
  61. J, A.; Girigoswami, A.; Girigoswami, K. Versatile applications of nanosponges in biomedical field: A glimpse on SARS-CoV-2 management.Bionanoscience20221231018103110.1007/s12668‑022‑01000‑1 35755139
    [Google Scholar]
  62. CavalliR. AkhterA.K. BisazzaA. GiustettoP. TrottaF. VaviaP. Nanosponge formulations as oxygen delivery systems.Int. J. Pharm.20104021-225425710.1016/j.ijpharm.2010.09.025 20888402
    [Google Scholar]
  63. SrivastavaR. PathakK. Microsponges: A futuristic approach for oral drug delivery.Expert Opin. Drug Deliv.20129786387810.1517/17425247.2012.693072 22663167
    [Google Scholar]
  64. RezaeiA. VarshosazJ. FesharakiM. FarhangA. JafariS.M. Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges.Int. J. Nanomedicine2019144589459910.2147/IJN.S206350 31296988
    [Google Scholar]
  65. SadjadiS. MalmirM. HeraviM.M. RajaM. Magnetic hybrid of cyclodextrin nanosponge and polyhedral oligomeric silsesquioxane: Efficient catalytic support for immobilization of Pd nanoparticles.Int. J. Biol. Macromol.201912863864710.1016/j.ijbiomac.2019.01.181 30708003
    [Google Scholar]
  66. IriventiP. GuptaN.V. OsmaniR.A.M. BalamuralidharaV. Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis.Daru202028248950610.1007/s40199‑020‑00352‑x 32472531
    [Google Scholar]
  67. JasimI.K. Abd AlhammidS.N. AbdulrasoolA.A. Synthesis and evaluation of β-cyclodextrin based nanosponges of 5-Fluorouracil by using ultrasound assisted method.Iraqi J. Pharm Sci.20202928898
    [Google Scholar]
  68. SadjadiS. KoohestaniF. Palladated composite of MOF and cyclodextrin nanosponge: A novel catalyst for hydrogenation reaction.J. Mol. Struct.2021124513106810.1016/j.molstruc.2021.131068
    [Google Scholar]
  69. SrivastavaS. MahorA. SinghG. BansalK. SinghP.P. GuptaR. DuttR. AlanaziA.M. KhanA.A. KesharwaniP. Formulation development, in vitro and in vivo evaluation of topical hydrogel formulation of econazole nitrate-loaded β-cyclodextrin nanosponges.J. Pharm. Sci.2021110113702371410.1016/j.xphs.2021.07.008 34293406
    [Google Scholar]
  70. KumarA. RaoR. Formulation and modification of physicochemical parameters of p-Coumaric acid by cyclodextrin nanosponges.J. Incl. Phenom. Macrocycl. Chem.20221023-431332610.1007/s10847‑021‑01121‑2
    [Google Scholar]
  71. SuvarnaV. SinghV. SharmaD. MurahariM. Experimental and computational insight of the supramolecular complexes of Irbesartan with β-cyclodextrin based nanosponges.J. Drug Deliv. Sci. Technol.20216310249410.1016/j.jddst.2021.102494
    [Google Scholar]
  72. P, J.; B, T.; K, P.; B, C. An innovative advancement for targeted drug delivery.Nanosponges. Indo Glob. J. Pharm. Sci.201662596410.35652/IGJPS.2016.02
    [Google Scholar]
  73. GarridoB. GonzálezS. HermosillaJ. MillaoS. QuilaqueoM. GuineoJ. AcevedoF. PesentiH. RolleriA. SheneC. RubilarM. Carbonate-β-cyclodextrin-based nanosponge as a nanoencapsulation system for piperine: Physicochemical characterization.J. Soil Sci. Plant Nutr.201919362063010.1007/s42729‑019‑00062‑7
    [Google Scholar]
  74. KumarS. PrasadM. RaoR. Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: Formulation, physicochemical characterization, antipsoriatic potential and biochemical estimation.Mater. Sci. Eng. C202111911160510.1016/j.msec.2020.111605 33321649
    [Google Scholar]
  75. BergalA. AndaçM. Nanosponges (NSs): Using as a nanocarrier for anti cancer drug delivery applications.Acta Pharmaceutica Sciencia202159230632010.23893/1307‑2080.APS.05918
    [Google Scholar]
  76. AnandamS. SelvamuthukumarS. Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology.J. Porous Mater.20142161015102310.1007/s10934‑014‑9851‑2
    [Google Scholar]
  77. WadhwaP. VijM. DandN. Wave-assisted techniques, a greener and quicker alternative to synthesis of cyclodextrin-based nanosponges: A review.Recent Pat. Nanotechnol.202418220721910.2174/1872210516666220928114103 36173084
    [Google Scholar]
  78. VasconcelosD.A. KubotaT. SantosD.C. AraujoM.V.G. TeixeiraZ. GimenezI.F. Preparation of Au quantum clusters with catalytic activity in β-cyclodextrin polyurethane nanosponges.Carbohydr. Polym.2016136546210.1016/j.carbpol.2015.09.010 26572328
    [Google Scholar]
  79. ZainuddinR. ZaheerZ. SangshettiJ.N. MominM. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation.Drug Dev. Ind. Pharm.201743122076208410.1080/03639045.2017.1371732 28845699
    [Google Scholar]
  80. KumarS. RaoR. Analytical tools for cyclodextrin nanosponges in pharmaceutical field: A review.J. Incl. Phenom. Macrocycl. Chem.2019941-2113010.1007/s10847‑019‑00903‑z
    [Google Scholar]
  81. DarandaleS.S. VaviaP.R. Cyclodextrin-based nanosponges of curcumin: Formulation and physicochemical characterization.J. Incl. Phenom. Macrocycl. Chem.2013753-431532210.1007/s10847‑012‑0186‑9
    [Google Scholar]
  82. RealD.A. BolañosK. PriottiJ. YutronicN. KoganM.J. SierpeR. Donoso-GonzálezO. Cyclodextrin-modified nanomaterials for drug delivery: Classification and advances in controlled release and bioavailability.Pharmaceutics20211312213110.3390/pharmaceutics13122131 34959412
    [Google Scholar]
  83. AselaI. Donoso-GonzálezO. YutronicN. SierpeR. β-cyclodextrin-based nanosponges functionalized with drugs and gold nanoparticles.Pharmaceutics202113451310.3390/pharmaceutics13040513 33917938
    [Google Scholar]
  84. MendesC. MeirellesG.C. BarpC.G. AssreuyJ. SilvaM.A.S. PonchelG. Cyclodextrin based nanosponge of norfloxacin: Intestinal permeation enhancement and improved antibacterial activity.Carbohydr. Polym.201819558659210.1016/j.carbpol.2018.05.011 29805015
    [Google Scholar]
  85. DhakarN.K. CalderaF. BessoneF. CeconeC. PedrazzoA.R. CavalliR. DianzaniC. TrottaF. Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge.Carbohydr. Polym.201922411516810.1016/j.carbpol.2019.115168 31472867
    [Google Scholar]
  86. DagaM. de GraafI.A.M. ArgenzianoM. BarrancoA.S.M. LoeckM. Al-AdwiY. CucciM.A. CalderaF. TrottaF. BarreraG. CasiniA. CavalliR. PizzimentiS. Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver.Toxicol. In Vitro20206510480010.1016/j.tiv.2020.104800 32084521
    [Google Scholar]
  87. DaiY. LiQ. ZhangS. ShiS. LiY. ZhaoX. ZhouL. WangX. ZhuY. LiW. Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery.J. Drug Deliv. Sci. Technol.20216410265010.1016/j.jddst.2021.102650
    [Google Scholar]
  88. PalminteriM. DhakarN.K. FerraresiA. CalderaF. VidoniC. TrottaF. IsidoroC. Cyclodextrin nanosponge for the GSH-mediated delivery of Resveratrol in human cancer cells.Nanotheranostics20215219721210.7150/ntno.53888 33564618
    [Google Scholar]
  89. PawarS. ShendeP. Dual drug delivery of cyclodextrin cross-linked artemether and lumefantrine nanosponges for synergistic action using 23 full factorial designs.Colloids Surf. A Physicochem. Eng. Asp.202060212504910.1016/j.colsurfa.2020.125049
    [Google Scholar]
  90. GardouhA.R. ElhusseinyS. GadS. Mixed avanafil and dapoxetin hydrochloride cyclodextrin nano-sponges: Preparation, in-vitro characterization, and bioavailability determination.J. Drug Deliv. Sci. Technol.20226810310010.1016/j.jddst.2022.103100
    [Google Scholar]
  91. TorneS. DarandaleS. VaviaP. TrottaF. CavalliR. Cyclodextrin-based nanosponges: Effective nanocarrier for Tamoxifen delivery.Pharm. Dev. Technol.201318361962510.3109/10837450.2011.649855 22235935
    [Google Scholar]
  92. AllahyariS. TrottaF. ValizadehH. JelvehgariM. Zakeri-MilaniP. Cyclodextrin-based nanosponges as promising carriers for active agents.Expert Opin. Drug Deliv.201916546747910.1080/17425247.2019.1591365 30845847
    [Google Scholar]
  93. CalderaF. NisticòR. MagnaccaG. MatencioA. Khazaei MonfaredY. TrottaF. Magnetic composites of dextrin-based carbonate nanosponges and iron oxide nanoparticles with potential application in targeted drug delivery.Nanomaterials202212575410.3390/nano12050754 35269242
    [Google Scholar]
  94. MinelliR. CavalliR. EllisL. PettazzoniP. TrottaF. CiamporceroE. BarreraG. FantozziR. DianzaniC. PiliR. Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells.Eur. J. Pharm. Sci.201247468669410.1016/j.ejps.2012.08.003 22917641
    [Google Scholar]
  95. GigliottiC.L. FerraraB. OcchipintiS. BoggioE. BarreraG. PizzimentiS. GiovarelliM. FantozziR. ChiocchettiA. ArgenzianoM. ClementeN. TrottaF. MarchiòC. AnnaratoneL. BoldoriniR. DianzaniU. CavalliR. DianzaniC. Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells in vitro and in vivo on orthotopic xenograft tumors.Drug Deliv.201724167068010.1080/10717544.2017.1303856 28368209
    [Google Scholar]
  96. PushpalathaR. SelvamuthukumarS. KilimozhiD. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity.J. Drug Deliv. Sci. Technol.201845455310.1016/j.jddst.2018.03.004
    [Google Scholar]
  97. OmarS.M. IbrahimF. IsmailA. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste.Saudi Pharm. J.202028334936110.1016/j.jsps.2020.01.016 32194337
    [Google Scholar]
  98. RaoM. BajajA. KholeI. MunjaparaG. TrottaF. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan.J. Incl. Phenom. Macrocycl. Chem.2013771-413514510.1007/s10847‑012‑0224‑7
    [Google Scholar]
  99. PeiM. PaiJ.Y. DuP. LiuP. Facile synthesis of fluorescent hyper-cross-linked β-cyclodextrin-carbon quantum dot hybrid nanosponges for tumor theranostic application with enhanced antitumor efficacy.Mol. Pharm.20181594084409110.1021/acs.molpharmaceut.8b00508 30040427
    [Google Scholar]
  100. CalderaF. ArgenzianoM. TrottaF. DianzaniC. GigliottiL. TannousM. PasteroL. AquilanoD. NishimotoT. HigashiyamaT. CavalliR. Cyclic nigerosyl-1,6-nigerose-based nanosponges: An innovative pH and time-controlled nanocarrier for improving cancer treatment.Carbohydr. Polym.201819411112110.1016/j.carbpol.2018.04.027 29801818
    [Google Scholar]
  101. ShendeP.K. TrottaF. GaudR.S. DeshmukhK. CavalliR. BiasizzoM. Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges.J. Incl. Phenom. Macrocycl. Chem.2012741-444745410.1007/s10847‑012‑0140‑x
    [Google Scholar]
  102. DoraC.P. TrottaF. KushwahV. DevasariN. SinghC. SureshS. JainS. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability.Carbohydr. Polym.201613733934910.1016/j.carbpol.2015.10.080 26686138
    [Google Scholar]
  103. KumarS. RaoR. Novel dithranol loaded cyclodextrin nanosponges for augmentation of solubility, photostability and cytocompatibility.Curr. Nanosci.202117574776110.2174/1573413716666201215165552
    [Google Scholar]
  104. ShringirishiM. MahorA. GuptaR. PrajapatiS.K. BansalK. KesharwaniP. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation.J. Drug Deliv. Sci. Technol.20174134435010.1016/j.jddst.2017.08.005
    [Google Scholar]
  105. JinY. LiangL. SunX. YuG. ChenS. ShiS. LiuH. LiZ. GeK. LiuD. YangX. ZhangJ. Deoxyribozyme-nanosponges for improved photothermal therapy by overcoming thermoresistance.NPG Asia Mater.201810537338410.1038/s41427‑018‑0040‑7
    [Google Scholar]
  106. WangJ. WangH. WangH. HeS. LiR. DengZ. LiuX. WangF. Nonviolent self-catabolic dnazyme nanosponges for smart anticancer drug delivery.ACS Nano20191355852586310.1021/acsnano.9b01589 31042356
    [Google Scholar]
  107. WangJ. YuS. WuQ. GongX. HeS. ShangJ. LiuX. WangF. A self‐catabolic multifunctional DNAzyme nanosponge for programmable drug delivery and efficient gene silencing.Angew. Chem. Int. Ed.20216019107661077410.1002/anie.202101474 33599385
    [Google Scholar]
  108. LuoD. LinX. ZhaoY. HuJ. MoF. SongG. ZouZ. WangF. LiuX. A dynamic DNA nanosponge for triggered amplification of gene-photodynamic modulation.Chem. Sci.202213185155516310.1039/D2SC00459C 35655573
    [Google Scholar]
  109. ZhangK. LiuJ. SongQ. YangX. WangD. LiuW. ShiJ. ZhangZ. DNA nanosponge for adsorption and clearance of intracellular miR-21 and enhanced antitumor chemotherapy.ACS Appl. Mater. Interfaces20191150466044661310.1021/acsami.9b18282 31763811
    [Google Scholar]
  110. ShahH.S. NasrullahU. ZaibS. UsmanF. KhanA. GoharU.F. UddinJ. KhanI. Al-HarrasiA. Preparation, characterization, and pharmacological investigation of withaferin-A loaded nanosponges for cancer therapy; In vitro, in vivo and molecular docking studies.Molecules20212622699010.3390/molecules26226990 34834081
    [Google Scholar]
  111. AnwerM.K. FatimaF. AhmedM.M. AldawsariM.F. AlaliA.S. KalamM.A. AlshamsanA. AlkholiefM. MalikA. AzA. Al-shdefatR. Abemaciclib-loaded ethylcellulose based nanosponges for sustained cytotoxicity against MCF-7 and MDA-MB-231 human breast cancer cells lines.Saudi Pharm. J.202230672673410.1016/j.jsps.2022.03.019 35812154
    [Google Scholar]
  112. Ahsan HafizM. AbbasN. BukhariN.I. Quality by design approach for formulation development and evaluation of carboplatin loaded ethylcellulose nanosponges.Int. J. Polym. Mater.202271131012102410.1080/00914037.2021.1933978
    [Google Scholar]
  113. AldawsariH.M. Badr-EldinS.M. LabibG.S. El-KamelA.H. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: In vitro/in vivo evaluation.Int. J. Nanomedicine201510893902 25673986
    [Google Scholar]
  114. NairS.S. Chitosan-based transdermal drug delivery systems to overcome skin barrier functions.J. Drug Deliv. Ther.20199126627010.22270/jddt.v9i1.2180
    [Google Scholar]
  115. LeeJ.S. OhH. KimS. LeeJ.H. ShinY.C. ChoiW.I. A novel chitosan nanosponge as a vehicle for transepidermal drug delivery.Pharmaceutics2021139132910.3390/pharmaceutics13091329 34575405
    [Google Scholar]
  116. RizviS.S.B. AkhtarN. MinhasM.U. MahmoodA. KhanK.U. Synthesis and characterization of carboxymethyl chitosan nanosponges with cyclodextrin blends for drug solubility improvement.Gels2022815510.3390/gels8010055 35049590
    [Google Scholar]
  117. ShoaibQ. AbbasN. IrfanM. HussainA. ArshadM.S. HussainS.Z. LatifS. BukhariN.I. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen.Trop. J. Pharm. Res.20181781465147410.4314/tjpr.v17i8.2
    [Google Scholar]
  118. JaniR.K. PatelN. PatelZ. ChakraborthyG.S. UpadhyeV. Nanosponges as a biocatalyst carrier — An innovative drug delivery technology for enzymes, proteins, vaccines, and antibodies.Biocatal. Agric. Biotechnol.20224210232910.1016/j.bcab.2022.102329
    [Google Scholar]
  119. SwaminathanS. VaviaP.R. TrottaF. CavalliR. Nanosponges encapsulating dexamethasone for ocular delivery: Formulation design, physicochemical characterization, safety and corneal permeability assessment.J. Biomed. Nanotechnol.201396998100710.1166/jbn.2013.1594 23858964
    [Google Scholar]
  120. DubeyP. SharmaH.K. ShahS. TyagiC.K. ChandekarA.R. JadonR.S. Formulations and evaluation of Cyclodextrin complexed Ceadroxil loaded nanosponges.Int. J. Drug Deliv.2017938410010.5138/09750215.2180
    [Google Scholar]
  121. ArshadK. KhanA. BhargavE. ReddyK. SowmyaC. Nanosponges: A new approach for drug targeting.Int. J. Adv. Pharm. Res.201673381396
    [Google Scholar]
  122. TrottaF. CavalliR. Characterization and applications of new hyper-cross-linked cyclodextrins.Compos. Interfaces2009161394810.1163/156855408X379388
    [Google Scholar]
  123. GidwaniB. VyasA. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs.Biomed Res. Int.2015201519826810.1155/2015/198268
    [Google Scholar]
  124. TejashriG. AmritaB. DarshanaJ. Cyclodextrin based nanosponges for pharmaceutical use: A review.Acta Pharm.201363333535810.2478/acph‑2013‑0021 24152895
    [Google Scholar]
  125. BhowmikH. Nanosponges: A review.Int. J. Appl. Pharm.201810437
    [Google Scholar]
  126. KambleM. ZaheerZ. MokaleS. ZainuddinR. Formulation optimization and biopharmaceutical evaluation of imatinib mesylate loaded β-cyclodextrin nanosponges.Pharm. Nanotechnol.20197534336110.2174/2211738507666190919121445 31549599
    [Google Scholar]
  127. BhattacharjeeS. Polymeric nanoparticles.Princ. Nanomedicine.201919524010.1201/9780429031236‑8
    [Google Scholar]
  128. RaviS.C. KrishnakumarK. Nair, SK Nano sponges: A targeted drug delivery system and its applications.GSC Biol. Pharm. Sci.201973404710.30574/gscbps.2019.7.3.0098
    [Google Scholar]
  129. KhalidQ. AhmadM. MinhasM.U. BatoolF. MalikN.S. RehmanM. Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: Characterization and acute oral toxicity studies.J. Drug Deliv. Sci. Technol.20216110208910.1016/j.jddst.2020.102089
    [Google Scholar]
  130. SingireddyA. SubramanianS. Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation.Particul. Sci. Technol.201634334134610.1080/02726351.2015.1081658
    [Google Scholar]
  131. RaoM.R.P. PawarJ.A. Solubility enhancement of nevirapine using β-cyclodextrin nanosponges.Int. J. Pharm. Investig.202313349650210.5530/ijpi.13.3.061
    [Google Scholar]
  132. RaoM.R.P. ChaudhariJ. TrottaF. CalderaF. Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine.AAPS PharmSciTech20181952358236910.1208/s12249‑018‑1064‑6 29869305
    [Google Scholar]
  133. VijM. DandN. KumarL. WadhwaP. WaniS.U.D. MahdiW.A. AlshehriS. AlamP. ShakeelF. Optimisation of a greener-approach for the synthesis of cyclodextrin-based nanosponges for the solubility enhancement of domperidone, a BCS class II drug.Pharmaceuticals202316456710.3390/ph16040567 37111324
    [Google Scholar]
  134. ShendeP.K. GaudR.S. BakalR. PatilD. Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies.Colloids Surf. B Biointerfaces201513610511010.1016/j.colsurfb.2015.09.002 26364091
    [Google Scholar]
  135. SwaminathanS. VaviaP.R. TrottaF. TorneS. Formulation of betacyclodextrin based nanosponges of itraconazole.J. Incl. Phenom. Macrocycl. Chem.2007571-4899410.1007/s10847‑006‑9216‑9
    [Google Scholar]
  136. TrottaF. ZanettiM. CavalliR. Cyclodextrin-based nanosponges as drug carriers.Beilstein J. Org. Chem.2012812091209910.3762/bjoc.8.235 23243470
    [Google Scholar]
  137. CavalliR. TrottaF. TumiattiW. Cyclodextrin-based nanosponges for drug delivery.J. Incl. Phenom. Macrocycl. Chem.2006561-220921310.1007/s10847‑006‑9085‑2
    [Google Scholar]
  138. LemboD. SwaminathanS. DonalisioM. CivraA. PasteroL. AquilanoD. VaviaP. TrottaF. CavalliR. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy.Int. J. Pharm.20134431-226227210.1016/j.ijpharm.2012.12.031 23279938
    [Google Scholar]
  139. AhmedR.Z. PatilG. ZaheerZ. Nanosponges – A completely new nano-horizon: Pharmaceutical applications and recent advances.Drug Dev. Ind. Pharm.20133991263127210.3109/03639045.2012.694610 22681585
    [Google Scholar]
  140. ShivaniS. PoladiK.K. Nanosponges-novel emerging drug delivery system: A review.Int. J. Pharm. Sci. Res.201562529
    [Google Scholar]
  141. ThakreA.R. GholseY.N. KasliwalR.H. Nanosponges: A novel approach of drug delivery system.J Med Pharm Allied Sci.2016789278
    [Google Scholar]
  142. PushpalathaR. SelvamuthukumarS. KilimozhiD. Cyclodextrin nanosponge based hydrogel for the transdermal co-delivery of curcumin and resveratrol: Development, optimization, in vitro and ex vivo evaluation.J. Drug Deliv. Sci. Technol.201952556410.1016/j.jddst.2019.04.025
    [Google Scholar]
  143. HuC.M.J. FangR.H. CoppJ. LukB.T. ZhangL. A biomimetic nanosponge that absorbs pore-forming toxins.Nat. Nanotechnol.20138533634010.1038/nnano.2013.54 23584215
    [Google Scholar]
  144. AppellM. JacksonM.A. Sorption of ochratoxin A from aqueous solutions using β-cyclodextrin-polyurethane polymer.Toxins2012429810910.3390/toxins4020098 22474569
    [Google Scholar]
  145. SadhasivamJ. SugumaranA. NarayanaswamyD. Nano sponges: A potential drug delivery approach.Res J Pharm Technol20201373442344810.5958/0974‑360X.2020.00611.3
    [Google Scholar]
  146. ZhangY. GaoW. ChenY. EscajadilloT. UngerleiderJ. FangR.H. ChristmanK. NizetV. ZhangL. Self-assembled colloidal gel using cell membrane-coated nanosponges as building blocks.ACS Nano20171112119231193010.1021/acsnano.7b06968 29116753
    [Google Scholar]
  147. ChhabriaV. BeetonS. Development of nanosponges from erythrocyte ghosts for removal of streptolysin-O from mammalian blood.Nanomedicine20161121nnm-2016018010.2217/nnm‑2016‑0180 27764982
    [Google Scholar]
  148. PandeyP. PurohitD. DurejaH. Nanosponges–A promising novel drug delivery system.Recent Pat. Nanotechnol.201812318019110.2174/1872210512666180925102842 30251614
    [Google Scholar]
  149. JainA. PrajapatiS.K. KumariA. ModyN. BajpaiM. Engineered nanosponges as versatile biodegradable carriers: An insight.J. Drug Deliv. Sci. Technol.20205710164310.1016/j.jddst.2020.101643
    [Google Scholar]
  150. TannousM. CalderaF. HotiG. DianzaniU. CavalliR. TrottaF. Drug-encapsulated cyclodextrin nanosponges.Methods Mol. Biol.2021220724728310.1007/978‑1‑0716‑0920‑0_19
    [Google Scholar]
  151. TannousM. TrottaF. CavalliR. Nanosponges for combination drug therapy: State-of-the-art and future directions.Nanomedicine202015764364610.2217/nnm‑2020‑0007 32077373
    [Google Scholar]
  152. BabadiD. DadashzadehS. OsouliM. AbbasianZ. DaryabariM.S. SadraiS. HaeriA. Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs.J. Drug Deliv. Sci. Technol.20216210232410.1016/j.jddst.2021.102324
    [Google Scholar]
  153. GhoseA. NabiB. RehmanS. MdS. AlhakamyN.A. AhmadO.A.A. BabootaS. AliJ. Development and evaluation of polymeric nanosponge hydrogel for terbinafine hydrochloride: Statistical optimization, in vitro and in vivo studies.Polymers20201212290310.3390/polym12122903 33287406
    [Google Scholar]
  154. Abou TalebS. MoatasimY. GabAllah, M.; Asfour, M.H. Quercitrin loaded cyclodextrin based nanosponge as a promising approach for management of lung cancer and COVID-19.J. Drug Deliv. Sci. Technol.20227710392110.1016/j.jddst.2022.103921 36338534
    [Google Scholar]
  155. AhmedM.M. FatimaF. AlaliA. KalamM.A. AlhazzaniK. BhatiaS. AlshehriS. GhoneimM.M. Ribociclib-loaded ethylcellulose-based nanosponges: Formulation, physicochemical characterization, and cytotoxic potential against breast cancer.Adsorpt. Sci. Technol.20222022192226310.1155/2022/1922263
    [Google Scholar]
  156. AhmedM.M. FatimaF. AnwerM.K. IbnoufE.O. KalamM.A. AlshamsanA. AldawsariM.F. AlalaiweA. AnsariM.J. Formulation and in vitro evaluation of topical nanosponge-based gel containing butenafine for the treatment of fungal skin infection.Saudi Pharm. J.202129546747710.1016/j.jsps.2021.04.010 34135673
    [Google Scholar]
  157. UsmanF. ShahH.S. ZaibS. ManeeS. MudassirJ. KhanA. BatihaG.E.S. AbualnajaK.M. AlhashmialameerD. KhanI. Fabrication and biological assessment of antidiabetic α-Mangostin loaded nanosponges: In vitro, in vivo, and in silico studies.Molecules20212621663310.3390/molecules26216633 34771042
    [Google Scholar]
  158. TharayilA. RajakumariR. KumarA. ChoudharyM.D. PalitP. ThomasS. New insights into application of nanoparticles in the diagnosis and screening of novel coronavirus (SARS-CoV-2).Emergent Mater.20214110111710.1007/s42247‑021‑00182‑w 33817553
    [Google Scholar]
  159. ZhangQ. HonkoA. ZhouJ. GongH. DownsS.N. VasquezJ.H. FangR.H. GaoW. GriffithsA. ZhangL. Cellular nanosponges inhibit SARS-CoV-2 infectivity.Nano Lett.20202075570557410.1021/acs.nanolett.0c02278 32551679
    [Google Scholar]
  160. MostafaviE. IravaniS. VarmaR.S. Nanosponges: An overlooked promising strategy to combat SARS-CoV-2.Drug Discov. Today2022271010333010.1016/j.drudis.2022.07.015 35908684
    [Google Scholar]
  161. AiX. WangD. HonkoA. DuanY. GavrishI. FangR.H. GriffithsA. GaoW. ZhangL. Surface glycan modification of cellular nanosponges to promote SARS-CoV-2 inhibition.J. Am. Chem. Soc.202114342176151762110.1021/jacs.1c07798 34647745
    [Google Scholar]
  162. RaoL. XiaS. XuW. TianR. YuG. GuC. PanP. MengQ.F. CaiX. QuD. LuL. XieY. JiangS. ChenX. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines.Proc. Natl. Acad. Sci. USA202011744271412714710.1073/pnas.2014352117 33024017
    [Google Scholar]
  163. SwaminathanS. PasteroL. SerpeL. TrottaF. VaviaP. AquilanoD. TrottaM. ZaraG. CavalliR. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity.Eur. J. Pharm. Biopharm.201074219320110.1016/j.ejpb.2009.11.003 19900544
    [Google Scholar]
  164. SwaminathanS. CavalliR. TrottaF. Cyclodextrin‐based nanosponges: A versatile platform for cancer nanotherapeutics development.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168457960110.1002/wnan.1384 26800431
    [Google Scholar]
  165. NaksuriyaO. OkonogiS. SchiffelersR.M. HenninkW.E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment.Biomaterials201435103365338310.1016/j.biomaterials.2013.12.090 24439402
    [Google Scholar]
  166. BeeversC.S. HuangS. Pharmacological and clinical properties of curcumin.Bot. Targets Ther201120111518
    [Google Scholar]
  167. PrasadS. TyagiAK. AggarwalBB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice.Cancer Res. Treat.2014461210.4143/crt.2014.46.1.2
    [Google Scholar]
  168. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: Problems and promises.Mol. Pharm.20074680781810.1021/mp700113r 17999464
    [Google Scholar]
  169. AnandP. SundaramC. JhuraniS. KunnumakkaraA.B. AggarwalB.B. Curcumin and cancer: An “old-age” disease with an “age-old” solution.Cancer Lett.2008267113316410.1016/j.canlet.2008.03.025 18462866
    [Google Scholar]
  170. WangY.J. PanM.H. ChengA.L. LinL.I. HoY.S. HsiehC.Y. LinJ.K. Stability of curcumin in buffer solutions and characterization of its degradation products.J. Pharm. Biomed. Anal.199715121867187610.1016/S0731‑7085(96)02024‑9 9278892
    [Google Scholar]
  171. Sharifi-RadJ. QuispeC. PatraJK. SinghYD. PandaMK. DasG. AdetunjiCO. MichaelOS. SytarO. PolitoL. ŽivkovićJ. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy.Oxid. Med. Cell. Longev.20212021368770010.1155/2021/3687700
    [Google Scholar]
  172. TorneS.J. AnsariK.A. VaviaP.R. TrottaF. CavalliR. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges.Drug Deliv.201017641942510.3109/10717541003777233 20429848
    [Google Scholar]
  173. AnsariK.A. TorneS.J. VaviaP.R. TrottaF. CavalliR. Paclitaxel loaded nanosponges: In-vitro characterization and cytotoxicity study on MCF-7 cell line culture.Curr. Drug Deliv.20118219420210.2174/156720111794479934 21235471
    [Google Scholar]
  174. PassarellaR.J. SprattD.E. van der EndeA.E. PhillipsJ.G. WuH. SathiyakumarV. ZhouL. HallahanD.E. HarthE. DiazR. Targeted nanoparticles that deliver a sustained, specific release of Paclitaxel to irradiated tumors.Cancer Res.201070114550455910.1158/0008‑5472.CAN‑10‑0339 20484031
    [Google Scholar]
  175. GoreK. BhattacharyaS. PrajapatiB. Recent pharmaceutical developments in the treatment of cancer using nanosponges.Advanced Drug Delivery Systems.IntechOpen2022
    [Google Scholar]
  176. ArgenzianoM. GigliottiC.L. ClementeN. BoggioE. FerraraB. TrottaF. PizzimentiS. BarreraG. BoldoriniR. BessoneF. DianzaniU. CavalliR. DianzaniC. Improvement in the anti-tumor efficacy of doxorubicin nanosponges in in vitro and in mice bearing breast tumor models.Cancers202012116210.3390/cancers12010162 31936526
    [Google Scholar]
  177. MominM.M. ZaheerZ. ZainuddinR. SangshettiJ.N. Extended release delivery of erlotinib glutathione nanosponge for targeting lung cancer.Artif. Cells Nanomed. Biotechnol.20184651064107510.1080/21691401.2017.1360324 28758795
    [Google Scholar]
  178. ArgenzianoM. LombardiC. FerraraB. TrottaF. CalderaF. BlangettiM. KoltaiH. KapulnikY. YardenR. GigliottiL. DianzaniU. DianzaniC. PrandiC. CavalliR. Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells.Oncotarget2018988358133582910.18632/oncotarget.26287 30533197
    [Google Scholar]
  179. ClementeN. ArgenzianoM. GigliottiC.L. FerraraB. BoggioE. ChiocchettiA. CalderaF. TrottaF. BenettiE. AnnaratoneL. RiberoS. PizzimentiS. BarreraG. DianzaniU. CavalliR. DianzaniC. Paclitaxel-loaded nanosponges inhibit growth and angiogenesis in melanoma cell models.Front. Pharmacol.20191077610.3389/fphar.2019.00776 31354491
    [Google Scholar]
  180. AllahyariS. ValizadehH. RoshangarL. MahmoudianM. TrottaF. CalderaF. JelvehgariM. Zakeri-MilaniP. Preparation and characterization of cyclodextrin nanosponges for bortezomib delivery.Expert Opin. Drug Deliv.202017121807181610.1080/17425247.2020.1800637 32729739
    [Google Scholar]
  181. WangT.Y. Kendrick-WilliamsL.L. ChoyM.Y. GilmoreK.A. BonnardT. PearceH.A. LawL.S. CarmichaelI. CodyS.H. AltK. HagemeyerC.E. HarthE. Collagen-targeted theranostic nanosponges for delivery of the matrix metalloproteinase 14 inhibitor naphthofluorescein.Chem. Mater.20203293707371410.1021/acs.chemmater.9b02840
    [Google Scholar]
  182. SinghA. GargG. SharmaP.K. Nanospheres: A novel approach for targeted drug delivery system.Int. J. Pharm. Sci. Rev. Res.201058488
    [Google Scholar]
  183. S, S.; S, A.; Krishnamoorthy, K.; Rajappan, M. Nanosponges: A novel class of drug delivery system-review.J. Pharm. Pharm. Sci.201215110311110.18433/J3K308 22365092
    [Google Scholar]
  184. RajamR.P. MuthukumarK.R. An updated comprehensive review on nanosponges-novel emerging drug delivery system.Res J Pharm Technol20211484476448410.52711/0974‑360X.2021.00778
    [Google Scholar]
  185. PatelE.K. OswalR.J. Nanosponge and micro sponges: A novel drug delivery system.Int. J. Res. Pharm. Chem.201222237244
    [Google Scholar]
  186. RybnikerJ. VocatA. SalaC. BussoP. PojerF. BenjakA. ColeS.T. Lansoprazole is an antituberculous prodrug targeting cytochrome bc1.Nat. Commun.201561765910.1038/ncomms8659 26158909
    [Google Scholar]
  187. VishwakarmaA. NikamP. MogalR. TaleleS. Review on nanosponges: A benefication for novel drug delivery.Int. J. Pharm. Tech. Res.201461120
    [Google Scholar]
  188. Nitish; Jeganath, S.; Abdelmagid, K.F.K. A review on nanosponges-A promising novel drug delivery system.Res J Pharm Technol202114150150510.5958/0974‑360X.2021.00091.3
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010307169240619061808
Loading
/content/journals/cpb/10.2174/0113892010307169240619061808
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer therapy; cross-linked; nanocarrier; Nanosponges; polymer; SARS-CoV-2 management
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test