Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Immunoglobulins (Igs) are proteins that help fight infections. IgG (IgG1, IgG2, IgG3, IgG4), IgM, IgA, IgD, and IgE are the five Ig subtypes that make up the majority of our immune system. Beneficial effects have been observed on the administration of Ig in diseases like Kawasaki, multiple myositis, chronic inflammatory demyelinating polyneuropathy (CIDP), and immune thrombocytopenic purpura (ITP). The Fc region, FcγRs, and FcRn of the IgG interact to provide both pro- and anti-inflammatory effects. IgM blocks immune-mediated inflammation using N-like glycans. It has been demonstrated that IgM demonstrates its anti-inflammatory activity through IgM anti-leukocyte auto-antibodies (IgM-ALA). Since IgA is the second most prevalent and important Ig that operates on the primary objective in the immune system, which exhibits inhibitory signals in the body and generates inflammation in host cells, it plays a critical role in controlling mucosal homeostasis in the gastrointestinal (GI) tract. Additionally, it has been discovered that activating FcαRI boosts cytokine responses at different levels. IgD, a mysterious class of Ig once discovered, has a role in many disorders, including myeloma and Hodgkin’s disease. The stability of IgD with development shows a different role, which has an advantage for the host's survival. IgE is mainly associated with many allergic diseases (food allergies), mediates type 1 responses, and has defenses against parasitic infections, which makes it an important parameter for monoclonal antibodies. Studies showed the possible roles of Igs, from which it came to light that Igs have their functions as agonists and antagonists in inflammation.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010310906240725072426
2024-08-08
2025-09-13
Loading full text...

Full text loading...

References

  1. BurtonD.R. Antibody: the flexible adaptor molecule.Trends Biochem. Sci.1990152646910.1016/0968‑0004(90)90178‑E 2186517
    [Google Scholar]
  2. EhrlichP. Croonian lecture.—On immunity with special reference to cell life.Proc. R. Soc. Lond.190066424-43342444810.1098/rspl.1899.0121
    [Google Scholar]
  3. ContiF. MorattiM. LeonardiL. CatelliA. BortolamediE. FiliceE. FettaA. FabiM. FacchiniE. CantariniM.E. MiniaciA. CordelliD.M. LanariM. PessionA. ZamaD. Anti-Inflammatory and Immunomodulatory Effect of High-Dose Immunoglobulins in Children: From Approved Indications to Off-Label Use.Cells20231219241710.3390/cells12192417 37830631
    [Google Scholar]
  4. PecoraroA. CrescenziL. GranataF. GenoveseA. SpadaroG. Immunoglobulin replacement therapy in primary and secondary antibody deficiency: The correct clinical approach.Int. Immunopharmacol.20175213614210.1016/j.intimp.2017.09.005 28898770
    [Google Scholar]
  5. MeregalliC. MonzaL. ChiorazziA. ScaliC. GuarnieriC. FumagalliG. AlbertiP. PozziE. CantaA. BallariniE. Rodriguez-MenendezV. OggioniN. CavalettiG. MarmiroliP. Human intravenous immunoglobulin alleviates neuropathic symptoms in a rat model of paclitaxel-induced peripheral neurotoxicity.Int. J. Mol. Sci.2021223105810.3390/ijms22031058 33494384
    [Google Scholar]
  6. BeecherG. AndersonD. SiddiqiZ.A. Subcutaneous immunoglobulin in myasthenia gravis exacerbation.Neurology201789111135114110.1212/WNL.0000000000004365 28814461
    [Google Scholar]
  7. GilardinL. BayryJ. KaveriS.V. Intravenous immunoglobulin as clinical immune-modulating therapy.CMAJ2015187425726410.1503/cmaj.130375 25667260
    [Google Scholar]
  8. IroM.A. MartinN.G. AbsoudM. PollardA.J. Intravenous immunoglobulin for the treatment of childhood encephalitis.Cochrane Libr.2017201710CD01136710.1002/14651858.CD011367.pub2 28967695
    [Google Scholar]
  9. CherinP. MarieI. MichalletM. PelusE. DantalJ. CraveJ.C. DelainJ.C. ViallardJ.F. Management of adverse events in the treatment of patients with immunoglobulin therapy: A review of evidence.Autoimmun. Rev.2016151718110.1016/j.autrev.2015.09.002 26384525
    [Google Scholar]
  10. IshizakaK. IshizakaT. Physicochemical properties of reaginic antibody.J. Allergy196638210811910.1016/0021‑8707(66)90050‑5 4162102
    [Google Scholar]
  11. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  12. JayJ.W. BrayB. QiY. IgbinigieE. WuH. LiJ. RenG. IgG antibody 3D structures and dynamics.Antibodies (Basel)2018721810.3390/antib7020018 31544870
    [Google Scholar]
  13. BournazosS. RavetchJ.V. Fcγ receptor pathways during active and passive immunization.Immunol. Rev.201526818810310.1111/imr.12343 26497515
    [Google Scholar]
  14. BeersS.A. GlennieM.J. WhiteA.L. Influence of immunoglobulin isotype on therapeutic antibody function.Blood201612791097110110.1182/blood‑2015‑09‑625343 26764357
    [Google Scholar]
  15. AschermannS. LuxA. BaerenwaldtA. BiburgerM. NimmerjahnF. The other side of immunoglobulin G: suppressor of inflammation.Clin. Exp. Immunol.2010160216116710.1111/j.1365‑2249.2009.04081.x 20041883
    [Google Scholar]
  16. ShadeK.T. AnthonyR. Antibody glycosylation and inflammation.Antibodies (Basel)20132339241410.3390/antib2030392
    [Google Scholar]
  17. PlompR. RuhaakL.R. UhH.W. ReidingK.R. SelmanM. Houwing-DuistermaatJ.J. SlagboomP.E. BeekmanM. WuhrerM. Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health.Sci. Rep.2017711232510.1038/s41598‑017‑12495‑0 28951559
    [Google Scholar]
  18. CollinM. EhlersM. The carbohydrate switch between pathogenic and immunosuppressive antigen‐specific antibodies.Exp. Dermatol.201322851151410.1111/exd.12171 23808883
    [Google Scholar]
  19. KarstenC.M. PandeyM.K. FiggeJ. KilchensteinR. TaylorP.R. RosasM. McDonaldJ.U. OrrS.J. BergerM. PetzoldD. BlanchardV. WinklerA. HessC. ReidD.M. MajoulI.V. StraitR.T. HarrisN.L. KöhlG. WexE. LudwigR. ZillikensD. NimmerjahnF. FinkelmanF.D. BrownG.D. EhlersM. KöhlJ. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1.Nat. Med.20121891401140610.1038/nm.2862 22922409
    [Google Scholar]
  20. BondtA. SelmanM.H.J. DeelderA.M. HazesJ.M.W. WillemsenS.P. WuhrerM. DolhainR.J.E.M. Association between galactosylation of immunoglobulin G and improvement of rheumatoid arthritis during pregnancy is independent of sialylation.J. Proteome Res.201312104522453110.1021/pr400589m 24016253
    [Google Scholar]
  21. WuhrerM. StavenhagenK. KoelemanC.A.M. SelmanM.H.J. HarperL. JacobsB.C. SavageC.O.S. JefferisR. DeelderA.M. MorganM. Skewed Fc glycosylation profiles of anti-proteinase 3 immunoglobulin G1 autoantibodies from granulomatosis with polyangiitis patients show low levels of bisection, galactosylation, and sialylation.J. Proteome Res.20151441657166510.1021/pr500780a 25761865
    [Google Scholar]
  22. VučkovićF. KrištićJ. GudeljI. TeruelM. KeserT. PezerM. Pučić-BakovićM. ŠtambukJ. Trbojević-AkmačićI. BarriosC. PavićT. MenniC. WangY. ZhouY. CuiL. SongH. ZengQ. GuoX. Pons-EstelB.A. McKeigueP. Leslie PatrickA. GornikO. SpectorT.D. HarjačekM. Alarcon-RiquelmeM. MolokhiaM. WangW. LaucG. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome.Arthritis Rheumatol.201567112978298910.1002/art.39273 26200652
    [Google Scholar]
  23. QuastI. KellerC.W. MaurerM.A. Lünemann, Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity.The J. clinical investig.2015114160417010.1172/JCI82695
    [Google Scholar]
  24. VaillantA.A. JamalZ. RamphulK. Immunoglobulin.StatPearls.StatPearls Publishing2021
    [Google Scholar]
  25. AnderssonE. MatsunagaT. Complete cDNA sequence of a rainbow trout IgM gene and evolution of vertebrate IgM constant domains.Immunogenetics199338424325010.1007/BF00188800 8319974
    [Google Scholar]
  26. DooleyH. FlajnikM.F. Antibody repertoire development in cartilaginous fish.Dev. Comp. Immunol.2006301-2435610.1016/j.dci.2005.06.022 16146649
    [Google Scholar]
  27. LoboP.I. Role of natural autoantibodies and natural IgM anti-leucocyte autoantibodies in health and disease.Front. Immunol.2016719810.3389/fimmu.2016.00198 27375614
    [Google Scholar]
  28. WoofJ.M. KerrM.A. The function of immunoglobulin A in immunity.J. Pathol.200620827028210.1002/path.1877
    [Google Scholar]
  29. HansenI.S. BaetenD.L.P. den DunnenJ. The inflammatory function of human IgA.Cell. Mol. Life Sci.20197661041105510.1007/s00018‑018‑2976‑8 30498997
    [Google Scholar]
  30. Pfirsch-MaisonnasS. AloulouM. XuT. ClaverJ. KanamaruY. TiwariM. LaunayP. MonteiroR.C. BlankU. Inhibitory ITAM signaling traps activating receptors with the phosphatase SHP-1 to form polarized “inhibisome” clusters.Sci. Signal.20114169ra2410.1126/scisignal.2001309 21505186
    [Google Scholar]
  31. PasquierB. LaunayP. KanamaruY. MouraI.C. PfirschS. RuffiéC. HéninD. BenhamouM. PretolaniM. BlankU. MonteiroR.C. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM.Immunity2005221314210.1016/j.immuni.2004.11.017 15664157
    [Google Scholar]
  32. BlankU. LaunayP. BenhamouM. MonteiroR.C. Inhibitory ITAMs as novel regulators of immunity.Immunol. Rev.20092321597110.1111/j.1600‑065X.2009.00832.x 19909356
    [Google Scholar]
  33. AloulouM. Ben MkaddemS. Biarnes-PelicotM. BoussettaT. SouchetH. RossatoE. BenhamouM. CrestaniB. ZhuZ. BlankU. LaunayP. MonteiroR.C. IgG1 and IVIg induce inhibitory ITAM signaling through FcγRIII controlling inflammatory responses.Blood2012119133084309610.1182/blood‑2011‑08‑376046 22337713
    [Google Scholar]
  34. Ben MkaddemS. HayemG. JönssonF. RossatoE. BoedecE. BoussettaT. El BennaJ. LaunayP. GoujonJ.M. BenhamouM. BruhnsP. MonteiroR.C. Shifting FcγRIIA-ITAM from activation to inhibitory configuration ameliorates arthritis.J. Clin. Invest.201412493945395910.1172/JCI74572 25061875
    [Google Scholar]
  35. FrascaD. DiazA. RomeroM. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways.Exp. Gerontol.20178711312010.1016/j.exger.2016.12.001
    [Google Scholar]
  36. LøsetG.Å. RouxK.H. ZhuP. MichaelsenT.E. SandlieI. Differential segmental flexibility and reach dictate the antigen binding mode of chimeric IgD and IgM: implications for the function of the B cell receptor.J. Immunol.200417252925293410.4049/jimmunol.172.5.2925 14978095
    [Google Scholar]
  37. WeiW. JiS. Cellular senescence: Molecular mechanisms and pathogenicity.J. Cell. Physiol.2018233129121913510.1002/jcp.26956 30078211
    [Google Scholar]
  38. FrascaD. Senescent B cells in aging and age-related diseases: Their role in the regulation of antibody responses.Exp. Gerontol.2018107555810.1016/j.exger.2017.07.002 28687479
    [Google Scholar]
  39. HayesM.D. WardS. CrawfordG. SeoaneR.C. JacksonW.D. KiplingD. VoehringerD. Dunn-WaltersD. StridJ. Inflammationinduced IgE promotes epithelial hyperplasia and tumour growth. eLife20209e5186210.7554/eLife.5186231931959
    [Google Scholar]
  40. IshizakaK. Basic mechanisms of IgE-mediated hypersensitivity.Curr. Opin. Immunol.19881462562910.1016/0952‑7915(89)90031‑9 2529874
    [Google Scholar]
  41. AnvariS. MillerJ. YehC.Y. DavisC.M. IgE-mediated food allergy.Clin. Rev. Allergy Immunol.201957224426010.1007/s12016‑018‑8710‑3 30370459
    [Google Scholar]
  42. YuY. BlokhuisB.R. GarssenJ. RedegeldF.A. Non-IgE mediated mast cell activation.Eur. J. Pharmacol.2016778334310.1016/j.ejphar.2015.07.017 26164792
    [Google Scholar]
  43. TheoharidesT.C. AlysandratosK.D. AngelidouA. DelivanisD.A. SismanopoulosN. ZhangB. AsadiS. VasiadiM. WengZ. MiniatiA. KalogeromitrosD. Mast cells and inflammation.Biochim. Biophys. Acta Mol. Basis Dis.201218221213310.1016/j.bbadis.2010.12.014 21185371
    [Google Scholar]
  44. GarmanS.C. WurzburgB.A. TarchevskayaS.S. KinetJ.P. JardetzkyT.S. Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcεRIα.Nature2000406679325926610.1038/35018500 10917520
    [Google Scholar]
  45. RosenwasserL.J. Mechanisms of IgE inflammation.Curr. Allergy Asthma Rep.201111217818310.1007/s11882‑011‑0179‑6 21302007
    [Google Scholar]
  46. AsaiK. KitauraJ. KawakamiY. YamagataN. TsaiM. CarboneD.P. LiuF.T. GalliS.J. KawakamiT. Regulation of mast cell survival by IgE.Immunity200114679180010.1016/S1074‑7613(01)00157‑1 11420048
    [Google Scholar]
  47. KalesnikoffJ. HuberM. LamV. DamenJ.E. ZhangJ. SiraganianR.P. KrystalG. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival.Immunity200114680181110.1016/S1074‑7613(01)00159‑5 11420049
    [Google Scholar]
  48. NimmerjahnF. RavetchJ.V. Fcγ receptors as regulators of immune responses.Nat. Rev. Immunol.200881344710.1038/nri2206 18064051
    [Google Scholar]
  49. NegiV.S. ElluruS. SibérilS. Graff-DuboisS. MouthonL. KazatchkineM.D. Lacroix-DesmazesS. BayryJ. KaveriS. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action.J. Clin. Immunol.200727323324510.1007/s10875‑007‑9088‑9 17351760
    [Google Scholar]
  50. Gonzalez-QuintelaA. AlendeR. GudeF. CamposJ. ReyJ. MeijideL.M. Fernandez-MerinoC. VidalC. Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities.Clin. Exp. Immunol.20071511425010.1111/j.1365‑2249.2007.03545.x 18005364
    [Google Scholar]
  51. QiuX. ZhuX. ZhangL. MaoY. ZhangJ. HaoP. LiG. LvP. LiZ. SunX. WuL. ZhengJ. DengY. HouC. TangP. ZhangS. ZhangY. Human epithelial cancers secrete immunoglobulin g with unidentified specificity to promote growth and survival of tumor cells.Cancer Res.2003631964886495 14559841
    [Google Scholar]
  52. ChenZ. GuJ. Immunoglobulin G expression in carcinomas and cancer cell lines.FASEB J.200721112931293810.1096/fj.07‑8073com 17475920
    [Google Scholar]
  53. PorterR.R. The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain.Biochem. J.195973111912710.1042/bj0730119 14434282
    [Google Scholar]
  54. VidarssonG. DekkersG. RispensT. IgG subclasses and allotypes: from structure to effector functions.Front. Immunol.2014552010.3389/fimmu.2014.00520 25368619
    [Google Scholar]
  55. RavetchJ.V. KinetJ.P. Fc Receptors.Annu. Rev. Immunol.19919145749210.1146/annurev.iy.09.040191.002325 1910686
    [Google Scholar]
  56. LefrancM.P. LefrancG. The immunoglobulin factsbook.Academic press2001
    [Google Scholar]
  57. MilsteinC. The disulphide bridges of immunoglobulin ϰ-chains.Biochem. J.1966101233835110.1042/bj1010338 4165119
    [Google Scholar]
  58. FrangioneB. MilsteinC. Disulphide bridges of immunoglobin G-1 heavy chains.Nature1967216511893994110.1038/216939b0 4169396
    [Google Scholar]
  59. FrangioneB. MilsteinC. Variations in the S—S bridges of immunoglobins G: Interchain disulphide bridges of γG3 myeloma proteins.J. Mol. Biol.196833389390610.1016/0022‑2836(68)90326‑4 4178186
    [Google Scholar]
  60. BruhnsP. JönssonF. Mouse and human FcR effector functions.Immunol. Rev.20152681255110.1111/imr.12350 26497511
    [Google Scholar]
  61. KazatchkineM.D. KaveriS.V. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin.N. Engl. J. Med.20013451074775510.1056/NEJMra993360 11547745
    [Google Scholar]
  62. VogelpoelL.T.C. HansenI.S. RispensT. MullerF.J.M. van CapelT.M.M. TurinaM.C. VosJ.B. BaetenD.L.P. KapsenbergM.L. de JongE.C. den DunnenJ. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages.Nat. Commun.201451544410.1038/ncomms6444 25392121
    [Google Scholar]
  63. LiuL. WeiQ. LinQ. FangJ. WangH. KwokH. TangH. NishiuraK. PengJ. TanZ. WuT. CheungK.W. ChanK.H. AlvarezX. QinC. LacknerA. PerlmanS. YuenK.Y. ChenZ. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection.JCI Insight201944e12315810.1172/jci.insight.123158 30830861
    [Google Scholar]
  64. SinghS. SinghT.G. MahajanK. DhimanS. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis.J. Pharm. Pharmacol.202072101306132710.1111/jphp.13326 32812250
    [Google Scholar]
  65. SokoloveJ. ZhaoX. ChandraP.E. RobinsonW.H. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll‐like receptor 4 and Fcγ receptor.Arthritis Rheum.2011631536210.1002/art.30081 20954191
    [Google Scholar]
  66. AnthonyR.M. RavetchJ.V. A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs.J. Clin. Immunol.201030S1Suppl. 191410.1007/s10875‑010‑9405‑6 20480216
    [Google Scholar]
  67. SchwabI. NimmerjahnF. Intravenous immunoglobulin therapy: how does IgG modulate the immune system?Nat. Rev. Immunol.201313317618910.1038/nri3401 23411799
    [Google Scholar]
  68. LaucG. PezerM. RudanI. CampbellH. Mechanisms of disease: The human N-glycome.Biochim. Biophys. Acta, Gen. Subj.2016186081574158210.1016/j.bbagen.2015.10.016 26500099
    [Google Scholar]
  69. ShinzakiS. IijimaH. NakagawaT. IgG oligosaccharide alterations are a novel diagnostic marker for disease activity and the clinical course of inflammatory bowel disease. Off.J. Am. Coll. Gastroenterol.200810311731181
    [Google Scholar]
  70. DimitrovJ.D. IvanovskaN.D. Lacroix-DesmazesS. DoltchinkovaV.R. KaveriS.V. VassilevT.L. Ferrous ions and reactive oxygen species increase antigen-binding and anti-inflammatory activities of immunoglobulin G.J. Biol. Chem.2006281143944610.1074/jbc.M509190200 16246843
    [Google Scholar]
  71. DalakasM.C. Intravenous immunoglobulin in autoimmune neuromuscular diseases.JAMA2004291192367237510.1001/jama.291.19.2367 15150209
    [Google Scholar]
  72. JostinsL. RipkeS. WeersmaR.K. DuerrR.H. McGovernD.P. HuiK.Y. LeeJ.C. Philip SchummL. SharmaY. AndersonC.A. EssersJ. MitrovicM. NingK. CleynenI. TheatreE. SpainS.L. RaychaudhuriS. GoyetteP. WeiZ. AbrahamC. AchkarJ.P. AhmadT. AmininejadL. AnanthakrishnanA.N. AndersenV. AndrewsJ.M. BaidooL. BalschunT. BamptonP.A. BittonA. BoucherG. BrandS. BüningC. CohainA. CichonS. D’AmatoM. De JongD. DevaneyK.L. DubinskyM. EdwardsC. EllinghausD. FergusonL.R. FranchimontD. FransenK. GearryR. GeorgesM. GiegerC. GlasJ. HarituniansT. HartA. HawkeyC. HedlM. HuX. KarlsenT.H. KupcinskasL. KugathasanS. LatianoA. LaukensD. LawranceI.C. LeesC.W. LouisE. MahyG. MansfieldJ. MorganA.R. MowatC. NewmanW. PalmieriO. PonsioenC.Y. PotocnikU. PrescottN.J. RegueiroM. RotterJ.I. RussellR.K. SandersonJ.D. SansM. SatsangiJ. SchreiberS. SimmsL.A. SventoraityteJ. TarganS.R. TaylorK.D. TremellingM. VerspagetH.W. De VosM. WijmengaC. WilsonD.C. WinkelmannJ. XavierR.J. ZeissigS. ZhangB. ZhangC.K. ZhaoH. SilverbergM.S. AnneseV. HakonarsonH. BrantS.R. Radford-SmithG. MathewC.G. RiouxJ.D. SchadtE.E. DalyM.J. FrankeA. ParkesM. VermeireS. BarrettJ.C. ChoJ.H. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease.Nature2012491742211912410.1038/nature11582 23128233
    [Google Scholar]
  73. LaucG. HuffmanJ.E. PučićM. ZgagaL. AdamczykB. MužinićA. NovokmetM. PolašekO. GornikO. KrištićJ. KeserT. VitartV. ScheijenB. UhH.W. MolokhiaM. PatrickA.L. McKeigueP. KolčićI. LukićI.K. SwannO. van LeeuwenF.N. RuhaakL.R. Houwing-DuistermaatJ.J. SlagboomP.E. BeekmanM. de CraenA.J.M. DeelderA.M. ZengQ. WangW. HastieN.D. GyllenstenU. WilsonJ.F. WuhrerM. WrightA.F. RuddP.M. HaywardC. AulchenkoY. CampbellH. RudanI. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers.PLoS Genet.201391e100322510.1371/journal.pgen.1003225 23382691
    [Google Scholar]
  74. PučićM. KneževićA. VidičJ. AdamczykB. NovokmetM. PolašekO. GornikO. Šupraha-GoretaS. WormaldM.R. RedžićI. CampbellH. WrightA. HastieN.D. WilsonJ.F. RudanI. WuhrerM. RuddP.M. JosićD. LaucG. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations.Mol. Cell. Proteomics201110(10)M111.01009010.1074/mcp.M111.010090 21653738
    [Google Scholar]
  75. ScanlanC.N. BurtonD.R. DwekR.A. Making autoantibodies safe.Proc. Natl. Acad. Sci. USA2008105114081408210.1073/pnas.0801192105 18344326
    [Google Scholar]
  76. KanekoY. NimmerjahnF. RavetchJ.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. science2006313670673
    [Google Scholar]
  77. GasdaskaJ.R. SherwoodS. ReganJ.T. DickeyL.F. An afucosylated anti-CD20 monoclonal antibody with greater antibody-dependent cellular cytotoxicity and B-cell depletion and lower complement-dependent cytotoxicity than rituximab.Mol. Immunol.201250313414110.1016/j.molimm.2012.01.001 22305040
    [Google Scholar]
  78. JunghansR.P. AndersonC.L. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor.Proc. Natl. Acad. Sci. USA199693115512551610.1073/pnas.93.11.5512 8643606
    [Google Scholar]
  79. AkileshS. PetkovaS. SprouleT.J. The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease.The J. clinical investig.200411391328133310.1172/JCI18838
    [Google Scholar]
  80. LiN. ZhaoM. Hilario-VargasJ. PrisayanhP. WarrenS. DiazL.A. RoopenianD.C. LiuZ. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases.J. Clin. Invest.2005115123440345010.1172/JCI24394 16284651
    [Google Scholar]
  81. ChenP. LiC. LangS. ZhuG. RehemanA. SpringC.M. FreedmanJ. NiH. Animal model of fetal and neonatal immune thrombocytopenia: role of neonatal Fc receptor in the pathogenesis and therapy.Blood2010116183660366810.1182/blood‑2010‑05‑284919 20647570
    [Google Scholar]
  82. CrowA.R. SuppaS.J. ChenX. MottP.J. LazarusA.H. The neonatal Fc receptor (FcRn) is not required for IVIg or anti-CD44 monoclonal antibody-mediated amelioration of murine immune thrombocytopenia.Blood2011118246403640610.1182/blood‑2011‑08‑374223 22001393
    [Google Scholar]
  83. SchwabI. LuxA. NimmerjahnF. Pathways responsible for human autoantibody and therapeutic intravenous IgG activity in humanized mic.Cell Rep.201513361062010.1016/j.celrep.2015.09.013 26456831
    [Google Scholar]
  84. IdusogieE.E. PrestaL.G. Gazzano-SantoroH. TotpalK. WongP.Y. UltschM. MengY.G. MulkerrinM.G. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc.J. Immunol.200016484178418410.4049/jimmunol.164.8.4178 10754313
    [Google Scholar]
  85. AnthonyR.M. WermelingF. RavetchJ.V. Novel roles for the IgG Fc glycan.Ann. N. Y. Acad. Sci.20121253117018010.1111/j.1749‑6632.2011.06305.x 22288459
    [Google Scholar]
  86. KanekoY. NimmerjahnF. MadaioM.P. RavetchJ.V. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors.J. Exp. Med.2006203378979710.1084/jem.20051900 16520389
    [Google Scholar]
  87. LeontyevD. KatsmanY. MaX.Z. MiescherS. KäsermannF. BranchD.R. Sialylation‐independent mechanism involved in the amelioration of murine immune thrombocytopenia using intravenous gammaglobulin.Transfusion20125281799180510.1111/j.1537‑2995.2011.03517.x 22257295
    [Google Scholar]
  88. SondermannP. PinceticA. MaamaryJ. LammensK. RavetchJ.V. General mechanism for modulating immunoglobulin effector function.Proc. Natl. Acad. Sci. USA2013110249868987210.1073/pnas.1307864110 23697368
    [Google Scholar]
  89. YuX. VasiljevicS. MitchellD.A. CrispinM. ScanlanC.N. Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain.J. Mol. Biol.201342581253125810.1016/j.jmb.2013.02.006 23416198
    [Google Scholar]
  90. OaksM. TaylorS. ShafferJ. Autoantibodies targeting tumor-associated antigens in metastatic cancer.OncoImmunology201326e2484110.4161/onci.24841 23894724
    [Google Scholar]
  91. KäsermannF. BoeremaD.J. RüegseggerM. HofmannA. WymannS. ZuercherA.W. MiescherS. Analysis and functional consequences of increased Fab-sialylation of intravenous immunoglobulin (IVIG) after lectin fractionation.PLoS One201276e3724310.1371/journal.pone.0037243 22675478
    [Google Scholar]
  92. BarbA.W. PrestegardJ.H. NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic.Nat. Chem. Biol.20117314715310.1038/nchembio.511 21258329
    [Google Scholar]
  93. GerdesC.A. NicoliniV.G. HerterS. van PuijenbroekE. LangS. RoemmeleM. MoessnerE. FreytagO. FriessT. RiesC.H. BossenmaierB. MuellerH.J. UmañaP. GA201 (RG7160): a novel, humanized, glycoengineered anti-EGFR antibody with enhanced ADCC and superior in vivo efficacy compared with cetuximab.Clin. Cancer Res.20131951126113810.1158/1078‑0432.CCR‑12‑0989 23209031
    [Google Scholar]
  94. IzadiM. TahmasebiS. PustokhinaI. YumashevA.V. LakzaeiT. AlvaneghA.G. RoshangarL. DadashpourM. YousefiM. AhmadiM. Changes in Th17 cells frequency and function after ozone therapy used to treat multiple sclerosis patients.Mult. Scler. Relat. Disord.20204610246610.1016/j.msard.2020.102466 32862036
    [Google Scholar]
  95. AnthonyR.M. NimmerjahnF. AshlineD.J. ReinholdV.N. PaulsonJ.C. RavetchJ.V. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc.Science2008320587437337610.1126/science.1154315 18420934
    [Google Scholar]
  96. SchwabI. BiburgerM. KrönkeG. SchettG. NimmerjahnF. IVI g‐mediated amelioration of ITP in mice is dependent on sialic acid and SIGNR 1.Eur. J. Immunol.201242482683010.1002/eji.201142260 22278120
    [Google Scholar]
  97. StadlmannJ. WeberA. PabstM. AnderleH. KunertR. EhrlichH.J. Peter SchwarzH. AltmannF. A close look at human IgG sialylation and subclass distribution after lectin fractionation.Proteomics20099174143415310.1002/pmic.200800931 19688751
    [Google Scholar]
  98. RichardsM.L. KatzD.H. The binding of IgE to murine Fc epsilon RII is calcium-dependent but not inhibited by carbohydrate.J. Immunol.199014472638264610.4049/jimmunol.144.7.2638
    [Google Scholar]
  99. ScallonB.J. TamS.H. McCarthyS.G. CaiA.N. RajuT.S. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality.Mol. Immunol.20074471524153410.1016/j.molimm.2006.09.005 17045339
    [Google Scholar]
  100. ImbachP. BerchtoldW. HirtA. Mueller-EckhardtC. RossiE. WagnerH.P. GaedickeG. JollerP. MüllerB. BarandunS. Intravenous immunoglobulin versus oral corticosteroids in acute immune thrombocytopenic purpura in childhood.Lancet1985326845346446810.1016/S0140‑6736(85)90400‑3 2863492
    [Google Scholar]
  101. LiY. WangG. LiN. WangY. ZhuQ. ChuH. WuW. TanY. YuF. SuX.D. GaoN. XiaoJ. Structural insights into immunoglobulin M.Science202036764811014101710.1126/science.aaz5425 32029689
    [Google Scholar]
  102. AnthonyR.M. WermelingF. KarlssonM.C.I. RavetchJ.V. Identification of a receptor required for the anti-inflammatory activity of IVIG.Proc. Natl. Acad. Sci. USA200810550195711957810.1073/pnas.0810163105 19036920
    [Google Scholar]
  103. BoesM. Role of natural and immune IgM antibodies in immune responses.Mol. Immunol.200037181141114910.1016/S0161‑5890(01)00025‑6 11451419
    [Google Scholar]
  104. GrönwallC. SilvermanG.J. Natural IgM: beneficial autoantibodies for the control of inflammatory and autoimmune disease.J. Clin. Immunol.201434S1Suppl. 1122110.1007/s10875‑014‑0025‑4 24691998
    [Google Scholar]
  105. ColucciM. StöckmannH. ButeraA. MasottiA. BaldassarreA. GiordaE. PetriniS. RuddP.M. SitiaR. EmmaF. VivarelliM. Sialylation of N-linked glycans influences the immunomodulatory effects of IgM on T cells.J. Immunol.2015194115115710.4049/jimmunol.1402025 25422509
    [Google Scholar]
  106. LoboP.I. BraymanK.L. OkusaM.D. Natural IgM anti-leucocyte autoantibodies (IgM-ALA) regulate inflammation induced by innate and adaptive immune mechanisms.J. Clin. Immunol.201434S1Suppl. 1222910.1007/s10875‑014‑0027‑2 24711004
    [Google Scholar]
  107. LoboP.I. SchlegelK.H. SpencerC.E. OkusaM.D. ChisholmC. MchedlishviliN. ParkA. ChristC. BurtnerC. Naturally occurring IgM anti-leukocyte autoantibodies (IgM-ALA) inhibit T cell activation and chemotaxis.J. Immunol.200818031780179110.4049/jimmunol.180.3.1780 18209075
    [Google Scholar]
  108. LoboP.I. Role of natural IgM autoantibodies (IgM-NAA) and IgM anti-leukocyte antibodies (IgM-ALA) in regulating inflammation.Front. Immunol.201720178911710.1007/82_2017_37
    [Google Scholar]
  109. ZhouZ.H. TzioufasA.G. NotkinsA.L. Properties and function of polyreactive antibodies and polyreactive antigen-binding B cells.J. Autoimmun.200729421922810.1016/j.jaut.2007.07.015 17888628
    [Google Scholar]
  110. BaumgarthN. The double life of a B-1 cell: self-reactivity selects for protective effector functions.Nat. Rev. Immunol.2011111344610.1038/nri2901 21151033
    [Google Scholar]
  111. GrönwallC. VasJ. SilvermanG.J. Protective roles of natural IgM antibodies.Front. Immunol.201236610.3389/fimmu.2012.00066 22566947
    [Google Scholar]
  112. BreedveldA. van EgmondM. Van, IgA and FcαRI: pathological roles and therapeutic opportunities.Front. Immunol.20191055310.3389/fimmu.2019.00553 30984170
    [Google Scholar]
  113. MkaddemS.B. ChristouI. RossatoE. IgA, IgA receptors, and their anti-inflammatory properties.Curr. Top. Microbiol. Immunol.201438222123510.1007/978‑3‑319‑07911‑0_10
    [Google Scholar]
  114. BoyakaP.N. Inducing mucosal IgA: a challenge for vaccine adjuvants and delivery systems.J. Immunol.2017199191610.4049/jimmunol.1601775 28630108
    [Google Scholar]
  115. KerrM.A. The structure and function of human IgA.Biochem. J.1990271228529610.1042/bj2710285 2241915
    [Google Scholar]
  116. Ben MkaddemS. BenhamouM. Monteiro R.C.Ben M.Benhamou R.C. Monteiro, Understanding Fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools.Front. Immunol.20191081110.3389/fimmu.2019.00811 31057544
    [Google Scholar]
  117. da SilvaF.P. AloulouM. BenhamouM. MonteiroR.C. Inhibitory ITAMs: a matter of life and death.Trends Immunol.200829836637310.1016/j.it.2008.05.001 18602341
    [Google Scholar]
  118. MeyerD. SchillerC. WestermannJ. IzuiS. HazenbosW.L.W. VerbeekJ.S. SchmidtR.E. GessnerJ.E. FcgammaRIII (CD16)-deficient mice show IgG isotype-dependent protection to experimental autoimmune hemolytic anemia.Blood199892113997400210.1182/blood.V92.11.3997 9834201
    [Google Scholar]
  119. LevinD. GoldingB. StromeS.E. SaunaZ.E. Fc fusion as a platform technology: potential for modulating immunogenicity.Trends Biotechnol.2015331273410.1016/j.tibtech.2014.11.001 25488117
    [Google Scholar]
  120. Van EppsD.E. WilliamsR.C.Jr Suppression of leukocyte chemotaxis by human IgA myeloma components.J. Exp. Med.197614451227124210.1084/jem.144.5.1227 825608
    [Google Scholar]
  121. WiltonJ.M. Suppression by IgA of IgG-mediated phagocytosis by human polymorphonuclear leucocytes.Clin. Exp. Immunol.1978343423428 369752
    [Google Scholar]
  122. Van EppsD.E. ReedK.Jr WilliamsR.C. Jr Suppression of human PMN bactericidal activity by human IgA paraproteins.Cell. Immunol.197836236337610.1016/0008‑8749(78)90280‑0 343924
    [Google Scholar]
  123. WolfH.M. FischerM.B. PühringerH. SamstagA. VogelE. EiblM.M. Human serum IgA downregulates the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) in human monocytes.Blood19948351278128810.1182/blood.V83.5.1278.1278 8118031
    [Google Scholar]
  124. KeaseyS.L. SchmidK.E. LeeM.S. MeeganJ. TomasP. MintoM. TikhonovA.P. SchweitzerB. UlrichR.G. Extensive antibody cross-reactivity among infectious gram-negative bacteria revealed by proteome microarray analysis.Mol. Cell. Proteomics20098592493510.1074/mcp.M800213‑MCP200 19112181
    [Google Scholar]
  125. MacphersonA.J. YilmazB. LimenitakisJ.P. Ganal-VonarburgS.C. IgA function in relation to the intestinal microbiota.Annu. Rev. Immunol.201836135938110.1146/annurev‑immunol‑042617‑053238 29400985
    [Google Scholar]
  126. RollenskeT. SzijartoV. LukasiewiczJ. GuachallaL.M. StojkovicK. HartlK. StulikL. KocherS. LasitschkaF. Al-SaeediM. Schröder-BraunsteinJ. von FrankenbergM. GaebeleinG. HoffmannP. KleinS. HeegK. NagyE. NagyG. WardemannH. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen.Nat. Immunol.201819661762410.1038/s41590‑018‑0106‑2 29760533
    [Google Scholar]
  127. BakemaJ.E. van EgmondM. The human immunoglobulin A Fc receptor FcαRI: a multifaceted regulator of mucosal immunity.Mucosal Immunol.20114661262410.1038/mi.2011.36 21937986
    [Google Scholar]
  128. ReterinkT.J.F. van ZandbergenG. van EgmondM. Klar-MohamadN. MortonC.H. van de WinkelJ.G.J. DahaM.R. Size‐ dependent effect of IgA on the IgA Fc receptor (CD89).Eur. J. Immunol.19972792219222410.1002/eji.1830270915 9341762
    [Google Scholar]
  129. MonteiroR.C. van de WinkelJ.G.J. IgA Fc receptors.Annu. Rev. Immunol.200321117720410.1146/annurev.immunol.21.120601.141011 12524384
    [Google Scholar]
  130. JoerisT. Müller-LudaK. AgaceW.W. MowatA.M. Diversity and functions of intestinal mononuclear phagocytes.Mucosal Immunol.201710484586410.1038/mi.2017.22 28378807
    [Google Scholar]
  131. PalmN.W. de ZoeteM.R. CullenT.W. BarryN.A. StefanowskiJ. HaoL. DegnanP.H. HuJ. PeterI. ZhangW. RuggieroE. ChoJ.H. GoodmanA.L. FlavellR.A. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease.Cell201415851000101010.1016/j.cell.2014.08.006 25171403
    [Google Scholar]
  132. BunkerJ.J. EricksonS.A. FlynnT.M. HenryC. KovalJ.C. MeiselM. JabriB. AntonopoulosD.A. WilsonP.C. BendelacA. Natural polyreactive IgA antibodies coat the intestinal microbiota.Science20173586361eaan661910.1126/science.aan6619 28971969
    [Google Scholar]
  133. SmithP.D. SmythiesL.E. Mosteller-BarnumM. SibleyD.A. RussellM.W. MergerM. SellersM.T. OrensteinJ.M. ShimadaT. GrahamM.F. KubagawaH. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities.J. Immunol.200116752651265610.4049/jimmunol.167.5.2651 11509607
    [Google Scholar]
  134. FournierB.M. ParkosC.A. The role of neutrophils during intestinal inflammation.Mucosal Immunol.20125435436610.1038/mi.2012.24 22491176
    [Google Scholar]
  135. WéraO. LancellottiP. OuryC. The dual role of neutrophils in inflammatory bowel diseases.J. Clin. Med.201651211810.3390/jcm5120118 27999328
    [Google Scholar]
  136. BainC.C. MowatA.M. The monocyte-macrophage axis in the intestine.Cell. Immunol.20142911-2414810.1016/j.cellimm.2014.03.012 24726741
    [Google Scholar]
  137. HansenI.S. KrabbendamL. BerninkJ.H. Loayza-PuchF. HoepelW. van BurgstedenJ.A. KuijperE.C. BuskensC.J. BemelmanW.A. ZaatS.A.J. AgamiR. VidarssonG. van den BrinkG.R. de JongE.C. WildenbergM.E. BaetenD.L.P. EvertsB. den DunnenJ. FcαRI co-stimulation converts human intestinal CD103+ dendritic cells into pro-inflammatory cells through glycolytic reprogramming.Nat. Commun.20189186310.1038/s41467‑018‑03318‑5 29491406
    [Google Scholar]
  138. CoombesJ.L. SiddiquiK.R.R. Arancibia-CárcamoC.V. HallJ. SunC.M. BelkaidY. PowrieF. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β- and retinoic acid-dependent mechanism.J. Exp. Med.200720481757176410.1084/jem.20070590 17620361
    [Google Scholar]
  139. SunC.M. HallJ.A. BlankR.B. BouladouxN. OukkaM. MoraJ.R. BelkaidY. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid.J. Exp. Med.200720481775178510.1084/jem.20070602 17620362
    [Google Scholar]
  140. LindemansC.A. CalafioreM. MertelsmannA.M. O’ConnorM.H. DudakovJ.A. JenqR.R. VelardiE. YoungL.F. SmithO.M. LawrenceG. IvanovJ.A. FuY.Y. TakashimaS. HuaG. MartinM.L. O’RourkeK.P. LoY.H. MokryM. Romera-HernandezM. CupedoT. DowL.E. NieuwenhuisE.E. ShroyerN.F. LiuC. KolesnickR. van den BrinkM.R.M. HanashA.M. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration.Nature2015528758356056410.1038/nature16460 26649819
    [Google Scholar]
  141. Aparicio-DomingoP. Romera-HernandezM. KarrichJ.J. CornelissenF. PapazianN. Lindenbergh-KortleveD.J. ButlerJ.A. BoonL. ColesM.C. SamsomJ.N. CupedoT. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage.J. Exp. Med.2015212111783179110.1084/jem.20150318 26392223
    [Google Scholar]
  142. Kazemi-ShiraziL. GascheC.H. NatterS. GanglA. SmolenJ. SpitzauerS. ValentP. KraftD. ValentaR. IgA autoreactivity: a feature common to inflammatory bowel and connective tissue diseases.Clin. Exp. Immunol.2002128110210910.1046/j.1365‑2249.2002.01804.x 11982597
    [Google Scholar]
  143. KumarV. Jarzabek-ChorzelskaM. SulejJ. KarnewskaK. FarrellT. JablonskaS. Celiac disease and immunoglobulin a deficiency: how effective are the serological methods of diagnosis?Clin. Vaccine Immunol.2002961295130010.1128/CDLI.9.6.1295‑1300.2002 12414763
    [Google Scholar]
  144. LaiK.N. TangS.C.W. SchenaF.P. NovakJ. TominoY. FogoA.B. GlassockR.J. IgA nephropathy.Nat. Rev. Dis. Primers2016211600110.1038/nrdp.2016.1 27189177
    [Google Scholar]
  145. HansenI.S. HoepelW. ZaatS.A.J. BaetenD.L.P. den DunnenJ. Serum IgA immune complexes promote proinflammatory cytokine production by human macrophages, monocytes, and Kupffer cells through FcαRI-TLR cross-talk.J. Immunol.2017199124124413110.4049/jimmunol.1700883 29118246
    [Google Scholar]
  146. ChenK. MagriG. GrassetE.K. CeruttiA. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA.Nat. Rev. Immunol.202020742744110.1038/s41577‑019‑0261‑1 32015473
    [Google Scholar]
  147. AsadiN. SadeghzadehH. Rahmani Del BakhshayeshA. Nezami AslA. DadashpourM. Karimi HajishorehN. KaamyabiS. AkbarzadehA. Preparation and characterization of propolis reinforced eggshell membrane/GelMA composite hydrogel for biomedical applications.BMC Biotechnol.20232312110.1186/s12896‑023‑00788‑4 37434201
    [Google Scholar]
  148. GutzeitC. ChenK. CeruttiA. The enigmatic function of IgD: some answers at last.Eur. J. Immunol.20184871101111310.1002/eji.201646547 29733429
    [Google Scholar]
  149. SechetB. Meseri-DelwailA. ArockM. WijdenesJ. LecronJ.C. SarrouilheD. Immunoglobulin D enhances interleukin-6 release from the KU812 human prebasophil cell line.Gen. Physiol. Biophys.2003222255263 14661736
    [Google Scholar]
  150. ChenK. CeruttiA. New insights into the enigma of immunoglobulin D.Immunol. Rev.2010237116017910.1111/j.1600‑065X.2010.00929.x 20727035
    [Google Scholar]
  151. RostenbergI. PeñalozaR. Serum IgG and IgD and levels in some infectious and noninfectious diseases.Clin. Chim. Acta197885331932110.1016/0009‑8981(78)90310‑8 657527
    [Google Scholar]
  152. ChenK. XuW. WilsonM. HeB. MillerN.W. BengténE. EdholmE.S. SantiniP.A. RathP. ChiuA. CattaliniM. LitzmanJ. BusselB. J.; Huang, B.; Meini, A.; Riesbeck, K.; Cunningham-Rundles, C.; Plebani, A.; Cerutti, A. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils.Nat. Immunol.200910888989810.1038/ni.1748 19561614
    [Google Scholar]
  153. WangP. WeiZ. YanB. HuangT. GouK. DaiY. ZhengM. WangM. ChengX. WangX. XuC. SunY. Establishment of a transgenic mouse model with liver-specific expression of secretory immunoglobulin D.Sci. China Life Sci.201255321922710.1007/s11427‑012‑4301‑3 22527518
    [Google Scholar]
  154. KarimiF. NejatiB. RahimiF. AlivirdilooV. AlipourfardI. AghighiA. Raji-AmirhasaniA. EslamiM. BabaeizadA. GhaziF. Firouzi AmandiA. DadashpourM. A State-of-the-Art Review on the Recent Advances of Mesenchymal Stem Cell Therapeutic Application in Systematic Lupus Erythematosus.Immunol. Invest.202453216018410.1080/08820139.2023.2289066 38031988
    [Google Scholar]
  155. WuY. ChenW. ChenH. ZhangL. ChangY. YanS. DaiX. MaY. HuangQ. WeiW. The elevated secreted immunoglobulin D enhanced the activation of peripheral blood mononuclear cells in rheumatoid arthritis.PLoS One2016111e014778810.1371/journal.pone.0147788 26814717
    [Google Scholar]
  156. Firouzi AmandiA. ShahrtashS.A. KalaviS. MolianiA. MousazadehH. Rezai Seghin SaraM. DadashpourM. Fabrication and characterization of metformin-loaded PLGA/Collagen nanofibers for modulation of macrophage polarization for tissue engineering and regenerative medicine.BMC Biotechnol.20232315510.1186/s12896‑023‑00825‑2 38115008
    [Google Scholar]
  157. SchroederH.W. CavaciniL. Structure and function of immunoglobulins.J. Allergy Clin. Immunol.20101252S41S5210.1016/j.jaci.2009.09.046
    [Google Scholar]
  158. CooperM.D. The early history of B cells.Nat. Rev. Immunol.201515319119710.1038/nri3801 25656707
    [Google Scholar]
  159. BurtonD.R. Antibodies, viruses and vaccines.Nat. Rev. Immunol.20022970671310.1038/nri891 12209139
    [Google Scholar]
  160. NguyenT.G. LittleC.B. YensonV.M. JacksonC.J. McCrackenS.A. WarningJ. StevensV. GalleryE.G. MorrisJ.M. Anti-IgD antibody attenuates collagen-induced arthritis by selectively depleting mature B-cells and promoting immune tolerance.J. Autoimmun.2010351869710.1016/j.jaut.2010.03.003 20456921
    [Google Scholar]
  161. NguyenT.G. Immune-modulation via IgD B-cell receptor suppresses allergic skin inflammation in experimental contact hypersensitivity models despite of a Th2-favoured humoral response.Immunol. Lett.2018203293910.1016/j.imlet.2018.09.008 30218740
    [Google Scholar]
  162. FlajnikM.F. Comparative analyses of immunoglobulin genes: surprises and portents.Nat. Rev. Immunol.20022968869810.1038/nri889 12209137
    [Google Scholar]
  163. SunY. HuangT. HammarströmL. ZhaoY. The immunoglobulins: new insights, implications, and applications.Annu. Rev. Anim. Biosci.20208114516910.1146/annurev‑animal‑021419‑083720 31846352
    [Google Scholar]
  164. FlajnikM.F. A cold-blooded view of adaptive immunity.Nat. Rev. Immunol.201818743845310.1038/s41577‑018‑0003‑9 29556016
    [Google Scholar]
  165. LeeS. KoY. KimT.J. Homeostasis and regulation of autoreactive B cells.Cell. Mol. Immunol.202017656156910.1038/s41423‑020‑0445‑4 32382130
    [Google Scholar]
  166. YeJ. BromageE. KaattariI. KaattariS. Transduction of binding affinity by B lymphocytes: A new dimension in immunological regulation.Dev. Comp. Immunol.201135998299010.1016/j.dci.2011.01.015 21300090
    [Google Scholar]
  167. YeJ. BromageE.S. KaattariS.L. The strength of B cell interaction with antigen determines the degree of IgM polymerization.J. Immunol.2010184284485010.4049/jimmunol.0902364 20018610
    [Google Scholar]
  168. Rodríguez-BayonaB. Ramos-AmayaA. Pérez-VenegasJ.J. RodríguezC. BrievaJ.A. Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients.Arthritis Res. Ther.2010123R10810.1186/ar3042 20525218
    [Google Scholar]
  169. RoweD.S. FaheyJ.L. A new class of human immunoglobulins. I. A unique myeloma protein.J. Exp. Med.19651211171184a10.1084/jem.121.1.17114253482
    [Google Scholar]
  170. RoweD.S. FaheyJ.L. A new class of human immunoglobulins: II. Normal serum IgD.J. Exp. Med.19651211185199b10.1084/jem.121.1.18514253483
    [Google Scholar]
  171. EdholmE.S. BengtenE. WilsonM. Insights into the function of IgD.Dev. Comp. Immunol.201135121309131610.1016/j.dci.2011.03.002 21414345
    [Google Scholar]
  172. Platts-MillsT.A.E. HeymannP.W. ComminsS.P. WoodfolkJ.A. The discovery of IgE 50 years later.Ann. Allergy Asthma Immunol.2016116317918210.1016/j.anai.2016.01.003 26945493
    [Google Scholar]
  173. BennichH.H. IshizakaK. JohanssonS.G.O. RoweD.S. StanworthD.R. TerryW.D. Immunoglobulin E. A new class of human immunoglobulin.Immunochemistry19685432732810.1016/0019‑2791(68)90128‑6 4176102
    [Google Scholar]
  174. IshizakaK. IshizakaT. HornbrookM.M. Physicochemical properties of reaginic antibody. V. Correlation of reaginic activity wth γ-E-globulin antibody.J. Immunol.196697684085310.4049/jimmunol.97.6.840 4163008
    [Google Scholar]
  175. GouldH.J. SuttonB.J. IgE in allergy and asthma today.Nat. Rev. Immunol.20088320521710.1038/nri2273 18301424
    [Google Scholar]
  176. MukaiK. TsaiM. StarklP. IgE and mast cells in host defense against parasites and venoms.Seminars in immunopathol20163858160310.1007/s00281‑016‑0565‑1
    [Google Scholar]
  177. LambrechtB.N. PelemanR.A. BullockG.R. PauwelsR.A. Sensitization to inhaled antigen by intratracheal instillation of dendritic cells.Clin. Exp. Allergy200030221422410.1046/j.1365‑2222.2000.00818.x 10651774
    [Google Scholar]
  178. DeckersJ. De BosscherK. LambrechtB.N. HammadH. Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin.Immunol. Rev.2017278113114410.1111/imr.12542 28658557
    [Google Scholar]
  179. DurhamS.R. GouldH.J. HamidQ.A. Local IgE production in nasal allergy.Int. Arch. Allergy Immunol.19971131-312813010.1159/000237525 9130501
    [Google Scholar]
  180. PillaiP. FangC. ChanY.C. ShamjiM.H. HarperC. WuS.Y. Ohm-LaursenL. DurhamS.R. Menzies-GowA. RajakulasingamR.K. YingS. CorriganC.J. GouldH.J. Allergen-specific IgE is not detectable in the bronchial mucosa of nonatopic asthmatic patients.J. Allergy Clin. Immunol.2014133617701772.e1110.1016/j.jaci.2014.03.027 24794682
    [Google Scholar]
  181. YingS. HumbertM. MengQ. PfisterR. MenzG. GouldH.J. KayA.B. DurhamS.R. Local expression of ϵ germline gene transcripts and RNA for the ϵ heavy chain of IgE in the bronchial mucosa in atopic and nonatopic asthma.J. Allergy Clin. Immunol.2001107468669210.1067/mai.2001.114339 11295659
    [Google Scholar]
  182. WilsonD.R. MerrettT.G. VargaE.M. SmurthwaiteL. GouldH.J. KempM. HooperJ. TillS.J. DurhamS.R. Increases in allergen-specific IgE in BAL after segmental allergen challenge in atopic asthmatics.Am. J. Respir. Crit. Care Med.20021651222610.1164/ajrccm.165.1.2010112 11779725
    [Google Scholar]
  183. HohR.A. JoshiS.A. LeeJ.Y. MartinB.A. VarmaS. KwokS. NielsenS.C.A. NejadP. HaraguchiE. DixitP.S. ShutthanandanS.V. RoskinK.M. ZhangW. TupaD. BunningB.J. ManoharM. TibshiraniR. Fernandez-BeckerN.Q. KambhamN. WestR.B. HamiltonR.G. TsaiM. GalliS.J. ChinthrajahR.S. NadeauK.C. BoydS.D. Origins and clonal convergence of gastrointestinal IgE + B cells in human peanut allergy.Sci. Immunol.2020545eaay420910.1126/sciimmunol.aay4209 32139586
    [Google Scholar]
  184. GowthamanU. ChenJ.S. ZhangB. FlynnW.F. LuY. SongW. JosephJ. GertieJ.A. XuL. ColletM.A. GrassmannJ.D.S. SimoneauT. ChiangD. BerinM.C. CraftJ.E. WeinsteinJ.S. WilliamsA. EisenbarthS.C. Identification of a T follicular helper cell subset that drives anaphylactic IgE.Science20193656456eaaw643310.1126/science.aaw6433 31371561
    [Google Scholar]
  185. ScaddingG.W. EifanA.O. Lao-ArayaM. PenagosM. PoonS.Y. StevelingE. YanR. SwitzerA. PhippardD. TogiasA. ShamjiM.H. DurhamS.R. Effect of grass pollen immunotherapy on clinical and local immune response to nasal allergen challenge.Allergy201570668969610.1111/all.12608 25773990
    [Google Scholar]
  186. TakharP. CorriganC.J. SmurthwaiteL. O’ConnorB.J. DurhamS.R. LeeT.H. GouldH.J. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma.J. Allergy Clin. Immunol.2007119121321810.1016/j.jaci.2006.09.045 17208604
    [Google Scholar]
  187. SantamariaL.F. BheekhaR. van ReijsenF.C. Perez SolerM.T. SuterM. Bruijnzeel-KoomenC.A.F.M. MuddeG.C. Antigen focusing by specific monomeric immunoglobulin E bound to CD23 on Epstein-Barr virus-transformed B cells.Hum. Immunol.1993371233010.1016/0198‑8859(93)90139‑R 8397173
    [Google Scholar]
  188. MaurerD. EbnerC. ReiningerB. FiebigerE. KraftD. KinetJ.P. StinglG. The high affinity IgE receptor (Fc epsilon RI) mediates IgE-dependent allergen presentation.J. Immunol.1995154126285629010.4049/jimmunol.154.12.6285 7759866
    [Google Scholar]
  189. MaurerD. FiebigerS. EbnerC. ReiningerB. FischerG.F. WichlasS. JouvinM.H. Schmitt-EgenolfM. KraftD. KinetJ.P. StinglG. Peripheral blood dendritic cells express Fc epsilon RI as a complex composed of Fc epsilon RI alpha- and Fc epsilon RI gamma-chains and can use this receptor for IgE-mediated allergen presentation.J. Immunol.1996157260761610.4049/jimmunol.157.2.607 8752908
    [Google Scholar]
  190. van der HeijdenF.L. Joost van NeervenR.J. van KatwijkM. BosJ.D. KapsenbergM.L. Serum-IgE-facilitated allergen presentation in atopic disease.J. Immunol.199315083643365010.4049/jimmunol.150.8.3643 8468493
    [Google Scholar]
  191. MosconiE. RekimaA. Seitz-PolskiB. KandaA. FleuryS. TissandieE. MonteiroR. DombrowiczD.D. JuliaV. GlaichenhausN. VerhasseltV. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development.Mucosal Immunol.20103546147410.1038/mi.2010.23 20485331
    [Google Scholar]
  192. LupinekC. HochwallnerH. JohanssonC. MieA. RiglerE. ScheyniusA. AlmJ. ValentaR. Maternal allergen-specific IgG might protect the child against allergic sensitization.J. Allergy Clin. Immunol.2019144253654810.1016/j.jaci.2018.11.051 30685457
    [Google Scholar]
  193. MarchantA. SadaranganiM. GarandM. DaubyN. VerhasseltV. PereiraL. BjornsonG. JonesC.E. HalperinS.A. EdwardsK.M. HeathP. OpenshawP.J. ScheifeleD.W. KollmannT.R. Maternal immunisation: collaborating with mother nature.Lancet Infect. Dis.2017177e197e20810.1016/S1473‑3099(17)30229‑3 28433705
    [Google Scholar]
  194. UthoffH. SpennerA. ReckelkammW. AhrensB. WölkG. HacklerR. HardungF. SchaeferJ. ScheffoldA. RenzH. HerzU. Critical role of preconceptional immunization for protective and nonpathological specific immunity in murine neonates.J. Immunol.200317173485349210.4049/jimmunol.171.7.3485 14500644
    [Google Scholar]
  195. LarchéM. AkdisC.A. ValentaR. Immunological mechanisms of allergen-specific immunotherapy.Nat. Rev. Immunol.200661076177110.1038/nri1934 16998509
    [Google Scholar]
  196. CookeR.A. BarnardJ.H. HebaldS. StullA. Serological evidence of immunity with coexisting sensitization in a type of human allergy (hay fever).J. Exp. Med.193562673375010.1084/jem.62.6.733 19870445
    [Google Scholar]
  197. Platts-MillsT.A. Von MaurR.K. IshizakaK. IgA and IgG anti-ragweed antibodies in nasal secretions. Quantitative measurements of antibodies and correlation with inhibition of histamine release.J. Clin. Invest.19765741041105010.1172/JCI108346
    [Google Scholar]
  198. ShamjiM.H. LarsonD. EifanA. ScaddingG.W. QinT. LawsonK. SeverM.L. MacfarlaneE. LayhadiJ.A. WürtzenP.A. ParkinR.V. SandaS. HarrisK.M. NepomG.T. TogiasA. DurhamS.R. Differential induction of allergen-specific IgA responses following timothy grass subcutaneous and sublingual immunotherapy.J. Allergy Clin. Immunol.2021148410611071.e1110.1016/j.jaci.2021.03.030 33819508
    [Google Scholar]
  199. PawankarR. OkudaM. YsselH. OkumuraK. RaC. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells.J. Clin. Invest.19979971492149910.1172/JCI119311 9119992
    [Google Scholar]
  200. CameronL. GounniA.S. FrenkielS. LavigneF. VercelliD. HamidQ. S ε S μ and S ε S γ switch circles in human nasal mucosa following ex vivo allergen challenge: evidence for direct as well as sequential class switch recombination.J. Immunol.200317173816382210.4049/jimmunol.171.7.3816 14500683
    [Google Scholar]
  201. DaëronM.F.C. RECEPTOR BIOLOGY.Annu. Rev. Immunol.199715120323410.1146/annurev.immunol.15.1.203 9143687
    [Google Scholar]
  202. SichererS.H. SampsonH.A. Food allergy: recent advances in pathophysiology and treatment.Annu. Rev. Med.200960126127710.1146/annurev.med.60.042407.205711 18729729
    [Google Scholar]
  203. SichererS.H. SampsonH.A. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment.J. Allergy Clin. Immunol.20141332291307.e510.1016/j.jaci.2013.11.020 24388012
    [Google Scholar]
  204. RenzH. AllenK.J. SichererS.H. SampsonH.A. LackG. BeyerK. OettgenH.C. Food allergy.Nat. Rev. Dis. Primers2018411709810.1038/nrdp.2017.98 29300005
    [Google Scholar]
  205. WiatrM. MerleN.S. BoudhabhayI. PoilleratV. RossiniS. LecerfM. KaveriS.V. Lacroix-DesmazesS. RoumeninaL.T. DimitrovJ.D. Anti-inflammatory activity of intravenous immunoglobulin through scavenging of heme.Mol. Immunol.201911120520810.1016/j.molimm.2019.04.020 31078967
    [Google Scholar]
  206. OettgenH.C. BurtonO.T. IgE receptor signaling in food allergy pathogenesis.Curr. Opin. Immunol.20153610911410.1016/j.coi.2015.07.007 26296054
    [Google Scholar]
  207. BalaR. KhannaS. PawarP. Design optimization and in vitro-in vivo evaluation of orally dissolving strips of clobazam.J. Drug Deliv.2014201439278310.1155/2014/392783
    [Google Scholar]
  208. Navinés-FerrerA. Serrano-CandelasE. Molina-MolinaG.J. MartínM. IgE-related chronic diseases and anti-IgE-based treatments.J. Immunol. Res.2016201611210.1155/2016/8163803 28097159
    [Google Scholar]
  209. KingC.L. PoindexterR.W. RagunathanJ. FleisherT.A. OttesenE.A. NutmanT.B. Frequency analysis of IgE-secreting B lymphocytes in persons with normal or elevated serum IgE levels.J. Immunol.199114651478148310.4049/jimmunol.146.5.1478 1899687
    [Google Scholar]
  210. AbbasA. LichtmanA. PillaiS. Cellular and molecular immunology E-book.Elsevier Health Sciences2014
    [Google Scholar]
  211. KlimekL. JutelM. AkdisC. BousquetJ. AkdisM. BachertC. AgacheI. AnsoteguiI. BedbrookA. Bosnic-AnticevichS. CanonicaG.W. ChivatoT. CruzA.A. CzarlewskiW. Del GiaccoS. DuH. FonsecaJ.A. GaoY. HaahtelaT. Hoffmann-SommergruberK. IvancevichJ.C. KhaltaevN. KnolE.F. KunaP. Larenas-LinnemannD. MelénE. MullolJ. NaclerioR. OhtaK. OkamotoY. O’MahonyL. OnoratoG.L. PapadopoulosN.G. PawankarR. PfaarO. SamolinskiB. SchwarzeJ. Toppila-SalmiS. ShamjiM.H. Teresa VenturaM. ValiulisA. YorganciogluA. MatricardiP. ZuberbierT. Handling of allergen immunotherapy in the COVID‐19 pandemic: An ARIA‐EAACI statement.Allergy20207571546155410.1111/all.14336 32329930
    [Google Scholar]
  212. Smith-NorowitzT.A. WongD. KusonruksaM. NorowitzK.B. JoksR. DurkinH.G. BluthM.H. Long term persistence of IgE anti-influenza virus antibodies in pediatric and adult serum post vaccination with influenza virus vaccine.Int. J. Med. Sci.20118323924410.7150/ijms.8.239 21448311
    [Google Scholar]
  213. PalmN.W. RosensteinR.K. MedzhitovR. Allergic host defences.Nature2012484739546547210.1038/nature11047 22538607
    [Google Scholar]
  214. ProfetM. The function of allergy: immunological defense against toxins.Q. Rev. Biol.1991661236210.1086/417049 2052671
    [Google Scholar]
  215. MantovaniA. AllavenaP. SicaA. Cancer-related inflammation. nature2008720343645410.1038/nature07205
    [Google Scholar]
  216. CoussensL.M. ZitvogelL. PaluckaA.K. Neutralizing tumor-promoting chronic inflammation: a magic bullet?Science2013339611728629110.1126/science.1232227 23329041
    [Google Scholar]
  217. GrivennikovS.I. GretenF.R. KarinM. Immunity, inflammation, and cancer.Cell2010140688389910.1016/j.cell.2010.01.025 20303878
    [Google Scholar]
  218. JohanssonS.G.O. The History of IgE: From Discovery to 2010.Curr. Allergy Asthma Rep.201111217317710.1007/s11882‑010‑0174‑3 21365369
    [Google Scholar]
  219. AltrichterS. FokJ.S. JiaoQ. KolkhirP. PyatilovaP. RomeroS.M. ScheffelJ. SiebenhaarF. SteinertC. Terhorst-MolawiD. XiangY.K. ChurchM.K. MaurerM. Total IgE as a Marker for Chronic Spontaneous Urticaria.Allergy Asthma Immunol. Res.202113220621810.4168/aair.2021.13.2.206 33474856
    [Google Scholar]
  220. Kennedy NortonS. BarnsteinB. BrenzovichJ. BaileyD.P. KashyapM. SpeiranK. FordJ. ConradD. WatowichS. MoralleM.R. KepleyC.L. MurrayP.J. RyanJ.J. IL-10 suppresses mast cell IgE receptor expression and signaling in vitro and in vivo.J. Immunol.200818052848285410.4049/jimmunol.180.5.2848 18292506
    [Google Scholar]
  221. WilsonM.S. MaizelsR.M. Regulation of allergy and autoimmunity in helminth infection.Clin. Rev. Allergy Immunol.2004261355010.1385/CRIAI:26:1:35 14755074
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010310906240725072426
Loading
/content/journals/cpb/10.2174/0113892010310906240725072426
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Antibody; dendritic cells; Fc region; inflammatory; ITAM; sialylation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test