Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Transdermal Drug Delivery Systems (TDDS) have emerged as a promising method for administering therapeutic agents due to their non-invasive nature and patient-friendly approach. However, the effectiveness of this system is limited to drugs with specific physicochemical properties that allow for transdermal delivery as the skin acts as a barrier. To address this limitation, researchers have been exploring alternative approaches to improve drug delivery through the stratum corneum, ensuring consistent drug distribution at controlled rates. Third-generation delivery systems have been developed to facilitate the delivery of various drugs across the skin barrier by disrupting the stratum corneum while protecting deeper skin tissues from injury. This review has explored various approaches that have gained popularity in enhancing drug delivery through TDDS, including microneedle-mediated, nanoparticle-enabled, thermal ablation-enhanced, and electroporation-driven delivery systems. It has discussed the mechanisms of drug delivery and potential applications for different types of drugs and detailed the clinical studies. This review has also highlighted the significant advancements in TDDS, offering valuable insights into both the pharmaceutical field and biomedical applications. The continued exploration and refinement of these delivery systems, particularly with the incorporation of Internet-of-Things (IoT) technology, Artificial Intelligence (AI), and machine learning, hold promise for expanding the scope of therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010318519240813053106
2024-08-22
2025-09-13
Loading full text...

Full text loading...

References

  1. GlassmanP.M. MuzykantovV.R. Pharmacokinetic and pharmacodynamic properties of drug delivery systems.J. Pharmacol. Exp. Ther.2019370357058010.1124/jpet.119.257113 30837281
    [Google Scholar]
  2. HardeniaA. MaheshwariN. HardeniaS.S. DwivediS.K. MaheshwariR. TekadeR.K. Scientific rationale for designing controlled drug delivery systems. Basic Fundamentals of Drug Delivery. TekadeR.K. Academic Press201912810.1016/B978‑0‑12‑817909‑3.00001‑7
    [Google Scholar]
  3. Al RagibA. ChakmaR. DewanK. IslamT. KormokerT. IdrisA.M. Current advanced drug delivery systems: Challenges and potentialities.J. Drug Deliv. Sci. Technol.20227610372710.1016/j.jddst.2022.103727
    [Google Scholar]
  4. EzikeT.C. OkpalaU.S. OnojaU.L. NwikeC.P. EzeakoE.C. OkparaO.J. OkoroaforC.C. EzeS.C. KaluO.L. OdohE.C. NwadikeU.G. OgbodoJ.O. UmehB.U. OssaiE.C. NwangumaB.C. Advances in drug delivery systems, challenges and future directions.Heliyon202396e1748810.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  5. PatelR. PatelA. PrajapatiB. ShindeG. DharamsiA. Transdermal drug delivery systems: A mini review.Int. J. Adv. Res. (Indore)20186589190010.21474/IJAR01/7109
    [Google Scholar]
  6. AlkilaniA. McCruddenM.T. DonnellyR. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum.Pharmaceutics20157443847010.3390/pharmaceutics7040438 26506371
    [Google Scholar]
  7. ShindeN. ManikpuriyaS. SanapG. Review of transdermal drug delivery system.World J. Pharm. Res.202413835857
    [Google Scholar]
  8. BajracharyaR. SongJ.G. BackS.Y. HanH.K. Recent advancements in non-invasive formulations for protein drug delivery.Comput. Struct. Biotechnol. J.2019171290130810.1016/j.csbj.2019.09.004 31921395
    [Google Scholar]
  9. LiZ. FangX. YuD. Transdermal drug delivery systems and their use in obesity treatment.Int. J. Mol. Sci.202122231275410.3390/ijms222312754 34884558
    [Google Scholar]
  10. NgL.C. GuptaM. Transdermal drug delivery systems in diabetes management: A review.Asian J. Pharm. Sci.2020151132510.1016/j.ajps.2019.04.006 32175015
    [Google Scholar]
  11. PrausnitzM.R. LangerR. Transdermal drug delivery.Nat. Biotechnol.200826111261126810.1038/nbt.1504 18997767
    [Google Scholar]
  12. Giri NandagopalM.S. AntonyR. RangabhashiyamS. SreekumarN. SelvarajuN. Overview of microneedle system: A third generation transdermal drug delivery approach.Microsyst. Technol.20142071249127210.1007/s00542‑014‑2233‑5
    [Google Scholar]
  13. WitikaB.A. MweetwaL.L. TshiamoK.O. EdlerK. MatafwaliS.K. NtemiP.V. ChikukwaM.T.R. MakoniP.A. Vesicular drug delivery for the treatment of topical disorders: Current and future perspectives.J. Pharm. Pharmacol.202173111427144110.1093/jpp/rgab082 34132342
    [Google Scholar]
  14. JoshiN. Azizi MachekposhtiS. NarayanR.J. Evolution of transdermal drug delivery devices and novel microneedle technologies: A historical perspective and review.JID Innovations20233610022510.1016/j.xjidi.2023.100225 37744689
    [Google Scholar]
  15. AldawoodF.K. AndarA. DesaiS. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications.Polymers20211316281510.3390/polym13162815 34451353
    [Google Scholar]
  16. Nazary AbrbekohF. SalimiL. SaghatiS. AminiH. Fathi KarkanS. MoharamzadehK. SokulluE. RahbarghaziR. Application of microneedle patches for drug delivery; Doorstep to novel therapies.J. Tissue Eng.20221310.1177/20417314221085390 35516591
    [Google Scholar]
  17. DonnellyR.F. SinghT.R.R. WoolfsonA.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety.Drug Deliv.201017418720710.3109/10717541003667798 20297904
    [Google Scholar]
  18. PengT. ChenY. HuW. HuangY. ZhangM. LuC. PanX. WuC. Microneedles for enhanced topical treatment of skin disorders: Applications, challenges, and prospects.Engineering (Beijing)20233017018910.1016/j.eng.2023.05.009
    [Google Scholar]
  19. AroraM. LaskarT.T. Microneedles: Recent advances and development in the field of transdermal drug delivery technology.J. Drug Deliv. Ther.202313315516310.22270/jddt.v13i3.5967
    [Google Scholar]
  20. ChenJ. RenH. ZhouP. ZhengS. DuB. LiuX. XiaoF. Microneedle-mediated drug delivery for cutaneous diseases.Front. Bioeng. Biotechnol.202210103204110.3389/fbioe.2022.1032041 36324904
    [Google Scholar]
  21. LarrañetaE. LuttonR.E.M. WoolfsonA.D. DonnellyR.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development.Mater. Sci. Eng. Rep.201610413210.1016/j.mser.2016.03.001
    [Google Scholar]
  22. UmeyorC.E. ShelkeV. PolA. KolekarP. JadhavS. TiwariN. AnureA. NayakA. BairagiG. AgaleA. RautV. BahadureS. ChaudhariA. PatravaleV.B. Biomimetic microneedles: Exploring the recent advances on a microfabricated system for precision delivery of drugs, peptides, and proteins.Futur. J. Pharm. Sci.20239110310.1186/s43094‑023‑00553‑6
    [Google Scholar]
  23. TucakA. SirbubaloM. HindijaL. RahićO. HadžiabdićJ. MuhamedagićK. ČekićA. VranićE. Microneedles: Characteristics, materials, production methods and commercial development.Micromachines2020111196110.3390/mi11110961 33121041
    [Google Scholar]
  24. VoraL.K. CourtenayA.J. TekkoI.A. LarrañetaE. DonnellyR.F. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules.Int. J. Biol. Macromol.202014629029810.1016/j.ijbiomac.2019.12.184 31883883
    [Google Scholar]
  25. WaghuleT. SinghviG. DubeyS.K. PandeyM.M. GuptaG. SinghM. DuaK. Microneedles: A smart approach and increasing potential for transdermal drug delivery system.Biomed. Pharmacother.20191091249125810.1016/j.biopha.2018.10.078 30551375
    [Google Scholar]
  26. PalmerB. DeLouiseL. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting.Molecules20162112171910.3390/molecules21121719 27983701
    [Google Scholar]
  27. TomodaK. MakinoK. Chapter 7 Nanoparticles for transdermal drug delivery system (TDDS). Colloid and Interface Science in Pharmaceutical Research and Development.Chapter 7 OhshimaH. MakinoK. AmsterdamElsevier201413114710.1016/B978‑0‑444‑62614‑1.00007‑7
    [Google Scholar]
  28. GrimaldiN. AndradeF. SegoviaN. Ferrer-TasiesL. SalaS. VecianaJ. VentosaN. Lipid-based nanovesicles for nanomedicine.Chem. Soc. Rev.201645236520654510.1039/C6CS00409A 27722570
    [Google Scholar]
  29. LeongM.Y. KongY.L. BurgessK. WongW.F. SethiG. LooiC.Y. Recent development of nanomaterials for transdermal drug delivery.Biomedicines2023114112410.3390/biomedicines11041124 37189742
    [Google Scholar]
  30. ChauhanA.S. SrideviS. ChalasaniK.B. JainA.K. JainS.K. JainN.K. DiwanP.V. Dendrimer-mediated transdermal delivery: Enhanced bioavailability of indomethacin.J. Control. Release200390333534310.1016/S0168‑3659(03)00200‑1 12880700
    [Google Scholar]
  31. SinghD. PradhanM. NagM. SinghM.R. Vesicular system: Versatile carrier for transdermal delivery of bioactives.Artif. Cells Nanomed. Biotechnol.201543428229010.3109/21691401.2014.883401 24564350
    [Google Scholar]
  32. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  33. Ayatollahi MousaviS.A. MokhtariA. BaraniM. IzadiA. AmirbeigiA. AjalliN. AmanizadehA. HadizadehS. Advances of liposomal mediated nanocarriers for the treatment of dermatophyte infections.Heliyon202398e1896010.1016/j.heliyon.2023.e18960 37583758
    [Google Scholar]
  34. JhaS. DeshmukhR. TrivediV. Chapter 8 Approaches and molecular tools for targeted drug delivery in malaria infected red blood cells. Combination Drug Delivery Approach as an Effective Therapy for Various Diseases.Chapter 8 KesharwaniP. Academic Press202214917210.1016/B978‑0‑323‑85873‑1.00014‑9
    [Google Scholar]
  35. LiuL. ZhaoW. MaQ. GaoY. WangW. ZhangX. DongY. ZhangT. LiangY. HanS. CaoJ. WangX. SunW. MaH. SunY. Functional nano-systems for transdermal drug delivery and skin therapy.Nanoscale Adv.2023561527155810.1039/D2NA00530A 36926556
    [Google Scholar]
  36. Saweres-ArgüellesC. Ramírez-NovilloI. Vergara-BarberánM. Carrasco-CorreaE.J. Lerma-GarcíaM.J. Simó-AlfonsoE.F. Skin absorption of inorganic nanoparticles and their toxicity: A review.Eur. J. Pharm. Biopharm.202318212814010.1016/j.ejpb.2022.12.010 36549398
    [Google Scholar]
  37. HmingthansangaV. SinghN. BanerjeeS. ManickamS. VelayuthamR. NatesanS. Improved topical drug delivery: Role of permeation enhancers and advanced approaches.Pharmaceutics20221412281810.3390/pharmaceutics14122818 36559311
    [Google Scholar]
  38. SalazarJ. CarmonaT. ZacconiF.C. Venegas-YazigiD. Cabello-VerrugioC. Il ChoiW. VilosC. The human dermis as a target of nanoparticles for treating skin conditions.Pharmaceutics20221511010.3390/pharmaceutics15010010 36678639
    [Google Scholar]
  39. MortensenL.J. OberdörsterG. PentlandA.P. DeLouiseL.A. In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR.Nano Lett.2008892779278710.1021/nl801323y 18687009
    [Google Scholar]
  40. ZhuY. ChoeC.S. AhlbergS. MeinkeM.C. AlexievU. LademannJ. DarvinM.E. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.J. Biomed. Opt.201420505100610.1117/1.JBO.20.5.051006 25394476
    [Google Scholar]
  41. ParhiR. MandruA. Enhancement of skin permeability with thermal ablation techniques: concept to commercial products.Drug Deliv. Transl. Res.202111381784110.1007/s13346‑020‑00823‑3 32696221
    [Google Scholar]
  42. ShahzadY. LouwR. GerberM. du PlessisJ. Breaching the skin barrier through temperature modulations.J. Control. Release201520211310.1016/j.jconrel.2015.01.019 25616160
    [Google Scholar]
  43. WoodD.G. BrownM.B. JonesS.A. Controlling barrier penetration via exothermic iron oxidation.Int. J. Pharm.20114041-2424810.1016/j.ijpharm.2010.10.047 21055455
    [Google Scholar]
  44. LakshmananS. GuptaG.K. AvciP. ChandranR. SadasivamM. JorgeA.E.S. HamblinM.R. Physical energy for drug delivery; Poration, concentration and activation.Adv. Drug Deliv. Rev.2014719811410.1016/j.addr.2013.05.010 23751778
    [Google Scholar]
  45. ThomasG. IsaacsR. Basic principles of lasers.Anaesth. Intensive Care Med.2011121257457710.1016/j.mpaic.2011.09.013
    [Google Scholar]
  46. LinC.H. AljuffaliI.A. FangJ.Y. Lasers as an approach for promoting drug delivery via skin.Expert Opin. Drug Deliv.201411459961410.1517/17425247.2014.885501 24490743
    [Google Scholar]
  47. del Río-SanchoS. Castro-LópezV. AlonsoM.J. Enhancing cutaneous delivery with laser technology: Almost there, but not yet.J. Control. Release201931515016510.1016/j.jconrel.2019.09.014 31629043
    [Google Scholar]
  48. YoungJ.L. DeanD.A. Electroporation-mediated gene delivery.Adv. Genet.201589498810.1016/bs.adgen.2014.10.003 25620008
    [Google Scholar]
  49. ItaK. Perspectives on transdermal electroporation.Pharmaceutics201681910.3390/pharmaceutics8010009 26999191
    [Google Scholar]
  50. BeckerS. ZorecB. MiklavčičD. PavšeljN. Transdermal transport pathway creation: Electroporation pulse order.Math. Biosci.2014257606810.1016/j.mbs.2014.07.001 25017876
    [Google Scholar]
  51. DenetA.R. VanbeverR. PréatV. Skin electroporation for transdermal and topical delivery.Adv. Drug Deliv. Rev.200456565967410.1016/j.addr.2003.10.027 15019751
    [Google Scholar]
  52. RamadonD. McCruddenM.T.C. CourtenayA.J. DonnellyR.F. Enhancement strategies for transdermal drug delivery systems: current trends and applications.Drug Deliv. Transl. Res.202212475879110.1007/s13346‑021‑00909‑6 33474709
    [Google Scholar]
  53. ChenX. ZhuL. LiR. PangL. ZhuS. MaJ. DuL. JinY. Electroporation-enhanced transdermal drug delivery: Effects of logP, pKa, solubility and penetration time.Eur. J. Pharm. Sci.202015110541010.1016/j.ejps.2020.105410 32505795
    [Google Scholar]
  54. DoddaballapurS. Microneedling with dermaroller.J. Cutan. Aesthet. Surg.20092211011110.4103/0974‑2077.58529 20808602
    [Google Scholar]
  55. AlimardaniV. AbolmaaliS.S. YousefiG. RahiminezhadZ. AbediM. TamaddonA. AhadianS. Microneedle arrays combined with nanomedicine approaches for transdermal delivery of therapeutics.J. Clin. Med.202110218110.3390/jcm10020181 33419118
    [Google Scholar]
  56. McCruddenM.T.C. McAlisterE. CourtenayA.J. González-VázquezP. Raj SinghT.R. DonnellyR.F. Microneedle applications in improving skin appearance.Exp. Dermatol.201524856156610.1111/exd.12723 25865925
    [Google Scholar]
  57. YadavS. SinghA. Microneedling: Advances and widening horizons.Indian Dermatol. Online J.20167424425410.4103/2229‑5178.185468 27559496
    [Google Scholar]
  58. ChenG. YuJ. GuZ. Glucose-responsive microneedle patches for diabetes treatment.J. Diabetes Sci. Technol.2019131414810.1177/1932296818778607 29848105
    [Google Scholar]
  59. SeetharamA.A. ChoudhryH. BakhrebahM.A. AbdulaalW.H. GuptaM.S. RizviS.M.D. AlamQ. Siddaramaiah GowdaD.V. MoinA. Microneedles drug delivery systems for treatment of cancer: A recent update.Pharmaceutics20201211110110.3390/pharmaceutics12111101 33212921
    [Google Scholar]
  60. Braz GomesK. D’SouzaB. VijayanandS. MenonI. D’SouzaM.J. A dual-delivery platform for vaccination using antigen-loaded nanoparticles in dissolving microneedles.Int. J. Pharm.202261312139310.1016/j.ijpharm.2021.121393 34929312
    [Google Scholar]
  61. BhadaleR.S. LondheV.Y. Solid microneedle assisted transepidermal delivery of iloperidone loaded film: Characterization and skin deposition studies.J. Drug Deliv. Sci. Technol.20237910402810.1016/j.jddst.2022.104028
    [Google Scholar]
  62. KaurR. AroraS. GoswamiM. Evaluation of fabricated solid microneedles as smart approach for transdermal drug delivery system of astaxanthin.Int. J. Appl. Pharm.20231525526210.22159/ijap.2023v15i5.48421
    [Google Scholar]
  63. NguyenJ. ItaK. MorraM. PopovaI. The influence of solid microneedles on the transdermal delivery of selected antiepileptic drugs.Pharmaceutics2016843310.3390/pharmaceutics8040033 27854292
    [Google Scholar]
  64. WittingM. ObstK. PietzschM. FriessW. HedtrichS. Feasibility study for intraepidermal delivery of proteins using a solid microneedle array.Int. J. Pharm.20154861-2525810.1016/j.ijpharm.2015.03.046 25819344
    [Google Scholar]
  65. ZhangY. BrownK. SiebenalerK. DetermanA. DohmeierD. HansenK. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action.Pharm. Res.201229117017710.1007/s11095‑011‑0524‑4 21735335
    [Google Scholar]
  66. KusamoriK. KatsumiH. SakaiR. HayashiR. HiraiY. TanakaY. HitomiK. QuanY. KamiyamaF. YamadaK. SumidaS. KishiK. HashibaK. SakaneT. YamamotoA. Development of a drug-coated microneedle array and its application for transdermal delivery of interferon alpha.Biofabrication20168101500610.1088/1758‑5090/8/1/015006 26756832
    [Google Scholar]
  67. LiR. LiuX. YuanX. WuS. LiL. JiangX. LiB. JiangX. GouM. Fast customization of hollow microneedle patches for insulin delivery.Int. J. Bioprinting20228255310.18063/ijb.v8i2.553 35669318
    [Google Scholar]
  68. GhateV. RenjithA. BadnikarK. PahalS. JayadeviS.N. NayakM.M. VemulaP.K. SubramanyamD.N. Single step fabrication of hollow microneedles and an experimental package for controlled drug delivery.Int. J. Pharm.202363212254610.1016/j.ijpharm.2022.122546 36574913
    [Google Scholar]
  69. DulM. StefanidouM. PortaP. ServeJ. O’MahonyC. MalissenB. HenriS. LevinY. KochbaE. WongF.S. DayanC. CoulmanS.A. BirchallJ.C. Hydrodynamic gene delivery in human skin using a hollow microneedle device.J. Control. Release201726512013110.1016/j.jconrel.2017.02.028 28254630
    [Google Scholar]
  70. PrabhuA. JoseJ. KumarL. SalwaS. Vijay KumarM. NabaviS.M. Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: An in vitro and in vivo study.AAPS PharmSciTech20222314910.1208/s12249‑021‑02186‑5 34988698
    [Google Scholar]
  71. LeeI.C. HeJ.S. TsaiM.T. LinK.C. Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery.J. Mater. Chem. B Mater. Biol. Med.20153227628510.1039/C4TB01555J 32261948
    [Google Scholar]
  72. ParkY. KimK.S. ChungM. SungJ.H. KimB. Fabrication and characterization of dissolving microneedle arrays for improving skin permeability of cosmetic ingredients.J. Ind. Eng. Chem.20163912112610.1016/j.jiec.2016.05.022
    [Google Scholar]
  73. OhN.G. HwangS.Y. NaY.H. Fabrication of a PVA-based hydrogel microneedle patch.ACS Omega2022729251792518510.1021/acsomega.2c01993 35910175
    [Google Scholar]
  74. TurnerJ.G. LaabeiM. LiS. EstrelaP. LeeseH.S. Antimicrobial releasing hydrogel forming microneedles.Biomaterials Advances202315121346710.1016/j.bioadv.2023.213467 37236117
    [Google Scholar]
  75. ZengZ. JiangG. LiuT. SongG. SunY. ZhangX. JingY. FengM. ShiY. Fabrication of gelatin methacryloyl hydrogel microneedles for transdermal delivery of metformin in diabetic rats.Biodes. Manuf.20214490291110.1007/s42242‑021‑00140‑9
    [Google Scholar]
  76. Al-KassasR. WenJ. ChengA.E.M. KimA.M.J. LiuS.S.M. YuJ. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel.Carbohydr. Polym.201615317618610.1016/j.carbpol.2016.06.096 27561485
    [Google Scholar]
  77. TakeuchiI. TakeshitaT. SuzukiT. MakinoK. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for positively charged drugs.Colloids Surf. B Biointerfaces201716052052610.1016/j.colsurfb.2017.10.011 29017147
    [Google Scholar]
  78. AkhtarB. MuhammadF. AslamB. SaleemiM.K. SharifA. Biodegradable nanoparticle based transdermal patches for gentamicin delivery: Formulation, characterization and pharmacokinetics in rabbits.J. Drug Deliv. Sci. Technol.20205710168010.1016/j.jddst.2020.101680
    [Google Scholar]
  79. AlkilaniA.Z. NasereddinJ. HamedR. NimrawiS. HusseinG. Abo-ZourH. DonnellyR.F. Beneath the skin: A review of current trends and future prospects of transdermal drug delivery systems.Pharmaceutics2022146115210.3390/pharmaceutics14061152 35745725
    [Google Scholar]
  80. AdhikaryS. Al HoqueA. RayM. PaulS. HossainA. GoswamiS. DeyR. Investigation of paracetamol entrapped nanoporous silica nanoparticles in transdermal drug delivery system.Appl. Biochem. Biotechnol.202319584712472710.1007/s12010‑023‑04576‑w 37273095
    [Google Scholar]
  81. MudholS. Serva PeddhaM. Development of capsaicin loaded nanoparticles based microneedle patch for transdermal drug delivery.J. Drug Deliv. Sci. Technol.20238010412010.1016/j.jddst.2022.104120
    [Google Scholar]
  82. RavirajV. PhamB.T.T. KimB.J. PhamN.T.H. KokL.F. PainterN. DelicN.C. JonesS.K. HawkettB.S. LyonsJ.G. Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using superparamagnetic iron oxide nanoparticles.Cancer Nanotechnol.2021121610.1186/s12645‑021‑00079‑7
    [Google Scholar]
  83. GlykA. Evaluation of driving forces for protein partition in PEG-salt aqueous two- phase systems and optimization by design of experiments.J. Chromatogr. Sep. Tech.201708116
    [Google Scholar]
  84. AdhyapakA.A. DesaiB.G. Formulation and evaluation of liposomal transdermal patch for targeted drug delivery of tamoxifen citrate for breast cancer.Indian J Health Sci Biomed Res20169404810.4103/2349‑5006.183677
    [Google Scholar]
  85. TrivediR. UmekarM. KotagaleN. BondeS. TaksandeJ. Design, evaluation and in vivo pharmacokinetic study of a cationic flexible liposomes for enhanced transdermal delivery of pramipexole.J. Drug Deliv. Sci. Technol.20216110231310.1016/j.jddst.2020.102313
    [Google Scholar]
  86. KuznetsovaD.A. VasilievaE.A. KuznetsovD.M. LeninaO.A. FilippovS.K. PetrovK.A. ZakharovaL.Y. SinyashinO.G. Enhancement of the transdermal delivery of nonsteroidal anti-inflammatory drugs using liposomes containing cationic surfactants.ACS Omega2022729257412575010.1021/acsomega.2c03039 35910111
    [Google Scholar]
  87. LevinY. KochbaE. KenneyR. Clinical evaluation of a novel microneedle device for intradermal delivery of an influenza vaccine: Are all delivery methods the same?Vaccine201432344249425210.1016/j.vaccine.2014.03.024 24930715
    [Google Scholar]
  88. LevinY. KochbaE. ShukarevG. RuschS. Herrera-TaracenaG. van DammeP. A phase 1, open-label, randomized study to compare the immunogenicity and safety of different administration routes and doses of virosomal influenza vaccine in elderly.Vaccine201634445262527210.1016/j.vaccine.2016.09.008 27667332
    [Google Scholar]
  89. FrösnerG. SteffenR. HerzogC. Virosomal hepatitis a vaccine: Comparing intradermal and subcutaneous with intramuscular administration.J. Travel Med.200916641341910.1111/j.1708‑8305.2009.00351.x 19930383
    [Google Scholar]
  90. AbdelwahdA. Abdul RasoolB.K. Optimizing and evaluating the transdermal permeation of hydrocortisone transfersomes formulation based on digital analysis of the in vitro drug release and ex vivo studies.Recent Adv. Drug Deliv. Formul.202216212214410.2174/2667387816666220608115605 35676851
    [Google Scholar]
  91. WuP.S. LiY.S. KuoY.C. TsaiS.J.J. LinC.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol.Molecules201924360010.3390/molecules24030600 30743989
    [Google Scholar]
  92. AvadhaniK.S. ManikkathJ. TiwariM. ChandrasekharM. GodavarthiA. VidyaS.M. HariharapuraR.C. KalthurG. UdupaN. MutalikS. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage.Drug Deliv.2017241617410.1080/10717544.2016.1228718 28155509
    [Google Scholar]
  93. Zaid AlkilaniA. MuslehB. HamedR. SwellmeenL. BasheerH.A. Preparation and characterization of patch loaded with clarithromycin nanovesicles for transdermal drug delivery.J. Funct. Biomater.20231425710.3390/jfb14020057 36826856
    [Google Scholar]
  94. AudaS.H. FathallaD. FetihG. El-BadryM. ShakeelF. Niosomes as transdermal drug delivery system for celecoxib: in vitro and in vivo studies.Polym. Bull.20167351229124510.1007/s00289‑015‑1544‑8
    [Google Scholar]
  95. ManosroiA. KhanrinP. LohcharoenkalW. WernerR.G. GötzF. ManosroiW. ManosroiJ. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes.Int. J. Pharm.20103921-230431010.1016/j.ijpharm.2010.03.064 20381599
    [Google Scholar]
  96. XieJ. JiY. XueW. MaD. HuY. Hyaluronic acid-containing ethosomes as a potential carrier for transdermal drug delivery.Colloids Surf. B Biointerfaces201817232332910.1016/j.colsurfb.2018.08.061 30176512
    [Google Scholar]
  97. PaliwalS. TilakA. SharmaJ. DaveV. SharmaS. YadavR. PatelS. VermaK. TakK. Flurbiprofen loaded ethosomes - transdermal delivery of anti-inflammatory effect in rat model.Lipids Health Dis.201918113310.1186/s12944‑019‑1064‑x 31170970
    [Google Scholar]
  98. LewisS. DaveV. Aceclofenac ethosomes for enhanced transdermal delivery.2009 International Conference on Biomedical and Pharmaceutical Engineering, Singapore, 02-04 December 2009, pp. 1-4.
    [Google Scholar]
  99. KalluriH. BangaA.K. Transdermal delivery of proteins.AAPS PharmSciTech201112143144110.1208/s12249‑011‑9601‑6 21369712
    [Google Scholar]
  100. SintovA.C. HofmannM.A. A novel thermo-mechanical system enhanced transdermal delivery of hydrophilic active agents by fractional ablation.Int. J. Pharm.2016511282183010.1016/j.ijpharm.2016.07.070 27480396
    [Google Scholar]
  101. LeeJ.W. GadirajuP. ParkJ.H. AllenM.G. PrausnitzM.R. Microsecond thermal ablation of skin for transdermal drug delivery.J. Control. Release20111541586810.1016/j.jconrel.2011.05.003 21596072
    [Google Scholar]
  102. RohloffC.M. AlessiT.R. YangB. DahmsJ. CarrJ.P. LautenbachS.D. DUROS technology delivers peptides and proteins at consistent rate continuously for 3 to 12 months.J. Diabetes Sci. Technol.20082346146710.1177/193229680800200316 19885211
    [Google Scholar]
  103. KamY. SacksH. KaplanK.M. SternM. LevinG. Radio frequency-microchannels for transdermal delivery: Characterization of skin recovery and delivery window.Pharmacol. Pharm.201231202810.4236/pp.2012.31004
    [Google Scholar]
  104. LevinG. GershonowitzA. SacksH. SternM. ShermanA. RudaevS. ZivinI. PhillipM. Transdermal delivery of human growth hormone through RF-microchannels.Pharm. Res.200522455055510.1007/s11095‑005‑2498‑6 15846462
    [Google Scholar]
  105. KaliaY. BachhavY. BragagnaT. BohlerC.P.L.E.A.S.E. ® (Painless Laser Epidermal System). A new laser microporation technology.Drug Deliv Technol200882631
    [Google Scholar]
  106. SungK.C. FangJ.Y. WangJ.J. HuO.Y.P. Transdermal delivery of nalbuphine and its prodrugs by electroporation.Eur. J. Pharm. Sci.2003181637010.1016/S0928‑0987(02)00244‑0 12554074
    [Google Scholar]
  107. DenetA.R. PréatV. Transdermal delivery of timolol by electroporation through human skin.J. Control. Release200388225326210.1016/S0168‑3659(03)00010‑5 12628332
    [Google Scholar]
  108. TokumotoS. MoriK. HigoN. SugibayashiK. Effect of electroporation on the electroosmosis across hairless mouse skin in vitro.J. Control. Release2005105329630410.1016/j.jconrel.2005.04.002 15894395
    [Google Scholar]
  109. MoriK. HasegawaT. SatoS. SugibayashiK. Effect of electric field on the enhanced skin permeation of drugs by electroporation.J. Control. Release200390217117910.1016/S0168‑3659(03)00164‑0 12810300
    [Google Scholar]
  110. AnirudhanT.S. NairS.S. Development of voltage gated transdermal drug delivery platform to impose synergistic enhancement in skin permeation using electroporation and gold nanoparticle.Mater. Sci. Eng. C201910243744610.1016/j.msec.2019.04.044 31147014
    [Google Scholar]
  111. ZorecB. JelencJ. MiklavčičD. PavšeljN. Ultrasound and electric pulses for transdermal drug delivery enhancement: Ex vivo assessment of methods with in vivo oriented experimental protocols.Int. J. Pharm.20154901-2657310.1016/j.ijpharm.2015.05.035 25987209
    [Google Scholar]
  112. Abd-ElghanyA.A. MohamadE.A. Ex-vivo transdermal delivery of Annona squamosa entrapped in niosomes by electroporation.J. Radiat. Res. Appl. Sci.202013116417310.1080/16878507.2020.1719329
    [Google Scholar]
  113. FengS. ZhuL. HuangZ. WangH. LiH. ZhouH. LuL. WangY. LiuZ. LiuL. Controlled release of optimized electroporation enhances the transdermal efficiency of sinomenine hydrochloride for treating arthritis in vitro and in clinic.Drug Des. Devel. Ther.2017111737175210.2147/DDDT.S136313 28670109
    [Google Scholar]
  114. ZorecB. JelencJ. MiklavčičD. PavšeljN. Electroporation-enhanced transdermal delivery of patent blue using green skin pore device.XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016, 2016. Springer, Cham, 17 September 2016, pp 1030–1033.10.1007/978‑3‑319‑32703‑7_203
    [Google Scholar]
  115. YangG. ZhangY. GuZ. Punching and electroporation for enhanced transdermal drug delivery.Theranostics20188133688369010.7150/thno.27236 30026875
    [Google Scholar]
  116. HuangD. ZhaoD. WangX. LiC. YangT. DuL. WeiZ. ChengQ. CaoH. LiangZ. HuangY. LiZ. Efficient delivery of nucleic acid molecules into skin by combined use of microneedle roller and flexible interdigitated electroporation array.Theranostics2018892361237610.7150/thno.23438 29721085
    [Google Scholar]
  117. WeiZ. HuangY. ZhaoD. HuZ. LiZ. LiangZ. A pliable electroporation patch (ep-Patch) for efficient delivery of nucleic acid molecules into animal tissues with irregular surface shapes.Sci. Rep.201551761810.1038/srep07618 25557092
    [Google Scholar]
  118. GuptaJ. FelnerE.I. PrausnitzM.R. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles.Diabetes Technol. Ther.200911632933710.1089/dia.2008.0103 19459760
    [Google Scholar]
  119. PettisR.J. HirschL. KapitzaC. NosekL. HövelmannU. KurthH.J. SutterD.E. HarveyN.G. HeinemannL. Microneedle-based intradermal versus subcutaneous administration of regular human insulin or insulin lispro: pharmacokinetics and postprandial glycemic excursions in patients with type 1 diabetes.Diabetes Technol. Ther.201113444345010.1089/dia.2010.0183 21355716
    [Google Scholar]
  120. CosmanF. LaneN.E. BologneseM.A. ZanchettaJ.R. Garcia-HernandezP.A. SeesK. MatrianoJ.A. GaumerK. DaddonaP.E. Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women.J. Clin. Endocrinol. Metab.201095115115810.1210/jc.2009‑0358 19858319
    [Google Scholar]
  121. DaddonaP.E. MatrianoJ.A. MandemaJ. MaaY.F. Parathyroid hormone (1-34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis.Pharm. Res.201128115916510.1007/s11095‑010‑0192‑9 20567999
    [Google Scholar]
  122. MillerP.D. TroyS. WeissR.J. AnnettM. SchenseJ. WilliamsS.A. MitlakB. Phase 1b evaluation of abaloparatide solid microstructured transdermal system (Abaloparatide-sMTS) in postmenopausal women with low bone mineral density.Clin. Drug Investig.202141327728510.1007/s40261‑021‑01008‑7 33638863
    [Google Scholar]
  123. JacobseJ. ten VoordeW. TandonA. RomeijnS.G. GrievinkH.W. van der MaadenK. van EsdonkM.J. MoesD.J.A.R. LoeffF. BloemK. de VriesA. RispensT. WolbinkG. de KamM. ZiagkosD. MoerlandM. JiskootW. BouwstraJ. BurggraafJ. SchrierL. RissmannR. ten CateR. Comprehensive evaluation of microneedle‐based intradermal adalimumab delivery vs. subcutaneous administration: Results of a randomized controlled clinical trial.Br. J. Clin. Pharmacol.20218783162317610.1111/bcp.14729 33403697
    [Google Scholar]
  124. RipolinA. QuinnJ. LarrañetaE. Vicente-PerezE.M. BarryJ. DonnellyR.F. Successful application of large microneedle patches by human volunteers.Int. J. Pharm.20175211-29210110.1016/j.ijpharm.2017.02.011 28216463
    [Google Scholar]
  125. VanajaK. Shobha RaniR.H. SacchidanandaS. Formulation and clinical evaluation of ultradeformable liposomes in the topical treatment of psoriasis.Clin. Res. Regul. Aff.2008251415210.1080/10601330701885116
    [Google Scholar]
  126. ChiangY. Al-NiaimiF. MadanV. Comparative efficacy and patient preference of topical anaesthetics in dermatological laser treatments and skin microneedling.J. Cutan. Aesthet. Surg.20158314314610.4103/0974‑2077.167270 26644737
    [Google Scholar]
  127. KneerW. RotherM. MazgareanuS. SeidelE.J. A 12-week randomized study of topical therapy with three dosages of ketoprofen in Transfersome® gel (IDEA-033) compared with the ketoprofen-free vehicle (TDT 064), in patients with osteoarthritis of the knee.J. Pain Res.2013674375310.2147/JPR.S51054 24187510
    [Google Scholar]
  128. BotelhoM.A. QueirozD.B. BarrosG. GuerreiroS. FechineP. UmbelinoS. LyraA. BorgesB. FreitasA. de QueirozD.C. RuelaR. AlmeidaJ.G. QuintansL.Jr Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: A confocal Raman spectroscopy study.Clinics201469207508210.6061/clinics/2014(02)0124519196
    [Google Scholar]
  129. NasrollahiS.A. HassanzadeH. MoradiA. SabouriM. SamadiA. KashaniM.N. FiroozA. Safety assessment of tretinoin loaded nano emulsion and nanostructured lipid carriers: A non-invasive trial on human volunteers.Curr. Drug Deliv.2017144575580 27174174
    [Google Scholar]
  130. LeeJ.J. YiK.H. KimH.S. AnM.H. SeoK.K. Chang-HunH. KimH.J. A novel needle‐free microjet drug injector using Er: YAG LASER: A completely new concept of TRANSDERMAL drug delivery system.Clin. Anat.202235568268510.1002/ca.23892 35445437
    [Google Scholar]
  131. NilforoushzadehM.A. Heidari-KharajiM. AlaviS. MahmoudbeykM. TorkamanihaE. PeyrovanA. NouriM. ZareS. Assessing the effectiveness of the combination therapy with fractional Er‐YAG laser and platelet‐rich plasma in treatment of periorbital dark circles patients: A clinical trial.J. Cosmet. Dermatol.202120113526353610.1111/jocd.14036 33638928
    [Google Scholar]
  132. SunL. WangC. CaoY. LvX. TianL. LiuD. LiL. ZhaoW. Fractional 2940-nm Er:YAG laser-assisted drug delivery of timolol maleate for the treatment of deep infantile hemangioma.J. Dermatolog. Treat.20213281053105910.1080/09546634.2020.1729330 32043380
    [Google Scholar]
  133. KimJ. KimS.M. JungB.K. OhS.H. KimY-K. LeeJ.H. Laser-assisted delivery of a combined antioxidant formulation enhances the clinical efficacy of fractional microneedle radiofrequency treatment: A pilot study.Medical Lasers202110316116910.25289/ML.2021.10.3.161
    [Google Scholar]
  134. LiuT.M. SunY.M. TangZ.Y. LiY.H. Microneedle fractional radiofrequency treatment of facial photoageing as assessed in a split‐face model.Clin. Exp. Dermatol.2019444e96e10210.1111/ced.13924 30710383
    [Google Scholar]
  135. WallaceM.S. RidgewayB. JunE. SchulteisG. RabussayD. ZhangL. Topical delivery of lidocaine in healthy volunteers by electroporation, electroincorporation, or iontophoresis: An evaluation of skin anesthesia.Reg. Anesth. Pain Med.200126322923810.1097/00115550‑200105000‑00006 11359222
    [Google Scholar]
  136. DiehlM.C. LeeJ.C. DanielsS.E. TebasP. KhanA.S. GiffearM. SardesaiN.Y. BagarazziM.L. Tolerability of intramuscular and intradermal delivery by CELLECTRA ® adaptive constant current electroporation device in healthy volunteers.Hum. Vaccin. Immunother.20139102246225210.4161/hv.24702 24051434
    [Google Scholar]
  137. LuC.Y. RohillaP. FelnerE.I. ByagathvalliG. AzizogluE. BhamlaM.S. PrausnitzM.R. Tolerability of a piezoelectric microneedle electroporator in human subjects.Bioeng. Transl. Med.2024e1066210.1002/btm2.10662
    [Google Scholar]
  138. XuX. GuoL. LiuH. ZhouZ. LiS. GuQ. DingS. GuoH. YanY. LanY. LiQ. WeiW. ZhangJ. LiuC. SuY. Stretchable electronic facial masks for skin electroporation.Adv. Funct. Mater.202334231114410.1002/adfm.202311144
    [Google Scholar]
  139. MpendoJ. MutuaG. NanvubyaA. AnzalaO. NyombayireJ. KaritaE. DallyL. HannamanD. PriceM. FastP.E. PriddyF. GelderblomH.C. HillsN.K. Acceptability and tolerability of repeated intramuscular electroporation of Multi-antigenic HIV (HIVMAG) DNA vaccine among healthy African participants in a phase 1 randomized controlled trial.PLoS One2020155e023315110.1371/journal.pone.0233151 32469893
    [Google Scholar]
  140. ElizagaM.L. LiS.S. KocharN.K. WilsonG.J. AllenM.A. TieuH.V.N. FrankI. SobieszczykM.E. CohenK.W. SanchezB. LathamT.E. ClarkeD.K. EganM.A. EldridgeJ.H. HannamanD. XuR. Ota-SetlikA. McElrathM.J. HayC.M. Safety and tolerability of HIV-1 multiantigen pDNA vaccine given with IL-12 plasmid DNA via electroporation, boosted with a recombinant vesicular stomatitis virus HIV Gag vaccine in healthy volunteers in a randomized, controlled clinical trial.PLoS One2018139e020275310.1371/journal.pone.0202753 30235286
    [Google Scholar]
  141. PerrieY. BadhanR.K.S. KirbyD.J. LowryD. MohammedA.R. OuyangD. The impact of ageing on the barriers to drug delivery.J. Control. Release2012161238939810.1016/j.jconrel.2012.01.020 22289435
    [Google Scholar]
  142. MatharooN. MohdH. Michniak-KohnB. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2024161e191810.1002/wnan.1918 37527953
    [Google Scholar]
  143. DalwadiS. ThakkarV. PrajapatiB. Optimizing neuroprotective nano-structured lipid carriers for transdermal delivery through artificial neural network.Pharm. Nanotechnol.20241210.2174/0122117385294969240326052312 38616760
    [Google Scholar]
  144. RekerD. RybakovaY. KirtaneA.R. CaoR. YangJ.W. NavamajitiN. GardnerA. ZhangR.M. EsfandiaryT. L’HeureuxJ. von ErlachT. SmekalovaE.M. LeboeufD. HessK. LopesA. RognerJ. CollinsJ. TamangS.M. IshidaK. ChamberlainP. YunD. Lytton-JeanA. SouleC.K. CheahJ.H. HaywardA.M. LangerR. TraversoG. Computationally guided high-throughput design of self-assembling drug nanoparticles.Nat. Nanotechnol.202116672573310.1038/s41565‑021‑00870‑y 33767382
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010318519240813053106
Loading
/content/journals/cpb/10.2174/0113892010318519240813053106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test