Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that falls under the umbrella of dementia and is characterized by the presence of enormously neurotoxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein inside the brain. AD remains an intractable global health challenge with limited therapeutic options. Early diagnosis, enabled by biomarkers and neuroimaging, is pivotal for optimizing treatment outcomes. Immunotherapeutic strategies, including monoclonal antibodies, active vaccination, and passive immunization, have been developed to target hallmark AD pathology, such as amyloid-beta aggregation. Here we summarized the emerging role of immunotherapies in the early stages of AD, shedding light on recent breakthroughs and clinical progress. Challenges, including treatment response variability and safety concerns, are discussed alongside evolving approaches, such as personalized immunotherapy and combinatorial treatments. This concise review underscores the promise of immunotherapies as a transformative approach to AD intervention, offering hope for a brighter future in the quest to combat this devastating neurodegenerative disease.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010308600240709052539
2024-07-19
2025-09-14
Loading full text...

Full text loading...

References

  1. DasS.K. BiswasA. RoyT. BanerjeeT.K. MukherjeeC.S. RautD.K. ChaudhuriA. A random sample survey for prevalence of major neurological disorders in Kolkata.Indian J. Med. Res.20061242163172 17015930
    [Google Scholar]
  2. DongM. PengB. LinX. ZhaoJ. ZhouY. WangR. The prevalence of dementia in the People’s Republic of China: A systematic analysis of 1980-2004 studies.Age Ageing200736661962410.1093/ageing/afm128 17965036
    [Google Scholar]
  3. FerriC.P. PrinceM. BrayneC. BrodatyH. FratiglioniL. GanguliM. HallK. HasegawaK. HendrieH. HuangY. JormA. MathersC. MenezesP.R. RimmerE. ScazufcaM. Global prevalence of dementia: A Delphi consensus study.Lancet200536695032112211710.1016/S0140‑6736(05)67889‑0 16360788
    [Google Scholar]
  4. BrayneC. The elephant in the room — healthy brains in later life, epidemiology and public health.Nat. Rev. Neurosci.20078323323910.1038/nrn2091 17299455
    [Google Scholar]
  5. PerrinR.J. FaganA.M. HoltzmanD.M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease.Nature2009461726691692210.1038/nature08538 19829371
    [Google Scholar]
  6. NereliusC. FitzenM. JohanssonJ. Amino acid sequence determinants and molecular chaperones in amyloid fibril formation.Biochem. Biophys. Res. Commun.201039612610.1016/j.bbrc.2010.02.105 20494101
    [Google Scholar]
  7. IshiuraS. YoshidaT. Plant-based vaccines for Alzheimer’s disease.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201995629029410.2183/pjab.95.020 31189781
    [Google Scholar]
  8. CaoY-P. WangJ-C. ZhuK. ZhangH-Y. WangG-Q. LiuH-Y. Early active immunization with Aβ 3-10 -KLH vaccine reduces tau phosphorylation in the hippocampus and protects cognition of mice.Neural Regen. Res.202015351952710.4103/1673‑5374.266061 31571664
    [Google Scholar]
  9. CounilH. Synaptic activity and (Neuro)inflammation in alzheimer’s disease: Could exosomes be an additional link?J. Alzheimers Dis.2020744115
    [Google Scholar]
  10. UddinM.S. KabirM.T. MamunA.A. BarretoG.E. RashidM. PerveenA. AshrafG.M. Pharmacological approaches to mitigate neuroinflammation in Alzheimer’s disease.Int. Immunopharmacol.20208410647910.1016/j.intimp.2020.106479 32353686
    [Google Scholar]
  11. PapatriantafyllouM. Immunotherapy: Immunological bullets against Alzheimer’s disease.Nat. Rev. Immunol.20131312310.1038/nri3367 23222501
    [Google Scholar]
  12. ChenF. GhoshA. LinJ. ZhangC. PanY. ThakurA. SinghK. HongH. TangS. 5-lipoxygenase pathway and its downstream cysteinyl leukotrienes as potential therapeutic targets for Alzheimer’s disease.Brain Behav. Immun.20208884485510.1016/j.bbi.2020.03.022 32222525
    [Google Scholar]
  13. LouveauA. HarrisT.H. KipnisJ. Revisiting the mechanisms of CNS immune privilege.Trends Immunol.2015361056957710.1016/j.it.2015.08.006 26431936
    [Google Scholar]
  14. UngerM.S. LiE. ScharnaglL. PoupardinR. AltendorferB. MrowetzH. Hutter-PaierB. WeigerT.M. HenekaM.T. AttemsJ. AignerL. CD8+ T-cells infiltrate Alzheimer’s disease brains and regulate neuronal- and synapse-related gene expression in APP-PS1 transgenic mice.Brain Behav. Immun.202089678610.1016/j.bbi.2020.05.070 32479993
    [Google Scholar]
  15. SchettersS.T.T. Gomez-NicolaD. Garcia-VallejoJ.J. Van KooykY. Neuroinflammation: Microglia and T cells get ready to tango.Front. Immunol.20188190510.3389/fimmu.2017.01905 29422891
    [Google Scholar]
  16. BaruchK. RosenzweigN. KertserA. DeczkowskaA. SharifA.M. SpinradA. Tsitsou-KampeliA. SarelA. CahalonL. SchwartzM. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology.Nat. Commun.201561796710.1038/ncomms8967 26284939
    [Google Scholar]
  17. MonsonegoA. NemirovskyA. HarpazI. CD 4 T cells in immunity and immunotherapy of A lzheimer’s disease.Immunology2013139443844610.1111/imm.12103 23534386
    [Google Scholar]
  18. vom BergJ. ProkopS. MillerK.R. ObstJ. KälinR.E. Lopategui-CabezasI. WegnerA. MairF. SchipkeC.G. PetersO. WinterY. BecherB. HeppnerF.L. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline.Nat. Med.201218121812181910.1038/nm.2965 23178247
    [Google Scholar]
  19. BirksJ.S. HarveyR.J. Donepezil for dementia due to Alzheimer’s disease.Cochrane Libr.201820186CD00119010.1002/14651858.CD001190.pub3 29923184
    [Google Scholar]
  20. LoyC. SchneiderL. Galantamine for Alzheimer’s disease and mild cognitive impairment.Cochrane Libr.200620091CD00174710.1002/14651858.CD001747.pub3 16437436
    [Google Scholar]
  21. RockwoodK. StoleeP. HowardK. MalleryL. Use of Goal Attainment Scaling to measure treatment effects in an anti-dementia drug trial.Neuroepidemiology199615633033810.1159/000109923 8930946
    [Google Scholar]
  22. WilcockG.K. BallardC.G. CooperJ.A. LoftH. Memantine for agitation/aggression and psychosis in moderately severe to severe Alzheimer’s disease: A pooled analysis of 3 studies.J. Clin. Psychiatry200869334134810.4088/JCP.v69n0302 18294023
    [Google Scholar]
  23. LopezO.L. BeckerJ.T. WahedA.S. SaxtonJ. SweetR.A. WolkD.A. KlunkW. DeKoskyS.T. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease.J. Neurol. Neurosurg. Psychiatry200980660060710.1136/jnnp.2008.158964 19204022
    [Google Scholar]
  24. BallardC. HowardR. Neuroleptic drugs in dementia: Benefits and harm.Nat. Rev. Neurosci.20067649250010.1038/nrn1926 16715057
    [Google Scholar]
  25. BallardC.G. GauthierS. CummingsJ.L. BrodatyH. GrossbergG.T. RobertP. LyketsosC.G. Management of agitation and aggression associated with Alzheimer disease.Nat. Rev. Neurol.20095524525510.1038/nrneurol.2009.39 19488082
    [Google Scholar]
  26. BirksJ. Grimley EvansJ. IakovidouV. TsolakiM. HoltF.E. Rivastigmine for Alzheimer’s disease.Cochrane Database Syst. Rev.2009CD0011912CD00119110.1002/14651858.CD001191.pub2 19370562
    [Google Scholar]
  27. McShaneR. Areosa SastreA. MinakaranN. Memantine for dementia.Cochrane Libr.2006CD0031542CD00315410.1002/14651858.CD003154.pub5 16625572
    [Google Scholar]
  28. RosenbergP.B. MartinB.K. FrangakisC. MintzerJ.E. WeintraubD. PorsteinssonA.P. SchneiderL.S. RabinsP.V. MunroC.A. MeinertC.L. LyketsosC.G. DryeL.T. Sertraline for the treatment of depression in Alzheimer disease.Am. J. Geriatr. Psychiatry201018213614510.1097/JGP.0b013e3181c796eb 20087081
    [Google Scholar]
  29. McShaneR. WestbyM.J. RobertsE. MinakaranN. SchneiderL. FarrimondL.E. MaayanN. WareJ. DebarrosJ. Memantine for dementia.Cochrane Libr.201933CD00315410.1002/14651858.CD003154.pub6 30891742
    [Google Scholar]
  30. ZhanZ.J. BianH.L. WangJ.W. ShanW.G. Synthesis of physostigmine analogues and evaluation of their anticholinesterase activities.Bioorg. Med. Chem. Lett.20102051532153410.1016/j.bmcl.2010.01.097 20144867
    [Google Scholar]
  31. OrhanG. OrhanI. Subutay-OztekinN. AkF. SenerB. Contemporary anticholinesterase pharmaceuticals of natural origin and their synthetic analogues for the treatment of Alzheimer’s disease.Recent Patents CNS Drug Discov.200941435110.2174/157488909787002582 19149713
    [Google Scholar]
  32. JungH.A. JungY.J. HyunS.K. MinB.S. KimD.W. JungJ.H. ChoiJ.S. Selective cholinesterase inhibitory activities of a new monoterpene diglycoside and other constituents from Nelumbo nucifera stamens.Biol. Pharm. Bull.201033226727210.1248/bpb.33.267 20118551
    [Google Scholar]
  33. BaiD. Development of huperzine A and B for treatment of Alzheimer’s disease.Pure Appl. Chem.200779446947910.1351/pac200779040469
    [Google Scholar]
  34. SeidlC. CorreiaB.L. StinghenA.E.M. SantosC.A.M. Acetylcholinesterase inhibitory activity of uleine from Himatanthus lancifolius.Z. Naturforsch. C J. Biosci.2010657-844044410.1515/znc‑2010‑7‑804 20737911
    [Google Scholar]
  35. GuoA.J.Y. XieH.Q. ChoiR.C.Y. ZhengK.Y.Z. BiC.W.C. XuS.L. DongT.T.X. TsimK.W.K. Galangin, a flavonol derived from Rhizoma Alpiniae Officinarum, inhibits acetylcholinesterase activity in vitro.Chem. Biol. Interact.20101871-324624810.1016/j.cbi.2010.05.002 20452337
    [Google Scholar]
  36. de PaulaA.A.N. MartinsJ.B.L. dos SantosM.L. NascenteL.C. RomeiroL.A.S. AreasT.F.M.A. VieiraK.S.T. GambôaN.F. CastroN.G. GarganoR. New potential AChE inhibitor candidates.Eur. J. Med. Chem.20094493754375910.1016/j.ejmech.2009.03.045 19446931
    [Google Scholar]
  37. ScarabinoD. PeconiM. BroggioE. GambinaG. MaggiE. ArmeliF. MantuanoE. MorelloM. CorboR.M. BusinaroR. Relationship between proinflammatory cytokines (Il-1beta, Il-18) and leukocyte telomere length in mild cognitive impairment and Alzheimer’s disease.Exp. Gerontol.202013611094510.1016/j.exger.2020.110945 32289486
    [Google Scholar]
  38. ChangR. YeeK.L. SumbriaR.K. Tumor necrosis factor α Inhibition for Alzheimer’s Disease.J. Cent. Nerv. Syst. Dis.2017910.1177/1179573517709278 28579870
    [Google Scholar]
  39. MrakR.E. GriffinW.S.T. Interleukin-1 and the immunogenetics of Alzheimer disease.J. Neuropathol. Exp. Neurol.200059647147610.1093/jnen/59.6.471 10850859
    [Google Scholar]
  40. GyengesiE. RangelA. UllahF. LiangH. NiedermayerG. AsgarovR. VenigallaM. GunawardenaD. KarlT. MünchG. Chronic Microglial Activation in the GFAP-IL6 Mouse Contributes to Age-Dependent Cerebellar Volume Loss and Impairment in Motor Function.Front. Neurosci.20191330310.3389/fnins.2019.00303 31001075
    [Google Scholar]
  41. KabirM.T. UddinM.S. MathewB. DasP.K. PerveenA. AshrafG.M. Emerging promise of immunotherapy for alzheimer’s disease: A new hope for the development of alzheimer’s vaccine.Curr. Top. Med. Chem.202020131214123410.2174/1568026620666200422105156 32321405
    [Google Scholar]
  42. CacabelosR. How plausible is an Alzheimer’s disease vaccine?Expert Opin. Drug Discov.20201511610.1080/17460441.2019.1667329 31526140
    [Google Scholar]
  43. HerlineK. DrummondE. WisniewskiT. Recent advancements toward therapeutic vaccines against Alzheimer’s disease.Expert Rev. Vaccines201817870772110.1080/14760584.2018.1500905 30005578
    [Google Scholar]
  44. ZipfelP. RochaisC. BarangerK. RiveraS. DallemagneP. Matrix metalloproteinases as new targets in alzheimer’s disease: Opportunities and challenges.J. Med. Chem.20206319107051072510.1021/acs.jmedchem.0c00352 32459966
    [Google Scholar]
  45. KummerK.K. ZeidlerM. KalpachidouT. KressM. Role of IL-6 in the regulation of neuronal development, survival and function.Cytokine202114415558210.1016/j.cyto.2021.155582 34058569
    [Google Scholar]
  46. PorroC. CianciulliA. PanaroM.A. The regulatory role of IL-10 in neurodegenerative diseases.Biomolecules2020107101710.3390/biom10071017 32659950
    [Google Scholar]
  47. XieL. LaiY. LeiF. LiuS. LiuR. WangT. Exploring the association between interleukin-1β and its interacting proteins in Alzheimer’s disease.Mol. Med. Rep.20151153219322810.3892/mmr.2015.3183 25585621
    [Google Scholar]
  48. Torres-AcostaN. O’KeefeJ.H. O’KeefeE.L. IsaacsonR. SmallG. Therapeutic potential of TNF-α Inhibition for alzheimer’s disease prevention.J. Alzheimers Dis.202078261962610.3233/JAD‑200711 33016914
    [Google Scholar]
  49. BalschunD. Interleukin-6: A cytokine to forget.FASEB J.200418141788179010.1096/fj.04‑1625fje
    [Google Scholar]
  50. GotzJ. PL‐03‐03: Animal models for Alzheimer’s disease and frontotemporal dementia. Alzheimers Dement.200954S_Part_410.1016/j.jalz.2009.05.372
    [Google Scholar]
  51. Meraz-RíosM.A. Lira-De LeónK.I. Campos-PeñaV. De Anda-HernándezM.A. Mena-LópezR. Tau oligomers and aggregation in Alzheimer’s disease.J. Neurochem.201011261353136710.1111/j.1471‑4159.2009.06511.x 19943854
    [Google Scholar]
  52. BoutajangoutA. IngadottirJ. DaviesP. SigurdssonE.M. Passive immunization targeting pathological phospho‐tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain.J. Neurochem.2011118465866710.1111/j.1471‑4159.2011.07337.x 21644996
    [Google Scholar]
  53. ChaiX. WuS. MurrayT.K. KinleyR. CellaC.V. SimsH. BucknerN. HanmerJ. DaviesP. O’NeillM.J. HuttonM.L. CitronM. Passive immunization with anti-Tau antibodies in two transgenic models: Reduction of Tau pathology and delay of disease progression.J. Biol. Chem.201128639344573446710.1074/jbc.M111.229633 21841002
    [Google Scholar]
  54. d’AbramoC. AckerC.M. JimenezH.T. DaviesP. Tau passive immunotherapy in mutant P301L mice: Antibody affinity versus specificity.PLoS One201384e6240210.1371/journal.pone.0062402 23638068
    [Google Scholar]
  55. YanamandraK. KfouryN. JiangH. MahanT.E. MaS. MaloneyS.E. WozniakD.F. DiamondM.I. HoltzmanD.M. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo.Neuron201380240241410.1016/j.neuron.2013.07.046 24075978
    [Google Scholar]
  56. PulR. DodelR. StangelM. Antibody-based therapy in Alzheimer’s disease.Expert Opin. Biol. Ther.201111334335710.1517/14712598.2011.552884 21261567
    [Google Scholar]
  57. KontsekovaE. IvanovovaN. HandzusovaM. NovakM. Chaperone-like antibodies in neurodegenerative tauopathies: Implication for immunotherapy.Cell. Mol. Neurobiol.2009296-779379810.1007/s10571‑009‑9355‑9 19214739
    [Google Scholar]
  58. WallsK.C. AgerR.R. VasilevkoV. ChengD. MedeirosR. LaFerlaF.M. p-Tau immunotherapy reduces soluble and insoluble tau in aged 3xTg-AD mice.Neurosci. Lett.20145759610010.1016/j.neulet.2014.05.047 24887583
    [Google Scholar]
  59. CollinL. BohrmannB. GöpfertU. Oroszlan-SzovikK. OzmenL. GrüningerF. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease.Brain2014137102834284610.1093/brain/awu213 25085375
    [Google Scholar]
  60. DaiC. ChenX. KazimS.F. LiuF. GongC.X. Grundke-IqbalI. IqbalK. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies.J. Neural Transm. (Vienna)2015122460761710.1007/s00702‑014‑1315‑y 25233799
    [Google Scholar]
  61. DaiC. HuW. TungY.C. LiuF. GongC.X. IqbalK. Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3 × Tg-AD mice.Alzheimers Res. Ther.20181011310.1186/s13195‑018‑0341‑7 29386065
    [Google Scholar]
  62. DaiC. TungY.C. LiuF. GongC.X. IqbalK. Tau passive immunization inhibits not only tau but also Aβ pathology.Alzheimers Res. Ther.201791110.1186/s13195‑016‑0227‑5 28073379
    [Google Scholar]
  63. SevignyJ. ChiaoP. BussièreT. WeinrebP.H. WilliamsL. MaierM. DunstanR. SallowayS. ChenT. LingY. O’GormanJ. QianF. ArastuM. LiM. ChollateS. BrennanM.S. Quintero-MonzonO. ScannevinR.H. ArnoldH.M. EngberT. RhodesK. FerreroJ. HangY. MikulskisA. GrimmJ. HockC. NitschR.M. SandrockA. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.Nature20165377618505610.1038/nature19323 27582220
    [Google Scholar]
  64. FuL. ZhangY. ZhangX. TianW. ZhangW. JiaY. ZhangL. Preparation and in vitro activity of single chain antibodies against Alzheimer’s disease.Immunol. Lett.20202271710.1016/j.imlet.2020.07.009 32781005
    [Google Scholar]
  65. SallowayS. SperlingR. FoxN.C. BlennowK. KlunkW. RaskindM. SabbaghM. HonigL.S. PorsteinssonA.P. FerrisS. ReichertM. KetterN. NejadnikB. GuenzlerV. MiloslavskyM. WangD. LuY. LullJ. TudorI.C. LiuE. GrundmanM. YuenE. BlackR. BrashearH.R. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease.N. Engl. J. Med.2014370432233310.1056/NEJMoa1304839 24450891
    [Google Scholar]
  66. OstrowitzkiS. DeptulaD. ThurfjellL. BarkhofF. BohrmannB. BrooksD.J. KlunkW.E. AshfordE. YooK. XuZ.X. LoetscherH. SantarelliL. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab.Arch. Neurol.201269219820710.1001/archneurol.2011.1538 21987394
    [Google Scholar]
  67. OstrowitzkiS. LasserR.A. DorflingerE. ScheltensP. BarkhofF. NikolchevaT. AshfordE. RetoutS. HofmannC. DelmarP. KleinG. AndjelkovicM. DuboisB. BoadaM. BlennowK. SantarelliL. FontouraP. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease.Alzheimers Res. Ther.2017919510.1186/s13195‑017‑0318‑y 29221491
    [Google Scholar]
  68. CummingsJ.L. CohenS. van DyckC.H. BrodyM. CurtisC. ChoW. WardM. FriesenhahnM. RabeC. BrunsteinF. QuartinoA. HonigbergL.A. FujiR.N. ClaytonD. MortensenD. HoC. PaulR. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease.Neurology20189021e1889e189710.1212/WNL.0000000000005550 29695589
    [Google Scholar]
  69. SöllvanderS. NikitidouE. GallaschL. ZyśkM. SöderbergL. SehlinD. LannfeltL. ErlandssonA. The Aβ protofibril selective antibody mAb158 prevents accumulation of Aβ in astrocytes and rescues neurons from Aβ-induced cell death.J. Neuroinflammation20181519810.1186/s12974‑018‑1134‑4 29592816
    [Google Scholar]
  70. SwansonC.J. ZhangY. DhaddaS. WangJ. KaplowJ. LaiR.Y.K. LannfeltL. BradleyH. RabeM. KoyamaA. ReydermanL. BerryD.A. BerryS. GordonR. KramerL.D. CummingsJ.L. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody.Alzheimers Res. Ther.20211318010.1186/s13195‑021‑00813‑8 33865446
    [Google Scholar]
  71. HettmannT. GilliesS.D. KleinschmidtM. PiechottaA. MakiokaK. LemereC.A. SchillingS. RahfeldJ.U. LuesI. Development of the clinical candidate PBD-C06, a humanized pGlu3-Aβ-specific antibody against Alzheimer’s disease with reduced complement activation.Sci. Rep.2020101329410.1038/s41598‑020‑60319‑5 32094456
    [Google Scholar]
  72. LiuD. LuS. ZhangL. HuangY. JiM. SunX. LiuX. LiuR. Yeast-based Aβ1-15 vaccine elicits strong immunogenicity and attenuates neuropathology and cognitive deficits in alzheimer’s disease transgenic mice.Vaccines20208335110.3390/vaccines8030351 32630299
    [Google Scholar]
  73. DoodyM.D. Phase 3 trials of solanezumab for mild-to-moderate alzheimer’s disease.N. Engl. J. Med.20143703113
    [Google Scholar]
  74. RosenmannH GrigoriadisN KarussisD BoimelM TouloumiO OvadiaH AbramskyO Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein.Arch. Neurol.200663101459146710.1001/archneur.63.10.1459 17030663
    [Google Scholar]
  75. RosenmannH. MeinerZ. GeylisV. AbramskyO. SteinitzM. Detection of circulating antibodies against tau protein in its unphosphorylated and in its neurofibrillary tangles-related phosphorylated state in Alzheimer’s disease and healthy subjects.Neurosci. Lett.20064102909310.1016/j.neulet.2006.01.072 17095156
    [Google Scholar]
  76. ChongF.P. NgK.Y. KohR.Y. ChyeS.M. Tau proteins and tauopathies in alzheimer’s disease.Cell. Mol. Neurobiol.201838596598010.1007/s10571‑017‑0574‑1 29299792
    [Google Scholar]
  77. LewisJ. McGowanE. RockwoodJ. MelroseH. NacharajuP. Van SlegtenhorstM. Gwinn-HardyK. MurphyM.P. BakerM. YuX. DuffK. HardyJ. CorralA. LinW.L. YenS.H. DicksonD.W. DaviesP. HuttonM. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein.Nat. Genet.200025440240510.1038/78078 10932182
    [Google Scholar]
  78. AndorferC. AckerC.M. KressY. HofP.R. DuffK. DaviesP. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms.J. Neurosci.200525225446545410.1523/JNEUROSCI.4637‑04.2005 15930395
    [Google Scholar]
  79. BoutajangoutA. QuartermainD. SigurdssonE.M. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model.J. Neurosci.20103049165591656610.1523/JNEUROSCI.4363‑10.2010 21147995
    [Google Scholar]
  80. KrishnamurthyP.K. Rajamohamed SaitH.B. BoutajangoutA. SigurdssonE.M. O2‐05‐01: Immunotherapy targeting Alzheimer’s phospho‐tau epitope within the microtubule binding region of tau clears pathological tau and prevents functional decline in a mouse model of tauopathy.Alzheimers Dement.2009535210.1016/j.jalz.2009.05.352
    [Google Scholar]
  81. DoodyM.D. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements.J. Neurosci.2007273491159129
    [Google Scholar]
  82. RajamohamedsaitH. Prophylactic Active tau immunization leads to sustained reduction in both tau and amyloid-β pathologies in 3xtg mice.Sci. Reports20171703417313
    [Google Scholar]
  83. NNadegeZommer NicolasSergeant Susanna Schraen-Maschke David Blum LucBuee ZommerN. SergeantN. Schraen-MaschkeS. BlumD. BueeL. Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: A suitable therapeutic approach.Curr. Alzheimer Res.20129439740510.2174/156720512800492503 22272619
    [Google Scholar]
  84. PetrushinaI. HovakimyanA. Harahap-CarrilloI.S. DavtyanH. AntonyanT. ChailyanG. KazarianK. AntonenkoM. JullienneA. HamerM.M. ObenausA. KingO. ZagorskiK. Blurton-JonesM. CribbsD.H. LanderH. GhochikyanA. AgadjanyanM.G. Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials.Neurobiol. Dis.202013910482310.1016/j.nbd.2020.104823 32119976
    [Google Scholar]
  85. WisniewskiT. DrummondE. Developing therapeutic vaccines against Alzheimer’s disease.Expert Rev. Vaccines201615340141510.1586/14760584.2016.1121815 26577574
    [Google Scholar]
  86. AdeloyeO.O. Amyloid-β immunotherapy on alzheimer disease: Prevention and therapeutic target.J. Dermatol. Res. Rev. Rep.20201111
    [Google Scholar]
  87. Barrera OcampoA. LoperaF. Amyloid-beta immunotherapy: The hope for Alzheimer disease?Colomb. Med.201647420321210.25100/cm.v47i4.2640 28293044
    [Google Scholar]
  88. ValiukasZ. EphraimR. TangalakisK. DavidsonM. ApostolopoulosV. FeehanJ. Immunotherapies for Alzheimer’s disease—a review.Vaccines2022109152710.3390/vaccines10091527 36146605
    [Google Scholar]
  89. CaoW. KimJ.H. ReberA.J. HoelscherM. BelserJ.A. LuX. KatzJ.M. GangappaS. PlanteM. BurtD.S. SambharaS. Nasal delivery of Protollin-adjuvanted H5N1 vaccine induces enhanced systemic as well as mucosal immunity in mice.Vaccine201735253318332510.1016/j.vaccine.2017.05.004 28499553
    [Google Scholar]
  90. KinneyJ.W. BemillerS.M. MurtishawA.S. LeisgangA.M. SalazarA.M. LambB.T. Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement.20184157559010.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  91. UyemuraK. CastleS.C. MakinodanT. The frail elderly: Role of dendritic cells in the susceptibility of infection.Mech. Ageing Dev.2002123895596210.1016/S0047‑6374(02)00033‑7 12044944
    [Google Scholar]
  92. KotbA. IsmailS. KimitoI. MohamedW. SalmanA. MohammedA.A. Increased CD5+ B-cells are associated with autoimmune phenomena in lepromatous leprosy patients.J. Infect. Public Health201912565665910.1016/j.jiph.2019.03.001 30904499
    [Google Scholar]
  93. FrascaD. BlombergB.B. Aging affects human B cell responses.J. Clin. Immunol.201131343043510.1007/s10875‑010‑9501‑7 21318330
    [Google Scholar]
  94. CrookeS.N. OvsyannikovaI.G. PolandG.A. KennedyR.B. Immunosenescence and human vaccine immune responses.Immun. Ageing20191612510.1186/s12979‑019‑0164‑9 31528180
    [Google Scholar]
  95. FulopT. LarbiA. PawelecG. CohenA.A. ProvostG. KhalilA. LacombeG. RodriguesS. DesrochesM. HirokawaK. FranceschiC. WitkowskiJ.M. Immunosenescence and altered vaccine efficiency in older subjects: A Myth difficult to change.Vaccines202210460710.3390/vaccines10040607 35455356
    [Google Scholar]
  96. HemonnotA.L. HuaJ. UlmannL. HirbecH. Microglia in Alzheimer disease: Well-known targets and new opportunities.Front. Aging Neurosci.20191123310.3389/fnagi.2019.00233 31543810
    [Google Scholar]
  97. KwanP. KonnoH. ChanK.Y. BaumL. Rationale for the development of an Alzheimer’s disease vaccine.Hum. Vaccin. Immunother.202016364565310.1080/21645515.2019.1665453 31526227
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010308600240709052539
Loading
/content/journals/cpb/10.2174/0113892010308600240709052539
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test