Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Methicillin-resistant (MRSA) is a potential threat globally since it is associated with high morbidity and mortality. In addition, the ability of MRSA to develop resistance and adapt to various environments makes it exceptional from other bacterial strains. Effective management is best determined by the site of infection.

Objectives

This study aims to summarize and assess the epidemiology of MRSA, resistance, detection of MRSA in humans, animals, and food products, treatment employed, and combination therapy.

Methods

For the present review, we collected data from PubMed, Embase, Web of Science, BioMed Central, Medline, Encyclopedia of Life Sciences, Scopus, Cochrane Library, and ScienceDirect that report the epidemiology of MRSA, drug resistance in MRSA, spread of MRSA infection, diagnosis of infection, existing and emerging remedies of MRSA infections. Collected data were analyzed and represented in this article with the help of Figures and Tables.

Results

resistance to vancomycin is because of genetic adaptation and also due to the widespread and indiscriminate use of antibiotics in the treatment of MRSA infection. Specifically, infections related to vancomycin-resistant are life-threatening and difficult to treat. MRSA epidemiology with the recognition of community-acquired-MRSA transmission between livestock and humans is also reported and is alarming. Multiple studies suggested that early detection of MRSA colonization and elimination of carriage can help reduce the risk of subsequent infection. Specifically, PCR-based screening from different body sites offers the highest overall sensitivity for the detection of MRSA carriage.

Conclusion

Screening novel mutants and methods of transmission in each environment will assist in managing MRSA. Further, effective MRSA control in all clinical setups is required with the avoidance of uncontrolled antibiotic usage.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010310231240529075731
2024-06-06
2025-09-15
Loading full text...

Full text loading...

References

  1. ShimizuM. MiharaT. OharaJ. InoueK. KinoshitaM. SawaT. Relationship between mortality and molecular epidemiology of methicillin-resistant Staphylococcus aureus bacteremia.PLoS One2022177e027111510.1371/journal.pone.0271115 35802589
    [Google Scholar]
  2. TaylorT.A. UnakalC.G. Staphylococcus aureus. InStatPearls.StatPearls Publishing2022
    [Google Scholar]
  3. Armstrong-EstherC.A. SmithJ.E. Carriage patterns of Staphylococcus aureus in a healthy non-hospital population of adults and children.Ann. Hum. Biol.19763322122710.1080/03014467600001381 962302
    [Google Scholar]
  4. TongS.Y.C. DavisJ.S. EichenbergerE. HollandT.L. FowlerV.G. Jr Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management.Clin. Microbiol. Rev.201528360366110.1128/CMR.00134‑14 26016486
    [Google Scholar]
  5. PetonV. Le LoirY. Staphylococcus aureus in veterinary medicine.Infect. Genet. Evol.20142160261510.1016/j.meegid.2013.08.011 23974078
    [Google Scholar]
  6. RaynerC. MunckhofW.J. Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus.Intern. Med. J.200535s2Suppl. 2S3S1610.1111/j.1444‑0903.2005.00976.x 16271060
    [Google Scholar]
  7. DeurenbergR.H. StobberinghE.E. The evolution of Staphylococcus aureus.Infect. Genet. Evol.20088674776310.1016/j.meegid.2008.07.007 18718557
    [Google Scholar]
  8. KimC. MwangiM. ChungM. MilheirçoC. de LencastreH. TomaszA. The mechanism of heterogeneous beta-lactam resistance in MRSA: key role of the stringent stress response.PLoS One2013812e8281410.1371/journal.pone.0082814 24349368
    [Google Scholar]
  9. ZhengX.Y. ChoyB.N.K. ZhouM.M. ZhaoZ.Y. Antibiotic resistance pattern of Staphylococcus aureus isolated from pediatrics with ocular infections: A 6-year hospital-based study in China.Front Pediatr.2021972863410.3389/fped.2021.728634 34869098
    [Google Scholar]
  10. RamadanH.A. El-BazA.M. GodaR.M. El-SokkaryM.M. El-MorsiR.M. Molecular characterization of enterotoxin genes in methicillin-resistant S. aureus isolated from food poisoning outbreaks in Egypt.Jour. of Heal., Popul. and Nutri.20234286
    [Google Scholar]
  11. VestergaardM. FreesD. IngmerH. Antibiotic resistance and the MRSA problem.Microbiol. Spectr.2019727.2.1810.1128/microbiolspec.GPP3‑0057‑2018 30900543
    [Google Scholar]
  12. SaberH. JasniA.S. Tengku JamaluddinT.Z.M. IbrahimR. A review of staphylococcal cassette chromosome mec (SCCmec) types in coagulase-negative staphylococci (CoNS) species.Malays. J. Med. Sci.201724571810.21315/mjms2017.24.5.2 29386968
    [Google Scholar]
  13. MilheiriçoC. de LencastreH. TomaszA. Full-genome sequencing identifies in the genetic background several determinants that modulate the resistance phenotype in methicillin-resistant Staphylococcus aureus strains carrying the novel mecC gene.Antimicrob. Agents Chemother.2017613e02500e0251610.1128/AAC.02500‑16 28069659
    [Google Scholar]
  14. PantostiA. VendittiM. What is MRSA?Eur. Respir. J.20093451190119610.1183/09031936.00007709 19880619
    [Google Scholar]
  15. OttoM. Community-associated MRSA: What makes them special?Int. J. Med. Microbiol.20133036-732433010.1016/j.ijmm.2013.02.007 23517691
    [Google Scholar]
  16. JimenezJ.N. OcampoA.M. VanegasJ.M. RodriguezE.A. MediavillaJ.R. ChenL. MuskusC.E. VelezA. CC8 MRSA strains harboring scc mec type ivc are predominant in Colombian hospitals.PLoS One201276e3857610.1371/journal.pone.0038576 22745670
    [Google Scholar]
  17. MediavillaJ.R. ChenL. MathemaB. KreiswirthB.N. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA).Curr. Opin. Microbiol.201215558859510.1016/j.mib.2012.08.003 23044073
    [Google Scholar]
  18. Aires-de-SousaM. Methicillin-resistant Staphylococcus aureus among animals: Current overview.Clin. Microbiol. Infect.201723637338010.1016/j.cmi.2016.11.002 27851997
    [Google Scholar]
  19. SeguinJ.C. WalkerR.D. CaronJ.P. KloosW.E. GeorgeC.G. HollisR.J. JonesR.N. PfallerM.A. Methicillin-resistant Staphylococcus aureus outbreak in a veterinary teaching hospital: potential human-to-animal transmission.J. Clin. Microbiol.19993751459146310.1128/JCM.37.5.1459‑1463.1999 10203505
    [Google Scholar]
  20. FerreiraJ.P. AndersonK.L. CorreaM.T. LymanR. RuffinF. RellerL.B. FowlerV.G. Jr Transmission of MRSA between companion animals and infected human patients presenting to outpatient medical care facilities.PLoS One2011611e2697810.1371/journal.pone.0026978 22102871
    [Google Scholar]
  21. LyonB.R. SkurrayR. Antimicrobial resistance of Staphylococcus aureus: genetic basis.Microbiol. Rev.19875118813410.1128/mr.51.1.88‑134.1987 3031442
    [Google Scholar]
  22. PlordeJ.J. SherrisJ.C. Staphylococcal resistance to antibiotics: origin, measurement, and epidemiology.Ann. N. Y. Acad. Sci.1974236141343410.1111/j.1749‑6632.1974.tb41507.x 4608264
    [Google Scholar]
  23. BarberM. Rozwadowska-DowzenkoM. Infection by penicillin-resistant staphylococci.Lancet1948252653064164410.1016/S0140‑6736(48)92166‑7 18890505
    [Google Scholar]
  24. JevonsM.P. “Celbenin” resistant Staphylococci.BMJ19611521912412510.1136/bmj.1.5219.124‑a
    [Google Scholar]
  25. KatayamaY. ItoT. HiramatsuK. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus.Antimicrob. Agents Chemother.20004461549155510.1128/AAC.44.6.1549‑1555.2000 10817707
    [Google Scholar]
  26. PanlilioA.L. CulverD.H. GaynesR.P. BanerjeeS. HendersonT.S. TolsonJ.S. MartoneW.J. Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975-1991.Infect. Control Hosp. Epidemiol.19921310582586 1469266
    [Google Scholar]
  27. CorriereM.D. DeckerC.F. MRSA: An evolving pathogen.Dis. Mon.2008541275175510.1016/j.disamonth.2008.09.007 18996275
    [Google Scholar]
  28. MoelleringR.C. Jr MRSA: The first half century.J. Antimicrob. Chemother.201267141110.1093/jac/dkr437 22010206
    [Google Scholar]
  29. PantostiA. SanchiniA. MonacoM. Mechanisms of antibiotic resistance in Staphylococcus aureus.Future Microbiol.20072332333410.2217/17460913.2.3.323 17661706
    [Google Scholar]
  30. ChambersH.F. Treatment of infection and colonization caused by methicillin-resistant Staphylococcus aureus.Infect. Control Hosp. Epidemiol.1991121293510.1086/646235 1847961
    [Google Scholar]
  31. LiuC. ChambersH.F. Staphylococcus aureus with heterogeneous resistance to vancomycin: epidemiology, clinical significance, and critical assessment of diagnostic methods.Antimicrob. Agents Chemother.200347103040304510.1128/AAC.47.10.3040‑3045.2003 14506006
    [Google Scholar]
  32. OrtwineJ.K. BhavanK. Morbidity, mortality, and management of methicillin-resistant S. aureus bacteremia in the USA: update on antibacterial choices and understanding.Hosp. Pract.2018462647210.1080/21548331.2018.1435128 29400119
    [Google Scholar]
  33. StevensD.L. The role of vancomycin in the treatment paradigm.Clin. Infect. Dis.200642S1Suppl. 1S51S5710.1086/491714 16323121
    [Google Scholar]
  34. PeetersM.J. SarriaJ.C. Clinical characteristics of linezolid-resistant Staphylococcus aureus infections.Am. J. Med. Sci.2005330210210410.1097/00000441‑200508000‑00007 16103790
    [Google Scholar]
  35. WasherP. JoffeH. The “hospital superbug”: Social representations of MRSA.Soc. Sci. Med.20066382141215210.1016/j.socscimed.2006.05.018 16782254
    [Google Scholar]
  36. European centre for disease prevention and control. Antimicrobial resistance surveillance in Europe 2015.Ann. Rep. Eur. Antimicrob. Resist. Surv. Net. (EARS-Net).2017
    [Google Scholar]
  37. TiemersmaE.W. BronzwaerS.L.A.M. LyytikäinenO. DegenerJ.E. SchrijnemakersP. BruinsmaN. MonenJ. WitteW. GrundmannH. European antimicrobial resistance surveillance system participants. Methicillin-resistant Staphylococcus aureus in Europe, 1999-2002.Emerg. Infect. Dis.20041091627163410.3201/eid1009.040069 15498166
    [Google Scholar]
  38. VaraldoP.E. MontanariM.P. BiavascoF. MassiddaO. LupidiR. Stafilococchi meticillino resistenti: Aspetti microbiologicie problemi connessi.Giio. G. Ital. Infez. Osp19941105110
    [Google Scholar]
  39. SpellerD.C.E. JohnsonA.P. JamesD. MarplesR.R. CharlettA. GeorgeR.C. Resistance to methicillin and other antibiotics in isolates of Staphylococcus aureus from blood and cerebrospinal fluid, England and Wales, 1989–95.Lancet1997350907432332510.1016/S0140‑6736(97)12148‑1 9251636
    [Google Scholar]
  40. SchelonkaR.L. Infection control practices and immune modification to prevent nosocomial sepsis in hospitalized newborn infants.J. Ped. Inf. Dis.2006102073082
    [Google Scholar]
  41. KlevensR.M. MorrisonM.A. NadleJ. PetitS. GershmanK. RayS. HarrisonL.H. LynfieldR. DumyatiG. TownesJ.M. CraigA.S. ZellE.R. FosheimG.E. McDougalL.K. CareyR.B. FridkinS.K. Invasive methicillin-resistant Staphylococcus aureus infections in the United States.JAMA2007298151763177110.1001/jama.298.15.1763 17940231
    [Google Scholar]
  42. RubinsteinE. KollefM.H. NathwaniD. Pneumonia caused by methicillin-resistant Staphylococcus aureus.Clin. Infect. Dis.200846S5Suppl. 5S378S38510.1086/533594 18462093
    [Google Scholar]
  43. NickersonE.K. WestT.E. DayN.P. PeacockS.J. Staphylococcus aureus disease and drug resistance in resource-limited countries in south and east Asia.Lancet Infect. Dis.20099213013510.1016/S1473‑3099(09)70022‑2 19179228
    [Google Scholar]
  44. HsuehP.R. ChenW.H. TengL.J. LuhK.T. Nosocomial infections due to methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci at a university hospital in Taiwan from 1991 to 2003: Resistance trends, antibiotic usage and in vitro activities of newer antimicrobial agents.Int. J. Antimicrob. Agents2005261434910.1016/j.ijantimicag.2005.04.007 15975769
    [Google Scholar]
  45. KimH.B. JangH.C. NamH.J. LeeY.S. KimB.S. ParkW.B. LeeK.D. ChoiY.J. ParkS.W. OhM. KimE.C. ChoeK.W. In vitro activities of 28 antimicrobial agents against Staphylococcus aureus isolates from tertiary-care hospitals in Korea: A nationwide survey.Antimicrob. Agents Chemother.20044841124112710.1128/AAC.48.4.1124‑1127.2004 15047511
    [Google Scholar]
  46. CosgroveS.E. SakoulasG. PerencevichE.N. SchwaberM.J. KarchmerA.W. CarmeliY. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: A meta-analysis.Clin. Infect. Dis.2003361535910.1086/345476 12491202
    [Google Scholar]
  47. HasmukharayK. NgoiS.T. SaedonN.I. TanK.M. KhorH.M. ChinA.V. TanM.P. KamarulzamanA. IdrisN. NiekW.K. TehC.S.J. KamaruzzamanS.B. PonnampalavanarS.S.L.S. Evaluation of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: Epidemiology, clinical characteristics, and outcomes in the older patients in a tertiary teaching hospital in Malaysia.BMC Infect. Dis.202323124110.1186/s12879‑023‑08206‑y 37072768
    [Google Scholar]
  48. ZaharJ.R. Clec’hC. TaffletM. Garrouste-OrgeasM. JamaliS. MourvillierB. De LassenceA. Descorps-DeclereA. AdrieC. BeauregardM-A.C. AzoulayE. SchwebelC. TimsitJ.F. Is methicillin resistance associated with a worse prognosis in Staphylococcus aureus ventilator-associated pneumonia?Clin. Infect. Dis.20054191224123110.1086/496923 16206094
    [Google Scholar]
  49. HassounA. LindenP.K. FriedmanB. Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment.Crit. Care201721121110.1186/s13054‑017‑1801‑3 28807042
    [Google Scholar]
  50. ChungM. De LencastreH. MatthewsP. TomaszA. De SousaM.A. CamouT. CocuzzaC. CorsoA. CoutoI. DominguezA. GniadkowskiM. GoeringR. GomesA. KikuchiK. MarcheseA. MatoR. MelterO. OliveiraD. PalacioR. Sá-LeãoR. SanchesI.S. SongJ-H. TassiosP.T. VillariP. VillariP. Molecular typing of methicillin-resistant Staphylococcus aureus by pulsed-field gel electrophoresis: comparison of results obtained in a multilaboratory effort using identical protocols and MRSA strains.Microb. Drug Resist.20006318919810.1089/mdr.2000.6.189 11144419
    [Google Scholar]
  51. FariaN.A. CarricoJ.A. OliveiraD.C. RamirezM. de LencastreH. Analysis of typing methods for epidemiological surveillance of both methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains.J. Clin. Microbiol.200846113614410.1128/JCM.01684‑07 17989188
    [Google Scholar]
  52. ShopsinB. GomezM. MontgomeryS.O. SmithD.H. WaddingtonM. DodgeD.E. BostD.A. RiehmanM. NaidichS. KreiswirthB.N. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains.J. Clin. Microbiol.199937113556356310.1128/JCM.37.11.3556‑3563.1999 10523551
    [Google Scholar]
  53. TchambaC.N. TouzainF. FergestadM. De VisscherA. L’Abee-LundT. De VliegherS. WastesonY. BlanchardY. ArgudínM.A. MainilJ. ThiryD. Identification of staphylococcal cassette chromosome mec in Staphylococcus aureus and non-aureus staphylococci from dairy cattle in Belgium: Comparison of multiplex PCR and whole genome sequencing.Res. Vet. Sci.202315515015510.1016/j.rvsc.2023.01.011 36696786
    [Google Scholar]
  54. AuckenH.M. GannerM. MurchanS. CooksonB.D. JohnsonA.P. A new UK strain of epidemic methicillin-resistant Staphylococcus aureus (EMRSA-17) resistant to multiple antibiotics.J. Antimicrob. Chemother.200250217117510.1093/jac/dkf117 12161396
    [Google Scholar]
  55. OliveiraD.C. TomaszA. de LencastreH. Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus.Lancet Infect. Dis.20022318018910.1016/S1473‑3099(02)00227‑X 11944188
    [Google Scholar]
  56. HunterP.R. Reproducibility and indices of discriminatory power of microbial typing methods.J. Clin. Microbiol.19902891903190510.1128/jcm.28.9.1903‑1905.1990 2229371
    [Google Scholar]
  57. GrundmannH. HoriS. EnrightM.C. WebsterC. TamiA. FeilE.J. PittT. Determining the genetic structure of the natural population of Staphylococcus aureus: a comparison of multilocus sequence typing with pulsed-field gel electrophoresis, randomly amplified polymorphic DNA analysis, and phage typing.J. Clin. Microbiol.200240124544454610.1128/JCM.40.12.4544‑4546.2002 12454149
    [Google Scholar]
  58. ChavezT.T. DeckerC.F. Health care-associated MRSA versus community-associated MRSA.Dis. Mon.2008541276376810.1016/j.disamonth.2008.09.004 18996277
    [Google Scholar]
  59. DantesR. MuY. BelflowerR. AragonD. DumyatiG. HarrisonL.H. LessaF.C. LynfieldR. NadleJ. PetitS. RayS.M. SchaffnerW. TownesJ. FridkinS. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011.JAMA Intern. Med.20131732119701978 24043270
    [Google Scholar]
  60. GremaH.A. GeidamY.A. GadzamaG.B. AmehJ.A. SuleimanA. Methicillin resistant Staphylococcus aureus (MRSA): a review.Adv. Anim. Vet. Sci.201532799810.14737/journal.aavs/2015/3.2.79.98
    [Google Scholar]
  61. StefaniS. ChungD.R. LindsayJ.A. FriedrichA.W. KearnsA.M. WesthH. MacKenzieF.M. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods.Int. J. Antimicrob. Agents201239427328210.1016/j.ijantimicag.2011.09.030 22230333
    [Google Scholar]
  62. HarrisS.R. FeilE.J. HoldenM.T.G. QuailM.A. NickersonE.K. ChantratitaN. GardeteS. TavaresA. DayN. LindsayJ.A. EdgeworthJ.D. de LencastreH. ParkhillJ. PeacockS.J. BentleyS.D. Evolution of MRSA during hospital transmission and intercontinental spread.Science2010327596446947410.1126/science.1182395 20093474
    [Google Scholar]
  63. BulwaddaD. KakoozaF. WaswaJ.P. KyobeH.B. SembatyaM. KiggunduR. Health care worker carriage of drug-resistant bacteria and infection control practices at a tertiary care hospital in Uganda: A cross-sectional survey.Pan Afr. Med. J.202345686810.11604/pamj.2023.45.68.36315 37637391
    [Google Scholar]
  64. SafdarN. BradleyE.A. The risk of infection after nasal colonization with Staphylococcus aureus.Am. J. Med.2008121431031510.1016/j.amjmed.2007.07.034 18374690
    [Google Scholar]
  65. SanfordM.D. WidmerA.F. BaleM.J. JonesR.N. WenzelR.P. Efficient detection and long-term persistence of the carriage of methicillin-resistant Staphylococcus aureus.Clin. Infect. Dis.19941961123112810.1093/clinids/19.6.1123 7888543
    [Google Scholar]
  66. AngenØ. NielsenM.W. LøfstrømP. LarsenA.R. HendriksenN.B. Airborne Spread of Methicillin Resistant Staphylococcus aureus From a Swine Farm.Front. Vet. Sci.2021864472910.3389/fvets.2021.644729 34150881
    [Google Scholar]
  67. UmaruG.A. KabirJ. AdamuN.B. UmarY.A. A review of emerging methicillin-resistant Staphylococcus aureus (MRSA): A growing threat to veterinarians.Niger. Vet. J.2011323174186
    [Google Scholar]
  68. WangS.H. HinesL. van BalenJ. MediavillaJ.R. PanX. HoetA.E. KreiswirthB.N. PancholiP. StevensonK.B. Molecular and clinical characteristics of hospital and community onset methicillin-resistant Staphylococcus aureus strains associated with bloodstream infections.J. Clin. Microbiol.20155351599160810.1128/JCM.03147‑14 25740776
    [Google Scholar]
  69. AppelbaumP.C. Microbiology of antibiotic resistance in Staphylococcus aureus.Clin. Infect. Dis.200745S3Suppl. 3S165S17010.1086/519474 17712742
    [Google Scholar]
  70. NaimiT.S. LeDellK.H. Como-SabettiK. BorchardtS.M. BoxrudD.J. EtienneJ. JohnsonS.K. VandeneschF. FridkinS. O’BoyleC. DanilaR.N. LynfieldR. Comparison of community and health care-associated methicillin-resistant Staphylococcus aureus infection.JAMA2003290222976298410.1001/jama.290.22.2976 14665659
    [Google Scholar]
  71. SalgadoC.D. FarrB.M. CalfeeD.P. Community-acquired methicillin-resistant Staphylococcus aureus: A meta-analysis of prevalence and risk factors.Clin. Infect. Dis.200336213113910.1086/345436 12522744
    [Google Scholar]
  72. Boyle-VavraS. DaumR.S. Community-acquired methicillin-resistant Staphylococcus aureus: the role of Panton–Valentine leukocidin.Lab. Invest.20078713910.1038/labinvest.3700501 17146447
    [Google Scholar]
  73. Centers for Disease Control and Prevention (CDC)Severe methicillin-resistant Staphylococcus aureus community-acquired pneumonia associated with influenza-Louisiana and Georgia, December 2006-January 2007.MMWR Morb. Mortal. Wkly. Rep.20075614325329 17431376
    [Google Scholar]
  74. BabaT. TakeuchiF. KurodaM. YuzawaH. AokiK. OguchiA. NagaiY. IwamaN. AsanoK. NaimiT. KurodaH. CuiL. YamamotoK. HiramatsuK. Genome and virulence determinants of high virulence community-acquired MRSA.Lancet200235993201819182710.1016/S0140‑6736(02)08713‑5 12044378
    [Google Scholar]
  75. Kluytmans-VandenBerghM.F.Q. KluytmansJ.A.J.W. Community-acquired methicillin-resistant Staphylococcus aureus: Current perspectives.Clin. Microbiol. Infect.200612Suppl. 191510.1111/j.1469‑0691.2006.01341.x 16445719
    [Google Scholar]
  76. RobinsonD.A. EnrightM.C. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus.Antimicrob. Agents Chemother.200347123926393410.1128/AAC.47.12.3926‑3934.2003 14638503
    [Google Scholar]
  77. HiguchiW. TakanoT. TengL.J. YamamotoT. Structure and specific detection of staphylococcal cassette chromosome mec type VII.Biochem. Biophys. Res. Commun.2008377375275610.1016/j.bbrc.2008.10.009 18926798
    [Google Scholar]
  78. TristanA. BesM. MeugnierH. LinaG. BozdoganB. CourvalinP. ReverdyM.E. EnrightM.C. VandeneschF. EtienneJ. Global distribution of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus, 2006.Emerg. Infect. Dis.200713459460010.3201/eid1304.061316 17553275
    [Google Scholar]
  79. HiramatsuT. TobinoK. Necrotizing pneumonia caused by methicillin‐resistant Staphylococcus aureus.Clin. Case Rep.2022103e0561910.1002/ccr3.5619 35356187
    [Google Scholar]
  80. Labandeira-ReyM. CouzonF. BoissetS. BrownE.L. BesM. BenitoY. BarbuE.M. VazquezV. HöökM. EtienneJ. VandeneschF. BowdenM.G. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia.Science200731558151130113310.1126/science.1137165 17234914
    [Google Scholar]
  81. DiepB.A. CarletonH.A. ChangR.F. SensabaughG.F. Perdreau-RemingtonF. Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus.J. Infect. Dis.2006193111495150310.1086/503777 16652276
    [Google Scholar]
  82. DiepB.A. Palazzolo-BallanceA.M. TattevinP. BasuinoL. BraughtonK.R. WhitneyA.R. ChenL. KreiswirthB.N. OttoM. DeLeoF.R. ChambersH.F. Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis.PLoS One200839e319810.1371/journal.pone.0003198 18787708
    [Google Scholar]
  83. TietzA. FreiR. WidmerA.F. Transatlantic spread of the USA300 clone of MRSA.N. Engl. J. Med.2005353553253310.1056/NEJM200508043530522 16079385
    [Google Scholar]
  84. BeamJ.W. BuckleyB. Community-acquired methicillin-resistant Staphylococcus aureus: prevalence and risk factors.J. Athl. Train.2006413337340 17043704
    [Google Scholar]
  85. KhawcharoenpornT. TiceA.D. GrandinettiA. ChowD. Risk factors for community-associated methicillin-resistant Staphylococcus aureus cellulitis-and the value of recognition.Hawaii Med. J.20106910232236 21229486
    [Google Scholar]
  86. American Thoracic Society; Infectious Diseases Society of AmericaGuidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia.Am. J. Respir. Crit. Care Med.2005171438841610.1164/rccm.200405‑644ST 15699079
    [Google Scholar]
  87. FriedmanN.D. KayeK.S. StoutJ.E. McGarryS.A. TrivetteS.L. BriggsJ.P. LammW. ClarkC. MacFarquharJ. WaltonA.L. RellerL.B. SextonD.J. Health care-associated bloodstream infections in adults: A reason to change the accepted definition of community-acquired infections.Ann. Intern. Med.20021371079179710.7326/0003‑4819‑137‑10‑200211190‑00007 12435215
    [Google Scholar]
  88. ScudellerL. LeonciniO. BoniS. NavarraA. RezzaniA. VerdirosiS. MaseratiR. MRSA carriage: the relationship between community and healthcare setting. A studyin an Italian hospital.J. Hosp. Infect.200046322222910.1016/S0195‑6701(00)90806‑5 11073732
    [Google Scholar]
  89. CarratalàJ. Garcia-VidalC. What is healthcare-associated pneumonia and how is it managed?Curr. Opin. Infect. Dis.200821216817310.1097/QCO.0b013e3282f4f248 18317041
    [Google Scholar]
  90. KollefM.H. ShorrA. TabakY.P. GuptaV. LiuL.Z. JohannesR.S. Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia.Chest200512863854386210.1378/chest.128.6.3854 16354854
    [Google Scholar]
  91. WeeseJ.S. Methicillin-resistant Staphylococcus aureus in animals.ILAR J.201051323324410.1093/ilar.51.3.233 21131724
    [Google Scholar]
  92. CarratalàJ. MykietiukA. Fernández-SabéN. SuárezC. DorcaJ. VerdaguerR. ManresaF. GudiolF. Health care-associated pneumonia requiring hospital admission: epidemiology, antibiotic therapy, and clinical outcomes.Arch. Intern. Med.2007167131393139910.1001/archinte.167.13.1393 17620533
    [Google Scholar]
  93. HuijsdensX.W. van DijkeB.J. SpalburgE. van Santen-VerheuvelM.G. HeckM.E.O.C. PluisterG.N. VossA. WannetW.J.B. de NeelingA.J. Community-acquired MRSA and pig-farming.Ann. Clin. Microbiol. Antimicrob.2006512610.1186/1476‑0711‑5‑26 17096847
    [Google Scholar]
  94. VossA. LoeffenF. BakkerJ. KlaassenC. WulfM. Methicillin-resistant Staphylococcus aureus in pig farming.Emerg. Infect. Dis.200511121965196610.3201/eid1112.050428 16485492
    [Google Scholar]
  95. SpringerB. OrendiU. MuchP. HögerG. RuppitschW. KrziwanekK. Metz-GercekS. MittermayerH. Methicillin resistenter Staphylococcus aureus: ein neuer Zoonoseerreger?Wien. Klin. Wochenschr.20091213-4869010.1007/s00508‑008‑1126‑y 19280131
    [Google Scholar]
  96. LoncaricI. Kübber-HeissA. PosautzA. StalderG.L. HoffmannD. RosengartenR. WalzerC. mec C ‐ and mec A ‐positive meticillin‐resistantS taphylococcus aureus (MRSA) isolated from livestock sharing habitat with wildlife previously tested positive for mec C ‐positive MRSA.Vet. Dermatol.201425214714810.1111/vde.12116 24666662
    [Google Scholar]
  97. PorreroM.C. MentaberreG. SánchezS. Fernández-LlarioP. Gómez-BarreroS. Navarro-GonzalezN. SerranoE. Casas-DíazE. MarcoI. Fernández-GarayzabalJ.F. MateosA. VidalD. LavínS. DomínguezL. Methicillin resistant Staphylococcus aureus (MRSA) carriage in different free-living wild animal species in Spain.Vet. J.2013198112713010.1016/j.tvjl.2013.06.004 23846031
    [Google Scholar]
  98. MorganM. Methicillin-resistant Staphylococcus aureus and animals: Zoonosis or humanosis?J. Antimicrob. Chemother.20086261181118710.1093/jac/dkn405 18819971
    [Google Scholar]
  99. CunyC. WielerL. WitteW. Livestock-associated MRSA: The impact on humans.Antibiotics20154452154310.3390/antibiotics4040521 27025639
    [Google Scholar]
  100. CunyC. NathausR. LayerF. StrommengerB. AltmannD. WitteW. Nasal colonization of humans with methicillin-resistant Staphylococcus aureus (MRSA) CC398 with and without exposure to pigs.PLoS One200948e680010.1371/journal.pone.0006800 19710922
    [Google Scholar]
  101. de NeelingA.J. van den BroekM.J.M. SpalburgE.C. van Santen-VerheuvelM.G. Dam-DeiszW.D.C. BoshuizenH.C. van de GiessenA.W. van DuijkerenE. HuijsdensX.W. High prevalence of methicillin resistant Staphylococcus aureus in pigs.Vet. Microbiol.20071223-436637210.1016/j.vetmic.2007.01.027 17367960
    [Google Scholar]
  102. MuldersM.N. HaenenA.P.J. GeenenP.L. VesseurP.C. PoldervaartE.S. BoschT. HuijsdensX.W. HengeveldP.D. Dam-DeiszW.D.C. GraatE.A.M. MeviusD. VossA. Van De GiessenA.W. Prevalence of livestock-associated MRSA in broiler flocks and risk factors for slaughterhouse personnel in The Netherlands.Epidemiol. Infect.2010138574375510.1017/S0950268810000075 20109255
    [Google Scholar]
  103. AntociE. PinzoneM.R. NunnariG. StefaniS. CacopardoB. Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) among subjects working on bovine dairy farms.Infect. Med.2013212125129 23774976
    [Google Scholar]
  104. MoodleyA. NielsenS.S. GuardabassiL. Effects of tetracycline and zinc on selection of methicillin-resistant Staphylococcus aureus (MRSA) sequence type 398 in pigs.Vet. Microbiol.20111523-442042310.1016/j.vetmic.2011.05.025 21664077
    [Google Scholar]
  105. PriceL.B. Stegger, M.; Hasman, H.; Aziz, M.; Larsen, J.; Andersen, P.S.; Pearson, T.; Waters, A.E.; Foster, J.T.; Schupp, J.; Gillece, J.; Driebe, E.; Liu, C.M.; Springer, B.; Zdovc, I.; Battisti, A.; Franco, A.; Żmudzki, J.; Schwarz, S.; Butaye, P.; Jouy, E.; Pomba, C.; Porrero, M.C.; Ruimy, R.; Smith, T.C.; Robinson, D.A.; Weese, J.S.; Arriola, C.S.; Yu, F.; Laurent, F.; Keim, P.; Skov, R.; Aarestrup, F.M. Staphylococcus aureus CC398: Host adaptation and emergence of methicillin resistance in livestock.MBio201231e00305e0031110.1128/mBio.00305‑11 22354957
    [Google Scholar]
  106. OniciucE.A. NicolauA.I. HernándezM. Rodríguez-LázaroD. Presence of methicillin-resistant Staphylococcus aureus in the food chain.Trends Food Sci. Technol.201761495910.1016/j.tifs.2016.12.002
    [Google Scholar]
  107. KhannaT. FriendshipR. DeweyC. WeeseJ.S. Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers.Vet. Microbiol.20081283-429830310.1016/j.vetmic.2007.10.006 18023542
    [Google Scholar]
  108. ChipolombweJ. TörökM.E. MbelleN. NyasuluP. Methicillin-resistant Staphylococcus aureus multiple sites surveillance: a systemic review of the literature.Infect. Drug Resist.201693542 26929653
    [Google Scholar]
  109. European Food Safety Authority (EFSA)Assessment of the public health significance of methicillin resistant Staphylococcus aureus (MRSA) in animals and foods.EFSA J.200973993
    [Google Scholar]
  110. AliY. IslamM.A. MuzahidN.H. SikderM.O.F. HossainM.A. MarzanL.W. Characterization, prevalence and antibiogram study of Staphylococcus aureus in poultry.Asian Pac. J. Trop. Biomed.20177325325610.1016/j.apjtb.2016.12.001
    [Google Scholar]
  111. KarthyE.S. RanjithaP. MohankumarA. Performance of CHROM agar and oxacillin resistant screening agar base media for detection of methicillin resistant Staphylococcus aureus (MRSA) from chronic wound.Mod. Appl. Sci.200935515510.5539/mas.v3n5p51
    [Google Scholar]
  112. StoakesL. ReyesR. DanielJ. LennoxG. JohnM.A. LanniganR. HussainZ. Prospective comparison of a new chromogenic medium, MRSASelect, to CHROMagar MRSA and mannitol-salt medium supplemented with oxacillin or cefoxitin for detection of methicillin-resistant Staphylococcus aureus.J. Clin. Microbiol.200644263763910.1128/JCM.44.2.637‑639.2006 16455933
    [Google Scholar]
  113. BeckerA. ForsterD.H. KniehlE. Oxacillin resistance screening agar base for detection of methicillin-resistant Staphylococcus aureus.J. Clin. Microbiol.200240114400440110.1128/JCM.40.11.4400‑4401.2002 12409445
    [Google Scholar]
  114. PandaR.K. MahapatraA. MallickB. ChayaniN. Evaluation of genotypic and phenotypic methods for detection of methicillin resistant Staphylococcus aureus in a tertiary care hospital of Eastern Odisha.J. Clin. Diagn. Res.2016102DC19DC2110.7860/JCDR/2016/17476.7278 27042463
    [Google Scholar]
  115. LouieL. MajuryA. GoodfellowJ. LouieM. SimorA.E. Evaluation of a latex agglutination test (MRSA-Screen) for detection of oxacillin resistance in coagulase-negative Staphylococci.J. Clin. Microbiol.200139114149415110.1128/JCM.39.11.4149‑4151.2001 11682545
    [Google Scholar]
  116. RasheedM.U. AhmedZ. Phenotypic methods of greater accuracy to detect the mecA gene product for the recognition of MRSA in resource constraint settings.Asian Pac. J. Trop. Med.20103974174410.1016/S1995‑7645(10)60178‑2
    [Google Scholar]
  117. MarloweE.M. BankowskiM.J. Conventional and molecular methods for the detection of methicillin-resistant Staphylococcus aureus.J. Clin. Microbiol.2011499_Supplement)(Suppl.S53S5610.1128/JCM.00791‑11
    [Google Scholar]
  118. AyliffeG.A.J. The progressive intercontinental spread of methicillin-resistant Staphylococcus aureus.Clin. Infect. Dis.199724Suppl. 1S74S7910.1093/clinids/24.Supplement_1.S74 8994782
    [Google Scholar]
  119. ReadA.F. WoodsR.J. Antibiotic resistance management.Evol. Med. Public Health20142014114710.1093/emph/eou024 25355275
    [Google Scholar]
  120. PatelS. PreussC.V. BerniceF. Vancomycin. InStatPearls.StatPearls Publishing2022
    [Google Scholar]
  121. HanaiY. TakahashiY. NiwaT. MayumiT. HamadaY. KimuraT. MatsumotoK. FujiiS. TakesueY. Optimal trough concentration of teicoplanin for the treatment of methicillin‐resistant Staphylococcus aureus infection: A systematic review and meta‐analysis.J. Clin. Pharm. Ther.202146362263210.1111/jcpt.13366 33547647
    [Google Scholar]
  122. ChenH. LiL. WuM. XuS. WangM. LiJ. HuangX. Efficacy and safety of linezolid versus teicoplanin for the treatment of MRSA infections: A meta-analysis.J. Infect. Dev. Ctries.2018111292693410.3855/jidc.9447 31626598
    [Google Scholar]
  123. DamodaranS.E. MadhanS. Telavancin: A novel lipoglycopeptide antibiotic.J. Pharmacol. Pharmacother.20112213513710.4103/0976‑500X.81918 21772784
    [Google Scholar]
  124. PatelS. SawS. Daptomycin.StatPearls.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  125. SaravolatzL.D. SteinG.E. JohnsonL.B. Ceftaroline: A novel cephalosporin with activity against methicillin-resistant Staphylococcus aureus.Clin. Infect. Dis.20115291156116310.1093/cid/cir147 21467022
    [Google Scholar]
  126. GoodmanJ.J. MartinS.I. Critical appraisal of ceftaroline in the management of community-acquired bacterial pneumonia and skin infections.Ther. Clin. Risk Manag.20128149156 22547933
    [Google Scholar]
  127. AzzouzA. PreussC.V. Linezolid.StatPearls.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  128. PletzM.W. BurkhardtO. WelteT. Nosocomial methicillin-resistant staphylococcus aureus (MRSA) pneumonia: linezolid or vancomycin? comparison of pharmacology and clinical efficacy.Eur. J. Med. Res.2010151250751310.1186/2047‑783X‑15‑12‑507 21163725
    [Google Scholar]
  129. LanS.H. LinW.T. ChangS.P. LuL.C. ChaoC.M. LaiC.C. WangJ.H. Tedizolid versus linezolid for the treatment of acute bacterial skin and skin structure infection: A systematic review and meta-analysis.Antibiotics20198313710.3390/antibiotics8030137 31487837
    [Google Scholar]
  130. YaghoubiS. ZekiyA.O. KrutovaM. GholamiM. KouhsariE. SholehM. GhafouriZ. MalekiF. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review.Eur. J. Clin. Microbiol. Infect. Dis.20224171003102210.1007/s10096‑020‑04121‑1 33403565
    [Google Scholar]
  131. HeoY.A. Oritavancin (KIMYRSA™) in acute bacterial skin and skin structure infections: A profile of its use in the USA.Drugs Ther. Perspect.2022382576310.1007/s40267‑021‑00888‑1
    [Google Scholar]
  132. KoyamaN. InokoshiJ. TomodaH. Anti-infectious agents against MRSA.Molecules201218120422410.3390/molecules18010204
    [Google Scholar]
  133. PrykaR.D. RodvoldK.A. RotschaferJ.C. Teicoplanin: An investigational glycopeptide antibiotic.Clin. Pharm.198879647658 2977108
    [Google Scholar]
  134. ZengD. DebabovD. HartsellT.L. CanoR.J. AdamsS. SchuylerJ.A. McMillanR. PaceJ.L. Approved glycopeptide antibacterial drugs: Mechanism of action and resistance.Cold Spring Harb. Perspect. Med.2016612a02698910.1101/cshperspect.a026989 27663982
    [Google Scholar]
  135. HashemianS.M. FarhadiT. GanjparvarM. Linezolid: A review of its properties, function, and use in critical care.Drug Des. Devel. Ther.2018121759176710.2147/DDDT.S164515 29950810
    [Google Scholar]
  136. DuplessisC. Crum-CianfloneN.F. Ceftaroline: A new cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA).Clin. Med. Rev. Ther.20113a2466 21785568
    [Google Scholar]
  137. ZhanelG.G. LoveR. AdamH. GoldenA. ZelenitskyS. SchweizerF. GorityalaB. Lagacé-WiensP.R.S. RubinsteinE. WalktyA. GinA.S. GilmourM. HobanD.J. LynchJ.P.III KarlowskyJ.A. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens.Drugs201575325327010.1007/s40265‑015‑0352‑7 25673021
    [Google Scholar]
  138. MattoxJ. BelliveauP. DurandC. Oritavancin: A novel lipoglycopeptide.Consult Pharm.2016312869510.4140/TCP.n.2016.86 26842686
    [Google Scholar]
  139. KhanA. WilsonB. GouldI.M. Current and future treatment options for community-associated MRSA infection.Expert Opin. Pharmacother.201819545747010.1080/14656566.2018.1442826 29480032
    [Google Scholar]
  140. HindyJ.R. HaddadS.F. KanjS.S. New drugs for methicillin-resistant Staphylococcus aureus skin and soft tissue infections.Curr. Opin. Infect. Dis.202235211211910.1097/QCO.0000000000000800 34812745
    [Google Scholar]
  141. DilworthT.J. SliwinskiJ. RyanK. DoddM. MercierR.C. Evaluation of vancomycin in combination with piperacillin-tazobactam or oxacillin against clinical methicillin-resistant Staphylococcus aureus Isolates and vancomycin-intermediate S. aureus isolates in vitro.Antimicrob. Agents Chemother.20145821028103310.1128/AAC.01888‑13 24277036
    [Google Scholar]
  142. McConeghyK.W. BleasdaleS.C. RodvoldK.A. The empirical combination of vancomycin and a β-lactam for Staphylococcal bacteremia.Clin. Infect. Dis.201357121760176510.1093/cid/cit560 23985343
    [Google Scholar]
  143. JorgensenS.C.J. ZasowskiE.J. TrinhT.D. LagnfA.M. BhatiaS. SabaghaN. Abdul-MutakabbirJ.C. AlosaimyS. MynattR.P. DavisS.L. RybakM.J. Daptomycin plus β-lactam combination therapy for methicillin-resistant Staphylococcus aureus bloodstream infections: A retrospective, comparative cohort study.Clin. Infect. Dis.202071111010.1093/cid/ciz746 31404468
    [Google Scholar]
  144. DhandA. SakoulasG. Daptomycin in combination with other antibiotics for the treatment of complicated methicillin-resistant Staphylococcus aureus bacteremia.Clin. Ther.201436101303131610.1016/j.clinthera.2014.09.005 25444563
    [Google Scholar]
  145. TurnerN.A. Sharma-KuinkelB.K. MaskarinecS.A. EichenbergerE.M. ShahP.P. CarugatiM. HollandT.L. FowlerV.G. Jr Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research.Nat. Rev. Microbiol.201917420321810.1038/s41579‑018‑0147‑4 30737488
    [Google Scholar]
  146. CleggJ. SoldainiE. McLoughlinR.M. RittenhouseS. BagnoliF. PhogatS. Staphylococcus aureus vaccine research and development: The past, present and future, including novel therapeutic strategies.Front. Immunol.20211270536010.3389/fimmu.2021.705360 34305945
    [Google Scholar]
  147. ChengA.G. McAdowM. KimH.K. BaeT. MissiakasD.M. SchneewindO. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity.PLoS Pathog.201068e100103610.1371/journal.ppat.1001036 20700445
    [Google Scholar]
  148. HuC.M.J. FangR.H. LukB.T. ZhangL. Nanoparticle-detained toxins for safe and effective vaccination.Nat. Nanotechnol.201381293393810.1038/nnano.2013.254 24292514
    [Google Scholar]
  149. RussellC.D. Streptococcus vaccination and MRSA.Lancet Infect. Dis.201212858610.1016/S1473‑3099(12)70167‑6 22835894
    [Google Scholar]
  150. SpauldingA.R. Salgado-PabónW. MerrimanJ.A. StachC.S. JiY. GillmanA.N. PetersonM.L. SchlievertP.M. Vaccination against Staphylococcus aureus pneumonia.J. Infect. Dis.2014209121955196210.1093/infdis/jit823 24357631
    [Google Scholar]
  151. WardenburgJ.B. SchneewindO. Vaccine protection against Staphylococcus aureus pneumonia.J. Exp. Med.2008205228729410.1084/jem.20072208 18268041
    [Google Scholar]
  152. BhattaD.R. CavacoL.M. NathG. KumarK. GaurA. GokhaleS. BhattaD.R. Association of Panton Valentine Leukocidin (PVL) genes with methicillin resistant Staphylococcus aureus (MRSA) in Western Nepal: A matter of concern for community infections (a hospital based prospective study).BMC Infect. Dis.201616119910.1186/s12879‑016‑1531‑1 27179682
    [Google Scholar]
  153. Stranger-JonesY.K. BaeT. SchneewindO. Vaccine assembly from surface proteins of Staphylococcus aureus.Proc. Natl. Acad. of Sci.2006103451694216947
    [Google Scholar]
  154. StachC.S. VuB.G. MerrimanJ.A. HerreraA. CahillM.P. SchlievertP.M. Salgado-PabónW. Novel tissue level effects of the Staphylococcus aureus enterotoxin gene cluster are essential for infective endocarditis.PLoS One2016114e015476210.1371/journal.pone.0154762 27124393
    [Google Scholar]
  155. PalingF.P. OlsenK. OhnebergK. WolkewitzM. FowlerV.G.Jr DiNubileM.J. JafriH.S. SifakisF. BontenM.J.M. HarbarthS.J. KluytmansJ.A.J.W. Risk prediction for Staphylococcus aureus surgical site infection following cardiothoracic surgery; A secondary analysis of the V710-P003 trial.PLoS One2018133e019344510.1371/journal.pone.0193445 29561866
    [Google Scholar]
  156. YeamanM.R. FillerS.G. ChailiS. BarrK. WangH. KupferwasserD. HennesseyJ.P.Jr FuY. SchmidtC.S. EdwardsJ.E.Jr XiongY.Q. IbrahimA.S. Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection.Proc. Natl. Acad. Sci.201411151E5555E556310.1073/pnas.1415610111 25489065
    [Google Scholar]
  157. GlaxoSmithKlineSafety, Immunogenicity and Efficacy of GSK S. Aureus Candidate Vaccine (GSK3878858A) When Administered to Healthy Adults (Dose-escalation) and to Adults 18 to 64 Years of Age With a Recent S. Aureus Skin and Soft Tissue Infection (SSTI) clinicaltrials.gov; 2021 [Last Update Posted 2024-02-22]. Report No.: NCT04420221.Available from: https://clinicaltrials.gov/study/NCT04420221
  158. BegierE. SeidenD.J. PattonM. ZitoE. SeversJ. CooperD. EidenJ. GruberW.C. JansenK.U. AndersonA.S. GurtmanA. SA4Ag, a 4-antigen Staphylococcus aureus vaccine, rapidly induces high levels of bacteria-killing antibodies.Vaccine20173581132113910.1016/j.vaccine.2017.01.024 28143674
    [Google Scholar]
  159. MorefieldG.L. HawkinsL.D. IshizakaS.T. KissnerT.L. UlrichR.G. Synthetic Toll-like receptor 4 agonist enhances vaccine efficacy in an experimental model of toxic shock syndrome.Clin. Vaccine Immunol.200714111499150410.1128/CVI.00153‑07 17715328
    [Google Scholar]
  160. ZengH. YangF. FengQ. ZhangJ. GuJ. JingH. CaiC. XuL. YangX. XiaX. ZengN. FanS. ZouQ. Rapid and broad immune efficacy of a recombinant five-antigen vaccine against Staphylococcus aureus Infection in Animal Models.Vaccines (Basel)20208113410.3390/vaccines8010134 32197534
    [Google Scholar]
  161. KarauzumH. VenkatasubramaniamA. AdhikariR.P. KortT. HoltsbergF.W. MukherjeeI. MednikovM. OrtinesR. NguyenN.T.Q. DoanT.M.N. DiepB.A. LeeJ.C. AmanM.J. IBT-V02: A multicomponent toxoid vaccine protects against primary and secondary skin infections caused by Staphylococcus aureus.Front. Immunol.20211262431010.3389/fimmu.2021.624310 33777005
    [Google Scholar]
  162. OttoM. Novel targeted immunotherapy approaches for staphylococcal infection.Expert Opin. Biol. Ther.20101071049105910.1517/14712598.2010.495115 20528609
    [Google Scholar]
  163. BenjaminD.K.Jr SchelonkaR. WhiteR. HolleyH.P.Jr BifanoE. CummingsJ. AdcockK. KaufmanD. PuppalaB. RiedelP. HallB. WhiteJ. CottonC.M. A blinded, randomized, multicenter study of an intravenous Staphylococcus aureus immune globulin.J. Perinatol.200626529029510.1038/sj.jp.7211496 16598296
    [Google Scholar]
  164. DeresinskiS. Antistaphylococcal vaccines and immunoglobulins: Current status and future prospects.Drugs200666141797180610.2165/00003495‑200666140‑00002 17040111
    [Google Scholar]
  165. PattiJ.M. A humanized monoclonal antibody targeting Staphylococcus aureus.Vaccine200422Suppl. 1S39S4310.1016/j.vaccine.2004.08.015 15576200
    [Google Scholar]
  166. WeemsJ.J.Jr SteinbergJ.P. FillerS. BaddleyJ.W. CoreyG.R. SampathkumarP. WinstonL. JohnJ.F. KubinC.J. TalwaniR. MooreT. PattiJ.M. HetheringtonS. TexterM. WenzelE. KelleyV.A. FowlerV.G. Jr Phase II, randomized, double-blind, multicenter study comparing the safety and pharmacokinetics of tefibazumab to placebo for treatment of Staphylococcus aureus bacteremia.Antimicrob. Agents Chemother.20065082751275510.1128/AAC.00096‑06 16870768
    [Google Scholar]
  167. BurnieJ.P. MatthewsR.C. CarterT. BeaulieuE. DonohoeM. ChapmanC. WilliamsonP. HodgettsS.J. Identification of an immunodominant ABC transporter in methicillin-resistant Staphylococcus aureus infections.Infect. Immun.20006863200320910.1128/IAI.68.6.3200‑3209.2000 10816464
    [Google Scholar]
  168. AmanM.J. Superantigens of a superbug: Major culprits of Staphylococcus aureus disease?Virulence20178660761010.1080/21505594.2016.1255399 27805458
    [Google Scholar]
  169. LeeB. OlaniyiR. KwiecinskiJ.M. WardenburgJ.B. Staphylococcus aureus toxin suppresses antigen-specific T cell responses.J. Clin. Invest.202013031122112710.1172/JCI130728 31873074
    [Google Scholar]
  170. MiwaK. FukuyamaM. SakaiR. ShimizuS. IdaN. EndoM. IgarashiH. Sensitive enzyme-linked immunosorbent assays for the detection of bacterial superantigens and antibodies against them in human plasma.Microbiol. Immunol.200044651952310.1111/j.1348‑0421.2000.tb02527.x 10941935
    [Google Scholar]
  171. TanL. LiS.R. JiangB. HuX.M. LiS. Therapeutic targeting of the Staphylococcus aureus accessory gene regulator (agr) system.Front. Microbiol.201895510.3389/fmicb.2018.00055 29422887
    [Google Scholar]
  172. SauseW.E. BuckleyP.T. StrohlW.R. LynchA.S. TorresV.J. Antibody-based biologics and their promise to combat Staphylococcus aureus infections.Trends Pharmacol. Sci.201637323124110.1016/j.tips.2015.11.008 26719219
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010310231240529075731
Loading
/content/journals/cpb/10.2174/0113892010310231240529075731
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): CA-MRSA; endocarditis; HCAP; MRSA; vancomycin; VRSA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test