Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Essential oils are natural compounds extracted from plants that are volatile and sensitive to heat. Due to their therapeutic value, essential oils are now used in many industries, including the sanitary, cosmetic, agricultural, food, and pharmaceutical industries. These are complex mixtures of a wide range of volatile molecules, including phenol-derived aliphatic and aromatic compounds and terpenoids. Essential oils have been used medicinally since ancient times for their antibacterial, antifungal, antiviral, antiparasitic, insecticidal, sedative, anti-inflammatory, and anaesthetic properties. However, essential oils come with inherent limitations; thus, nanoencapsulation is advocated as a remedy as it has the potential to enhance the stability, solubility, and effectiveness of formulations based on essential oils, all while preserving the therapeutic drug blood levels. It is not always viable to use essential oils independently in treatment due to several restrictions; however, nanodelivery technologies appear capable of overcoming these challenges. The therapeutic efficacy that is achieved can be affected by several factors, including the selection of the essential oil as well as the system of nanodelivery. Today, nanoencapsulation is capable of enabling the simultaneous delivery of multiple oils, providing synergistic effects, and facilitating the development of combinational therapies. Additionally, they may have potential applications in preserving food to prolong the shelf life of quick-spoiling items and their fragrances. While there is already much research on the characterisation of EOs, this review evaluates the features of the nanoparticles employed for the delivery of essential oils and their impact on the functionality of nano-delivered essential oils and their beneficial uses.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010291682240423095306
2024-05-10
2025-09-15
Loading full text...

Full text loading...

References

  1. TongnuanchanP. BenjakulS. Essential oils: Extraction, bioactivities, and their uses for food preservation.J. Food Sci.2014797R1231R124910.1111/1750‑3841.1249224888440
    [Google Scholar]
  2. MahatoN. SharmaK. KoteswararaoR. SinhaM. BaralE. ChoM.H. Citrus essential oils: Extraction, authentication and application in food preservation.Crit. Rev. Food Sci. Nutr.201959461162510.1080/10408398.2017.138471628956626
    [Google Scholar]
  3. BurtS. Essential oils: Their antibacterial properties and potential applications in foods—a review.Int. J. Food Microbiol.200494322325310.1016/j.ijfoodmicro.2004.03.02215246235
    [Google Scholar]
  4. TajkarimiM.M. IbrahimS.A. CliverD.O. Antimicrobial herb and spice compounds in food.Food Control20102191199121810.1016/j.foodcont.2010.02.003
    [Google Scholar]
  5. ViganM. Essential oils: Renewal of interest and toxicity.Eur. J. Dermatol.201020668569220840911
    [Google Scholar]
  6. HennebelleT. SahpazS. JosephH. BailleulF. Ethnopharmacology of Lippia alba.J. Ethnopharmacol.2008116221122210.1016/j.jep.2007.11.04418207682
    [Google Scholar]
  7. BelayG. TarikuY. KebedeT. HymeteA. MekonnenY. Ethnopharmacological investigations of essential oils isolated from five Ethiopian medicinal plants against eleven pathogenic bacterial strains.Phytopharmacology20111133143
    [Google Scholar]
  8. DonsìF. AnnunziataM. SessaM. FerrariG. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods.Lebensm. Wiss. Technol.20114491908191410.1016/j.lwt.2011.03.003
    [Google Scholar]
  9. FirenzuoliF. JaitakV. HorvathG. BassoléI.H.N. SetzerW.N. GoriL. Essential oils: New perspectives in human health and wellness.Evid. Based Complement. Alternat. Med.201420141210.1155/2014/46736325050126
    [Google Scholar]
  10. PalomboE.A. Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases.Evid. Based Complement. Alternat. Med.2011201111510.1093/ecam/nep06719596745
    [Google Scholar]
  11. FometuS.S. ShittuS. HermanR.A. AyepaE. Essential oils and their applications-A mini review.ANAFS20194113
    [Google Scholar]
  12. MalloggiE. MenicucciD. CesariV. FrumentoS. GemignaniA. BertoliA. Lavender aromatherapy: A systematic review from essential oil quality and administration methods to cognitive enhancing effects.Appl. Psychol. Health Well-Being202214266369010.1111/aphw.1231034611999
    [Google Scholar]
  13. BasaidK. ChebliB. MayadE.H. FurzeJ.N. BouharroudR. KrierF. BarakateM. PaulitzT. Biological activities of essential oils and lipopeptides applied to control plant pests and diseases: A review.Int. J. Pest Manage.202167215517710.1080/09670874.2019.1707327
    [Google Scholar]
  14. AngioniA. BarraA. CoroneoV. DessiS. CabrasP. Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers.J. Agric. Food Chem.200654124364437010.1021/jf060332916756368
    [Google Scholar]
  15. BaşerK.H.C. DemirciF. Chemistry of essential oils. Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability. Berger RG.New YorkSpringer20074386
    [Google Scholar]
  16. TabancaN. DemirciB. CrockettS.L. BaşerK.H.C. WedgeD.E. Chemical composition and antifungal activity of Arnica longifolia, Aster hesperius, and Chrysothamnus nauseosus essential oils.J. Agric. Food Chem.200755218430843510.1021/jf071379c17894463
    [Google Scholar]
  17. HüsnüK. BaşerC. DemirciF. Chemistry of essential oils, in Flavours and Fragrances.Springer20074386
    [Google Scholar]
  18. SenatoreF. Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides L.) growing wild in Campania (Southern Italy).J. Agric. Food Chem.19964451327133210.1021/jf950508z
    [Google Scholar]
  19. PavelaR. Essential oils for the development of eco-friendly mosquito larvicides: A review.Ind. Crops Prod.20157617418710.1016/j.indcrop.2015.06.050
    [Google Scholar]
  20. CosentinoS. TuberosoC.I.G. PisanoB. SattaM. MasciaV. ArzediE. PalmasF. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils.Lett. Appl. Microbiol.199929213013510.1046/j.1472‑765X.1999.00605.x10499301
    [Google Scholar]
  21. BakkaliF. AverbeckS. AverbeckD. IdaomarM. Biological effects of essential oils – A review.Food Chem. Toxicol.200846244647510.1016/j.fct.2007.09.10617996351
    [Google Scholar]
  22. El AsbahaniA. JilaleA. VoisinS.N. Aït AddiE. CasabiancaH. El MousadikA. HartmannD.J. RenaudF.N.R. RenaudF.N.R. Chemical composition and antimicrobial activity of nine essential oils obtained by steam distillation of plants from the Souss-Massa Region (Morocco).J. Essent. Oil Res.2015271344410.1080/10412905.2014.964426
    [Google Scholar]
  23. Chemical components of essential oils.Available from: https://www.baseformula.com/blog/essential-oil-chemical-components
  24. BrusottiG. CesariI. DentamaroA. CaccialanzaG. MassoliniG. Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach.J. Pharm. Biomed. Anal.20148721822810.1016/j.jpba.2013.03.00723591140
    [Google Scholar]
  25. YoudimK.A. Damien DormanH.J. DeansS.G. The antioxidant effectiveness of thyme oil, α-tocopherol and ascorbyl palmitate on evening primrose oil oxidation.J. Essent. Oil Res.199911564364810.1080/10412905.1999.9701231
    [Google Scholar]
  26. Baptista-SilvaS. BorgesS. RamosO.L. PintadoM. SarmentoB. The progress of essential oils as potential therapeutic agents: A review.J. Essent. Oil Res.202032427929510.1080/10412905.2020.1746698
    [Google Scholar]
  27. ZhangW. JiangH. RhimJ.W. CaoJ. JiangW. Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings.Food Chem.202236713067110.1016/j.foodchem.2021.13067134343816
    [Google Scholar]
  28. RezaeiA. FathiM. JafariS.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers.Food Hydrocoll.20198814616210.1016/j.foodhyd.2018.10.003
    [Google Scholar]
  29. MihaiA.L. PopaM.E. Essential oils utilization in food industry-a literature review.Sci. Bull. Ser. F Biotechnol.20131722851364
    [Google Scholar]
  30. SilvaJ.S.M. RabeloM.S. LimaS.X. AnalfR. TadeiW.P. ChavesF.C.M. BezerraJ.A. BiondoM.M. CampeloP.H. SanchesE.A. Biodegradable nanoparticles loaded with Lippia alba essential oil, a sustainable alternative for Aedes aegypti larvae control.Eur. Acad. Res.2020VII62376258
    [Google Scholar]
  31. MaryamI. HuzaifaU. HindatuH. ZubaidaS. Nanoencapsulation of essential oils with enhanced antimicrobial activity: A new way of combating antimicrobial Resistance.J. Pharmacogn. Phytochem.201543165170
    [Google Scholar]
  32. FonsecaL.M. CruxenC.E.S. BruniG.P. FiorentiniÂ.M. ZavarezeE.R. LimL.T. DiasA.R.G. Development of antimicrobial and antioxidant electrospun soluble potato starch nanofibers loaded with carvacrol.Int. J. Biol. Macromol.20191391182119010.1016/j.ijbiomac.2019.08.09631415859
    [Google Scholar]
  33. Luque-AlcarazA.G. Cortez-RochaM.O. Velázquez-ContrerasC.A. Acosta-SilvaA.L. Santacruz-OrtegaH.C. Burgos-HernándezA. Argüelles-MonalW.M. Plascencia-JatomeaM. Enhanced antifungal effect of chitosan/pepper tree ( Schinus molle ) essential oil bionanocomposites on the viability of aspergillus parasiticus spores.J. Nanomater.2016201611010.1155/2016/6060137
    [Google Scholar]
  34. RosliN.A. HashamR. AzizA.A. Design and physicochemical evaluation of lipid encapsulated Zingiber zerumbet oil by d-optimal mixture design.J. Teknol.201880310511310.11113/jt.v80.11268
    [Google Scholar]
  35. AlbuquerqueP.M. AzevedoS.G. de AndradeC.P. D’AmbrosN.C.S. PérezM.T.M. ManzatoL. Biotechnological applications of nanoencapsulated essential oils: A review.Polymers20221424549510.3390/polym1424549536559861
    [Google Scholar]
  36. DasS. SinghV.K. DwivedyA.K. ChaudhariA.K. DubeyN.K. Anethum graveolens essential oil encapsulation in chitosan nanomatrix: Investigations on in vitro release behavior, organoleptic attributes, and efficacy as potential delivery vehicles against biodeterioration of rice (Oryza sativa L.).Food Bioprocess Technol.202114583185310.1007/s11947‑021‑02589‑z
    [Google Scholar]
  37. RahimiG. YousefniaS. AngnesL. NegahdaryM. Design a PEGylated nanocarrier containing lemongrass essential oil (LEO), a drug delivery system: Application as a cytotoxic agent against breast cancer cells.J. Drug Deliv. Sci. Technol.20238010418310.1016/j.jddst.2023.104183
    [Google Scholar]
  38. MahdiA.A. Al-MaqtariQ.A. MohammedJ.K. Al-AnsiW. CuiH. LinL. Enhancement of antioxidant activity, antifungal activity, and oxidation stability of Citrus reticulata essential oil nanocapsules by clove and cinnamon essential oils.Food Biosci.20214310122610.1016/j.fbio.2021.101226
    [Google Scholar]
  39. Silva-FloresP.G. Galindo-RodríguezS.A. Pérez-LópezL.A. Álvarez-RománR. Development of essential oil-loaded polymeric nanocapsules as skin delivery systems: Biophysical parameters and dermatokinetics ex vivo evaluation.Molecules20232820714210.3390/molecules2820714237894621
    [Google Scholar]
  40. JiangQ. WuY. ZhangH. LiuP. YaoJ. YaoP. ChenJ. DuanJ. Development of essential oils as skin permeation enhancers: Penetration enhancement effect and mechanism of action.Pharm. Biol.20175511592160010.1080/13880209.2017.131246428399694
    [Google Scholar]
  41. YeguermanC.A. JesserE.N. GiliV. RodriguezS. SantillánG. MurrayA.P. GonzálezJ.O.W. Polymeric nanoparticles improve lethal and sublethal effects of essential oils and pyrethroids toward the rice weevil and the cigarette beetle.J. Pest Sci.202310.1007/s10340‑023‑01702‑9
    [Google Scholar]
  42. GhoshV. RanjhaR. GuptaA.K. Polymeric encapsulation of anti-larval essential oil nanoemulsion for controlled release of bioactive compounds.Inorg. Chem. Commun.202315011050710.1016/j.inoche.2023.110507
    [Google Scholar]
  43. XavierL.O. SganzerlaW.G. RosaG.B. da RosaC.G. AgostinettoL. VeeckA.P.L. BretanhaL.C. MickeG.A. Dalla CostaM. BertoldiF.C. BarretoP.L.M. NunesM.R. Chitosan packaging functionalized with Cinnamodendron dinisii essential oil loaded zein: A proposal for meat conservation.Int. J. Biol. Macromol.202116918319310.1016/j.ijbiomac.2020.12.09333340631
    [Google Scholar]
  44. VahedikiaN. GaravandF. TajeddinB. CacciottiI. JafariS.M. OmidiT. ZahediZ. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes.Colloids Surf. B Biointerfaces2019177253210.1016/j.colsurfb.2019.01.04530703751
    [Google Scholar]
  45. KwanA. Davidov-PardoG. Controlled release of flavor oil nanoemulsions encapsulated in filled soluble hydrogels.Food Chem.2018250465310.1016/j.foodchem.2017.12.08929412926
    [Google Scholar]
  46. Méndez-VilaA. Microbes in the spotlight: Recent progress in the understanding of beneficial and harmful microorganism contains a selection of papers presented at the vi international conference on environmental.Industrial and Applied Microbiology - BioMicroWorld20152016
    [Google Scholar]
  47. ChoK. WangX. NieS. ChenZ.G. ShinD.M. Therapeutic nanoparticles for drug delivery in cancer.Clin. Cancer Res.20081451310131610.1158/1078‑0432.CCR‑07‑144118316549
    [Google Scholar]
  48. HamoudehM. KamlehM.A. DiabR. FessiH. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer.Adv. Drug Deliv. Rev.200860121329134610.1016/j.addr.2008.04.01318562040
    [Google Scholar]
  49. YammineJ. ChihibN.E. GharsallaouiA. IsmailA. KaramL. Advances in essential oils encapsulation: Development, characterization and release mechanisms.Polym. Bull.20248138373882
    [Google Scholar]
  50. Namata AbbaB. IlagoumaA.T. AmadouI. RomaneA. Chemical profiling, antioxidant and antibacterial activities of essential oil from Englerastrum gracillimum Th. C. E. fries growing in niger.Nat. Prod. Commun.20211631934578X211002410.1177/1934578X211002422
    [Google Scholar]
  51. KrishnaswamyK. OrsatV. Sustainable delivery systems through green nanotechnology.Nano-and microscale drug delivery systems.Elsevier2017173210.1016/B978‑0‑323‑52727‑9.00002‑9
    [Google Scholar]
  52. SoppimathK.S. AminabhaviT.M. KulkarniA.R. RudzinskiW.E. Biodegradable polymeric nanoparticles as drug delivery devices.J. Control. Release2001701-212010.1016/S0168‑3659(00)00339‑411166403
    [Google Scholar]
  53. CanoA. EttchetoM. ChangJ.H. BarrosoE. EspinaM. KühneB.A. BarenysM. AuladellC. FolchJ. SoutoE.B. CaminsA. TurowskiP. GarcíaM.L. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model.J. Control. Release2019301627510.1016/j.jconrel.2019.03.01030876953
    [Google Scholar]
  54. CanoA. Sánchez-LópezE. EttchetoM. López-MachadoA. EspinaM. SoutoE.B. GalindoR. CaminsA. GarcíaM.L. TurowskiP. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases.Nanomedicine202015121239126110.2217/nnm‑2019‑044332370600
    [Google Scholar]
  55. PitorreM. GondéH. HauryC. MessousM. PoilaneJ. BoudaudD. KanberE. Rossemond NdombinaG.A. BenoitJ.P. BastiatG. Recent advances in nanocarrier-loaded gels: Which drug delivery technologies against which diseases?J. Control. Release201726614015510.1016/j.jconrel.2017.09.03128951319
    [Google Scholar]
  56. SchaffazickS.R. PohlmannA.R. Dalla-CostaT. GuterresS.S. Freeze-drying polymeric colloidal suspensions: Nanocapsules, nanospheres and nanodispersion. A comparative study.Eur. J. Pharm. Biopharm.200356350150510.1016/S0939‑6411(03)00139‑514602195
    [Google Scholar]
  57. AdebilejeT. ValizadehA. AmaniA. Effect of formulation parameters on the size of PLGA nanoparticles encapsulating bovine serum albumin: A response surface methodology.J. Contemp. Med. Sci20173306312
    [Google Scholar]
  58. TeimouriA. Jafarpour AzamiS. KeshavarzH. EsmaeiliF. AlimiR. Ayazian MaviS. ShojaeeS. Anti-Toxoplasma activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain.Int. J. Nanomedicine2018131341135110.2147/IJN.S15873629563791
    [Google Scholar]
  59. IzadiF. Pajohi-AlamotiM. EmamifarA. NourianA. Fabrication and characterization of active poly(lactic acid) films containing Thymus daenensis essential oil/beta-cyclodextrin inclusion complex and silver nanoparticles to extend the shelf life of ground beef.Food Bioprocess Technol.202310.1007/s11947‑023‑03200‑3
    [Google Scholar]
  60. GeorgeA. ShahP.A. ShrivastavP.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review.Int. J. Pharm.201956124426410.1016/j.ijpharm.2019.03.01130851391
    [Google Scholar]
  61. SebaalyC. JraijA. FessiH. CharcossetC. Greige-GergesH. Preparation and characterization of clove essential oil-loaded liposomes.Food Chem.2015178526210.1016/j.foodchem.2015.01.06725704683
    [Google Scholar]
  62. WeisanyW. YousefiS. TahirN.A. GolestanehzadehN. McClementsD.J. AdhikariB. GhasemlouM. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review.Adv. Colloid Interface Sci.202230310265510.1016/j.cis.2022.10265535364434
    [Google Scholar]
  63. ParkS.J. GarciaC.V. ShinG.H. KimJ.T. Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3.Food Chem.201722521321910.1016/j.foodchem.2017.01.01528193417
    [Google Scholar]
  64. JafariS.M. McClementsD.J. Nanotechnology approaches for increasing nutrient bioavailability.Adv. Food Nutr. Res.20178113010.1016/bs.afnr.2016.12.00828317602
    [Google Scholar]
  65. MishraD.K. ShandilyaR. MishraP.K. Lipid based nanocarriers: A translational perspective.Nanomedicine20181472023205010.1016/j.nano.2018.05.02129944981
    [Google Scholar]
  66. TrucilloP. FerrariP.F. CampardelliR. ReverchonE. PeregoP. A supercritical assisted process for the production of amoxicillin-loaded liposomes for antimicrobial applications.J. Supercrit. Fluids202016310484210.1016/j.supflu.2020.104842
    [Google Scholar]
  67. GeX. HuY. ShenH. LiangW. SunZ. ZhangX. LiW. Pheophorbide-a as a light-triggered liposomal switch: For the controlled release of Alpinia galanga ( A. galanga ) essential oil and its stability, antioxidant, and antibacterial activity assessment.J. Agric. Food Chem.20237131667167810.1021/acs.jafc.2c0708236629793
    [Google Scholar]
  68. ZahinN. AnwarR. TewariD. KabirM.T. SajidA. MathewB. UddinM.S. AleyaL. Abdel-DaimM.M. Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery.Environ. Sci. Pollut. Res. Int.20202716191511916810.1007/s11356‑019‑05211‑031079299
    [Google Scholar]
  69. OsanlooM. AssadpourS. MehravaranA. AbastabarM. AkhtariJ. Niosome-loaded antifungal drugs as an effective nanocarrier system: A mini review.Curr. Med. Mycol.201944313610.18502/cmm.4.4.38430815615
    [Google Scholar]
  70. MüllerR.H. RadtkeM. WissingS.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Adv. Drug Deliv. Rev.200254Suppl. 1S131S15510.1016/S0169‑409X(02)00118‑712460720
    [Google Scholar]
  71. SinghY. MeherJ.G. RavalK. KhanF.A. ChaurasiaM. JainN.K. ChourasiaM.K. Nanoemulsion: Concepts, development and applications in drug delivery.J. Control. Release2017252284910.1016/j.jconrel.2017.03.00828279798
    [Google Scholar]
  72. PalazzoloS. BaydaS. HadlaM. CaligiuriI. CoronaG. ToffoliG. RizzolioF. The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes.Curr. Med. Chem.201825344224426810.2174/092986732466617083011375528875844
    [Google Scholar]
  73. GutiérrezJ.M. GonzálezC. MaestroA. SolèI. PeyC.M. NollaJ. Nano-emulsions: New applications and optimization of their preparation.Curr. Opin. Colloid Interface Sci.200813424525110.1016/j.cocis.2008.01.005
    [Google Scholar]
  74. SharmaN. BansalM. VishtS. SharmaP. KulkarniG. Nanoemulsion: A new concept of delivery system.Chronicles of Young Scientists2010126
    [Google Scholar]
  75. EsmaeiliF. RajabnejhadS. PartoazarA.R. MehrS.E. Faridi-MajidiR. SahebgharaniM. SyedmoradiL. RajabnejhadM.R. AmaniA. Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system.Pharm. Dev. Technol.201621788789310.3109/10837450.2015.107835326365132
    [Google Scholar]
  76. Che MarzukiN.H. WahabR.A. Abdul HamidM. An overview of nanoemulsion: Concepts of development and cosmeceutical applications.Biotechnol. Biotechnol. Equip.201933177979710.1080/13102818.2019.1620124
    [Google Scholar]
  77. CruchoC.I.C. BarrosM.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods.Mater. Sci. Eng. C20178077178410.1016/j.msec.2017.06.00428866227
    [Google Scholar]
  78. OsanlooM. AbdollahiA. ValizadehA. AbedinpourN. Antibacterial potential of essential oils of Zataria multiflora and Mentha piperita, micro- and nano-formulated forms.Iran. J. Microbiol.2020121435110.18502/ijm.v12i1.251732322379
    [Google Scholar]
  79. EsmailiF. Sanei-DehkordiA. AmozegarF. OsanlooM. A review on the use of essential oil-based nanoformulations in control of mosquitoes.Biointerface Res. Appl. Chem.2021115125161252910.33263/BRIAC115.1251612529
    [Google Scholar]
  80. BatzriS. KornE.D. Single bilayer liposomes prepared without sonication.Biochim. Biophys. Acta Biomembr.197329841015101910.1016/0005‑2736(73)90408‑24738145
    [Google Scholar]
  81. BanghamA.D. Physical structure and behavior of lipids and lipid enzymes.Adv. Lipid Res.196316510410.1016/B978‑1‑4831‑9937‑5.50008‑914248958
    [Google Scholar]
  82. PardeikeJ. HommossA. MüllerR.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.Int. J. Pharm.20093661-217018410.1016/j.ijpharm.2008.10.00318992314
    [Google Scholar]
  83. ValentiD. De LoguA. LoyG. SinicoC. BonsignoreL. CottigliaF. GarauD. FaddaA.M. Liposome-incorporated santolina insularis essential oil: Preparation, characterization and in vitro antiviral activity.J. Liposome Res.2001111739010.1081/LPR‑10010317119530920
    [Google Scholar]
  84. LioliosC.C. GortziO. LalasS. TsaknisJ. ChinouI. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity.Food Chem.20091121778310.1016/j.foodchem.2008.05.060
    [Google Scholar]
  85. RibeiroA.C.F. ValenteA.J.M. LoboV.M.M. Transport properties of cyclodextrins: Intermolecular diffusion coefficients.J. Balk. Tribol. Assoc200814396404
    [Google Scholar]
  86. FaroukA. SharafS. RefaieR. Abd El-HadyM.M. Highly durable antibacterial properties of cellulosic fabric via β-cyclodextrin/essential oils inclusion complex.Polymers20221422489910.3390/polym1422489936433025
    [Google Scholar]
  87. HadianZ. MalekiM. AbdiK. AtyabiF. MohammadiA. KhaksarR. Preparation and characterization of nanoparticle β-cyclodextrin:geraniol inclusion complexes.Iran. J. Pharm. Res.2018171395129755537
    [Google Scholar]
  88. CaoC. XieP. ZhouY. GuoJ. Characterization, thermal stability and antimicrobial evaluation of the inclusion complex of litsea cubeba essential oil in large-ring cyclodextrins (CD9–CD22).Foods20231210203510.3390/foods1210203537238853
    [Google Scholar]
  89. BentoR. PagánE. BerdejoD. de CarvalhoR.J. García-EmbidS. MaggiF. MagnaniM. de SouzaE.L. García-GonzaloD. PagánR. Chitosan nanoemulsions of cold-pressed orange essential oil to preserve fruit juices.Int. J. Food Microbiol.202033110878610.1016/j.ijfoodmicro.2020.10878632659617
    [Google Scholar]
  90. MatcheR.S. AdeogunO.O. Physicochemical characterisations of nanoencapsulated Eucalyptus globulus oil with gum Arabic and gum Arabic nanocapsule and their biocontrol effect on anthracnose disease of Syzygium malaccense Fruits.Sci. Am.202218e01421
    [Google Scholar]
  91. SindhuM. RajkumarV. AnnapooraniC.A. GunasekaranC. KannanM. Nanoencapsulation of garlic essential oil using chitosan nanopolymer and its antifungal and anti-aflatoxin B1 efficacy in vitro and in situ.Int. J. Biol. Macromol.202324312516010.1016/j.ijbiomac.2023.12516037271266
    [Google Scholar]
  92. ChristofoliM. CostaE.C.C. BicalhoK.U. de Cássia DominguesV. PeixotoM.F. AlvesC.C.F. AraújoW.L. de Melo CazalC. Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations.Ind. Crops Prod.20157030130810.1016/j.indcrop.2015.03.025
    [Google Scholar]
  93. PathaniaD. KumarS. ThakurP. ChaudharyV. KaushikA. VarmaR.S. FurukawaH. SharmaM. KhoslaA. Essential oil-mediated biocompatible magnesium nanoparticles with enhanced antibacterial, antifungal, and photocatalytic efficacies.Sci. Rep.20221211143110.1038/s41598‑022‑14984‑335794190
    [Google Scholar]
  94. BashirO. AminT. HussainS.Z. NaikH.R. GoksenG. WaniA.W. ManzoorS. MalikA.R. WaniF.J. ProestosC. Development, characterization and use of rosemary essential oil loaded water-chestnut starch based nanoemulsion coatings for enhancing post-harvest quality of apples var. Golden delicious.Current Research in Food Science2023710057010.1016/j.crfs.2023.10057037701633
    [Google Scholar]
  95. FrajA. JaâfarF. MartiM. CoderchL. LadhariN. A comparative study of oregano (Origanum vulgare L.) essential oil-based polycaprolactone nanocapsules/ microspheres: Preparation, physicochemical characterization, and storage stability.Ind. Crops Prod.201914011166910.1016/j.indcrop.2019.111669
    [Google Scholar]
  96. EhsanfarP. TeimouriM. PooladiM. Investigating characterizations and antifungal effects of solid lipid nanoparticles (SLNs) loaded with essential oil of citrus aurantifolia on isolated malassezia strains.Arch. Adv. Biosci.20201134355
    [Google Scholar]
  97. BaldimI. PazianiM.H. Grizante BariãoP.H. KressM.R.Z. OliveiraW.P. Nanostructured lipid carriers loaded with Lippia sidoides essential oil as a strategy to combat the multidrug-resistant Candida auris. Pharmaceutics202214118010.3390/pharmaceutics1401018035057078
    [Google Scholar]
  98. HaiC.T. Van ThanhD. XuanV.T. NamM.H. TamK.T. Anticancer activity of Piper chaudocanum essential oils and essential oil-mediated silver nanoparticles.Biochem. Syst. Ecol.202310810462110.1016/j.bse.2023.104621
    [Google Scholar]
  99. Oliveira Brito Pereira Bezerra MartinsA. WanderleyA.G. AlcântaraI.S. RodriguesL.B. CesárioF.R.A.S. Correia de OliveiraM.R. CastroF.F. AlbuquerqueT.R. da SilvaM.S.A. Ribeiro-FilhoJ. CoutinhoH.D.M. MenezesP.P. Quintans-JúniorL.J. AraújoA.A.S. IritiM. AlmeidaJ.R.G.S. MenezesI.R.A. Anti-inflammatory and physicochemical characterization of the Croton rhamnifolioides essential oil inclusion complex in β-cyclodextrin.Biology20209611410.3390/biology906011432486128
    [Google Scholar]
  100. BarradasT.N. de Holanda e SilvaK.G. Nanoemulsions of essential oils to improve solubility, stability and permeability: A review.Environ. Chem. Lett.20211921153117110.1007/s10311‑020‑01142‑2
    [Google Scholar]
  101. SharmeenJ. MahomoodallyF. ZenginG. MaggiF. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals.Molecules202126366610.3390/molecules2603066633514008
    [Google Scholar]
  102. KashyapN. KumariA. RainaN. ZakirF. GuptaM. Prospects of essential oil loaded nanosystems for skincare.Phytomedicine Plus20222110019810.1016/j.phyplu.2021.100198
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010291682240423095306
Loading
/content/journals/cpb/10.2174/0113892010291682240423095306
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test