Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Early cancer identification is essential for increasing survival rates and lowering the disease's burden in today's society. Artificial intelligence (AI)-based algorithms may help in the early detection of cancer and resolve problems with current diagnostic methods. This article gives an overview of the prospective uses of AI in early cancer detection.

The authors go over the possible applications of Artificial Intelligence algorithms used for screening risk of malignancy in asymptomatic patients, investigating as well as prioritising symptomatic individuals, and more accurately diagnosing cancer recurrence.

In screening programmes, the importance of patient selection and risk stratification is emphasised, and AI may be able to assist in identifying people who are most at risk of acquiring cancer. Aside from pathology slide and peripheral blood analysis, AI can also increase the diagnostic precision of imaging methods like computed tomography (CT) and mammography. A summary of various AI techniques is given in the review, covering more sophisticated deep learning and neural networks and more traditional models like logistic regression. The advantages of deep learning algorithms in spotting intricate patterns in huge datasets and their potential to increase the precision of cancer diagnosis are emphasised by the authors. The ethical concerns surrounding the application of AI in healthcare are also discussed, and include topics like prejudice, data security, and privacy.

A review of the models now employed in clinical practice is included along with a discussion of the prospective clinical implications of AI algorithms. Examined are AI's drawbacks and hazards, such as resource requirements, data quality, and the necessity for consistent reporting. In conclusion, this study emphasises the utility of AI algorithms in the early detection of cancer and gives a general overview of the many strategies and difficulties involved in putting them into use in clinical settings.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010298852240528123911
2024-06-06
2025-12-20
Loading full text...

Full text loading...

References

  1. McPhailS. JohnsonS. GreenbergD. PeakeM. RousB. Stage at diagnosis and early mortality from cancer in England.Br J Cancer2015112S1S108S11510.1038/bjc.2015.49
    [Google Scholar]
  2. Blandin KnightS. CrosbieP.A. BalataH. ChudziakJ. HussellT. DiveC. Progress and prospects of early detection in lung cancer.Open Biol.20177917007010.1098/rsob.17007028878044
    [Google Scholar]
  3. CancerData.Available from: https://www.cancerdata.nhs.uk/stage_at_diagnosis
  4. Cancer.Available from: https://www.longtermplan.nhs.uk/areas-of-work/cancer/
  5. SasieniP. Evaluation of the UK breast screening programmes.Ann. Oncol.20031481206120810.1093/annonc/mdg32512881379
    [Google Scholar]
  6. MaroniR. MassatN.J. ParmarD. DibdenA. CuzickJ. SasieniP.D. DuffyS.W. A case-control study to evaluate the impact of the breast screening programme on mortality in England.Br. J. Cancer2021124473674310.1038/s41416‑020‑01163‑233223536
    [Google Scholar]
  7. EssermanL.J. Anton-CulverH. BorowskyA. BrainS. CinkT. CrawfordB. EklundM. EssermanL. FentonJ. HeditsianD. HiattR.A. HogarthM. KaplanC. KoenigB. LaCroixA. LarsenK.M. LeeV. MatthewsJ. MadlenskyL. NaeimA. FournierO.H. ParkerB.A. SepuchaK. ShiehY. FiscaliniS.A. ThompsonC. TiceJ. Van ‘T VeerL. WengerN. ZivE. The WISDOM study: Breaking the deadlock in the breast cancer screening debate.NPJ Breast Cancer2017313410.1038/s41523‑017‑0035‑528944288
    [Google Scholar]
  8. DembrowerK. WåhlinE. LiuY. SalimM. SmithK. LindholmP. EklundM. StrandF. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: A retrospective simulation study.Lancet Digit. Health202029e468e47410.1016/S2589‑7500(20)30185‑033328114
    [Google Scholar]
  9. MeystreS.M. HeiderP.M. KimY. AruchD.B. BrittenC.D. Automatic trial eligibility surveillance based on unstructured clinical data.Int. J. Med. Inform.2019129131910.1016/j.ijmedinf.2019.05.01831445247
    [Google Scholar]
  10. BeckJ.T. RammageM. JacksonG.P. PreiningerA.M. Dankwa-MullanI. RoebuckM.C. TorresA. HoltzenH. CoverdillS.E. WilliamsonM.P. ChauQ. RheeK. VinegraM. Artificial intelligence tool for optimizing eligibility screening for clinical trials in a large community cancer center.JCO Clin. Cancer Inform.202044505910.1200/CCI.19.0007931977254
    [Google Scholar]
  11. HuangS. YangJ. FongS. ZhaoQ. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges.Cancer Lett.2020471617110.1016/j.canlet.2019.12.00731830558
    [Google Scholar]
  12. Neoplasm.https://www.cancer.gov/publications/dictionaries/cancer-terms/def/neoplasm
  13. KarmakarP.R. Epidemiology of cancer: Asian perspective revised.Cancer; Diagn. Ther.2022489508
    [Google Scholar]
  14. Shaping the future of childhood cancer care in India-key results from a national situational analysis: factsheet.Available from: https://www.cdc.gov/narms/faq.html%0A 2022
  15. AH2021.12th Augmented Human International Conference.Geneva, SwitzerlandMay 27-28, 20212022
    [Google Scholar]
  16. CohenS.M. ArnoldL.L. Chemical carcinogenesis.Toxicol. Sci.2011120S1S76S9210.1093/toxsci/kfq36521147961
    [Google Scholar]
  17. MaiorovG.E. TsaiC.J. NussinovR. Oncoviruses can drive cancer by rewiring signaling pathways through interface mimicry.Front. Oncol.20199123610.3389/fonc.2019.0123631803618
    [Google Scholar]
  18. SmithT.A. KirkpatrickD.R. SmithS. SmithT.K. PearsonT. KailasamA. HerrmannK.Z. SchubertJ. AgrawalD.K. Radioprotective agents to prevent cellular damage due to ionizing radiation.J. Transl. Med.201715123210.1186/s12967‑017‑1338‑x29121966
    [Google Scholar]
  19. How cancer is diagnosed.https://www.cancer.gov/about-cancer/diagnosis-staging/diagnosis
  20. YimW. YetisgenM. HarrisW.P. KwanS.W. Natural language processing in oncology.JAMA Oncol.20162679780410.1001/jamaoncol.2016.021327124593
    [Google Scholar]
  21. ChhatwalJ AlagozO LindstromMJ KahnCE ShafferKA BurnsideES A logistic regression model based on the national mammography database format to aid breast cancer diagnosis.AJR Am J Roentgenol20091924111710.2214/AJR.07.3345
    [Google Scholar]
  22. ZhangF. KaufmanH.L. DengY. DrabierR. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood.BMC Med Genomics20136S1S410.1186/1755‑8794‑6‑S1‑S4
    [Google Scholar]
  23. OlatunjiS.O. AlotaibiS. AlmutairiE. AlrabaeZ. AlmajidY. AltabeeR. AltassanM. AhmedB.M.I. FarooquiM. AlhiyafiJ. Early diagnosis of thyroid cancer diseases using computational intelligence techniques: A case study of a Saudi Arabian dataset.Comput. Biol. Med.202113110426710.1016/j.compbiomed.2021.10426733647831
    [Google Scholar]
  24. FengP. XiaoL-H. ChenP-R. GouZ-P. LiY.Z. LiM. XiangL-C. Prostate cancer prediction using the random forest algorithm that takes into account transrectal ultrasound findings, age, and serum levels of prostate-specific antigen.Asian J. Androl.201719558659010.4103/1008‑682X.18688427586028
    [Google Scholar]
  25. LiewX.Y. HameedN. ClosJ. An investigation of XGBoost-based algorithm for breast cancer classification.MLWA2021610015410.1016/j.mlwa.2021.100154
    [Google Scholar]
  26. MuhammadW. HartG.R. NartowtB. FarrellJ.J. JohungK. LiangY. Pancreatic cancer prediction through an artificial neural network.Front Artif Intell20192210.3389/frai.2019.00002
    [Google Scholar]
  27. SuhY.J. JungJ. ChoB.J. Automated breast cancer detection in digital mammograms of various densities via deep learning.J. Pers. Med.202010421110.3390/jpm1004021133172076
    [Google Scholar]
  28. KrizhevskyA. SutskeverI. HintonG.E. ImageNet classification with deep convolutional neural networks.Commun. ACM2017606849010.1145/3065386
    [Google Scholar]
  29. TanM. LeQ.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.arXiv:1905.119462019
    [Google Scholar]
  30. SzegedyC. LiuW. JiaY. SermanetP. ReedS. AnguelovD. Going deeper with convolutions.arXiv:1409.48422015
    [Google Scholar]
  31. HeK. ZhangX. RenS. SunJ. Deep residual learning for image recognition.arXiv:1512.033852016
    [Google Scholar]
  32. HuangG. LiuZ. van der MaatenL. WeinbergerK.Q. Densely connected convolutional networks.arXiv:1608.069932017
    [Google Scholar]
  33. GillumR.F. From papyrus to the electronic tablet: A brief history of the clinical medical record with lessons for the digital age.Am. J. Med.20131261085385710.1016/j.amjmed.2013.03.02424054954
    [Google Scholar]
  34. DATA-CAN: Health data research hub for cancer.Available from: https://uclpartners.com/project/data-can-health-data-research-hub-cancer/
  35. Cancer Waiting Times Data Collection (CWT).Available from: https://digital.nhs.uk/data-and-information/data-collections-and-data-sets/data-collections/cancerwaitingtimescwt#uk-cancer-tools-and-intelligence
  36. Digital transformation of screening.Available from: https://transform.england.nhs.uk/key-tools-and-info/digital-transformation-of-screening/
  37. Benefits of the new NHS Cervical Screening Management System.Available from: https://digital.nhs.uk/services/screening-services/national-cervical-screening/new-cervical-screening-management-system/benefits
  38. BenkeK. BenkeG. Artificial intelligence and big data in public health.Int. J. Environ. Res. Public Health20181512279610.3390/ijerph1512279630544648
    [Google Scholar]
  39. NayorJ. BorgesL.F. GoryachevS. GainerV.S. SaltzmanJ.R. Natural language processing accurately calculates adenoma and sessile serrated polyp detection rates.Dig. Dis. Sci.20186371794180010.1007/s10620‑018‑5078‑429696479
    [Google Scholar]
  40. GlaserA.P. JordanB.J. CohenJ. DesaiA. SilbermanP. MeeksJ.J. Automated extraction of grade, stage, and quality information from transurethral resection of bladder tumor pathology reports using natural language processing.JCO Clin. Cancer Inform.2018221810.1200/CCI.17.0012830652586
    [Google Scholar]
  41. GouldM.K. TangT. LiuI.L.A. LeeJ. ZhengC. DanforthK.N. KoscoA.E. Di FioreJ.L. SuhD.E. Recent trends in the identification of incidental pulmonary nodules.Am. J. Respir. Crit. Care Med.2015192101208121410.1164/rccm.201505‑0990OC26214244
    [Google Scholar]
  42. FarjahF. HalgrimS. BuistD.S.M. GouldM.K. ZeliadtS.B. LoggersE.T. CarrellD.S. An automated method for identifying individuals with a lung nodule can be feasibly implemented across health systems.EGEMS2016411510.13063/2327‑9214.125427668266
    [Google Scholar]
  43. BeyerS.E. McKeeB.J. RegisS.M. McKeeA.B. FlackeS. SaadawiG.E. WaldC. Automatic lung-RADS™ classification with a natural language processing system.J. Thorac. Dis.2017993114312210.21037/jtd.2017.08.1329221286
    [Google Scholar]
  44. RochA.M. MehrabiS. KrishnanA. SchmidtH.E. KestersonJ. BeesleyC. DexterP.R. PalakalM. SchmidtC.M. Automated pancreatic cyst screening using natural language processing: A new tool in the early detection of pancreatic cancer.HPB201517544745310.1111/hpb.1237525537257
    [Google Scholar]
  45. HunterB. ReisS. CampbellD. MatharuS. RatnakumarP. MercuriL. HindochaS. KalsiH. MayerE. GlampsonB. RobinsonE.J. Al-LazikaniB. ScerriL. BlochS. LeeR. Development of a structured query language and natural language processing algorithm to identify lung nodules in a cancer centre.Front. Med.2021874816810.3389/fmed.2021.74816834805217
    [Google Scholar]
  46. MooreC.R. FarragA. AshkinE. Using natural language processing to extract abnormal results from cancer screening reports.J Patient Saf.201713313814310.1097/PTS.000000000000012725025472
    [Google Scholar]
  47. NiY. WrightJ. PerentesisJ. LingrenT. DelegerL. KaiserM. KohaneI. SoltiI. Increasing the efficiency of trial-patient matching: Automated clinical trial eligibility Pre-screening for pediatric oncology patients.BMC Med. Inform. Decis. Mak.20151512810.1186/s12911‑015‑0149‑3
    [Google Scholar]
  48. MorinO. VallièresM. BraunsteinS. GinartJ.B. UpadhayaT. WoodruffH.C. An artificial intelligence framework integrating longitudinal electronic health records with real-world data enables continuous pan-cancer prognostication.Nat Cancer20212770972210.1038/s43018‑021‑00236‑2
    [Google Scholar]
  49. AstarakiM. ZakkoY. Toma DasuI. SmedbyÖ. WangC. Benign-malignant pulmonary nodule classification in low-dose CT with convolutional features.Phys. Med.20218314615310.1016/j.ejmp.2021.03.01333774339
    [Google Scholar]
  50. GuanY. AamirM. RahmanZ. AliA. AbroW.A. DayoZ.A. A framework for efficient brain tumor classification using MRI images.Math Biosci Eng202118557905815
    [Google Scholar]
  51. MayerhoeferM.E. MaterkaA. LangsG. HäggströmI. SzczypińskiP. GibbsP. CookG. Introduction to radiomics.J. Nucl. Med.202061448849510.2967/jnumed.118.22289332060219
    [Google Scholar]
  52. PapadimitroulasP. BrockiL. ChungC.N. MarchadourW. VermetF. GaubertL. EleftheriadisV. PlachourisD. VisvikisD. KagadisG.C. HattM. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization.Phys. Med.20218310812110.1016/j.ejmp.2021.03.00933765601
    [Google Scholar]
  53. HunterB. HindochaS. LeeR.W. The role of artificial intelligence in early cancer diagnosis.Cancers15241461524
    [Google Scholar]
  54. AberleD.R. AdamsA.M. BergC.D. Reduced lung-cancer mortality with low-dose computed tomographic screening.N Engl J Med20113655395409
    [Google Scholar]
  55. de KoningH.J. van der AalstC.M. de JongP.A. ScholtenE.T. NackaertsK. HeuvelmansM.A. LammersJ.W.J. WeeninkC. Yousaf-KhanU. HorewegN. van ’t WesteindeS. ProkopM. MaliW.P. HoeseinM.F.A.A. van OoijenP.M.A. AertsJ.G.J.V. den BakkerM.A. ThunnissenE. VerschakelenJ. VliegenthartR. WalterJ.E. ten HaafK. GroenH.J.M. OudkerkM. Reduced lung-cancer mortality with volume CT screening in a randomized trial.N. Engl. J. Med.2020382650351310.1056/NEJMoa191179331995683
    [Google Scholar]
  56. LuM.T. RaghuV.K. MayrhoferT. AertsH.J.W.L. HoffmannU. Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening computed tomography: Development and validation of a prediction model.Ann. Intern. Med.2020173970471310.7326/M20‑186832866413
    [Google Scholar]
  57. GreenT. AtkinK. MacleodU. Cancer detection in primary care: Insights from general practitioners.Br J Cancer2015112S1S41S4910.1038/bjc.2015.41
    [Google Scholar]
  58. HamiltonW. GreenT. MartinsT. ElliottK. RubinG. MacleodU. Evaluation of risk assessment tools for suspected cancer in general practice: A cohort study.Br. J. Gen. Pract.201363606e30e3610.3399/bjgp13X66075123336455
    [Google Scholar]
  59. The most intelligent way to cure cancer.Available from: https://cthesigns.com/
  60. An AI support tool to help healthcare professionals in primary care to identify patients at risk of cancer earlier.Available from: https://transform.england.nhs.uk/key-tools-and-info/digital-playbooks/cancer-digital-playbook/an-AI-support-tool-to-help-healthcare-professionals-in-primary-care-to-identify-patients-at-risk-of-cancer-earlier/
  61. BakerA. PerovY. MiddletonK. BaxterJ. MullarkeyD. SangarD. A comparison of artificial intelligence and human doctors for the purpose of triage and diagnosis.Front Artif Intell2020354340510.3389/frai.2020.543405
    [Google Scholar]
  62. Babylon Health United States.Available from: https://www.babylonhealth.com/en-us
  63. UK’s MHRA says it has ‘concerns’ about Babylon Health — and flags legal gap around triage chatbots.Available from: https://techcrunch.com/2021/03/05/uks-mhra-says-it-has-concerns-about-babylon-health-and-flags-legal-gap-around-triage-chatbots/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAJ2qLhRLfYrjSPpC_FG85UfLrUX2HsTyVUXcolTGJngMUtHeaXEGQZ2chY8JI7KXbe3ZJYFx6sdH4o3YQFd_3QQnYQkmr7F5qw_AkShAdghtDIMvSt3L7rZfxGxWSl4LmzoaTdI-5O3WKmlGslD2V3FCugaQcV6MCwrIOr4Tfhwb
  64. AndersonM. O’NeillC. ClarkM.J. StreetA. WoodsM. WebberJ.C. CharlesworthA. WhyteM. FosterM. MajeedA. PitchforthE. MossialosE. AsariaM. McGuireA. Securing a sustainable and fit-for-purpose UK health and care workforce.Lancet2021397102881992201110.1016/S0140‑6736(21)00231‑233965066
    [Google Scholar]
  65. Van HarenR.M. DelmanA.M. TurnerK.M. WaitsB. HemingwayM. ShahS.A. StarnesS.L. Impact of the COVID-19 pandemic on lung cancer screening program and subsequent lung cancer.J. Am. Coll. Surg.2021232460060510.1016/j.jamcollsurg.2020.12.00233346080
    [Google Scholar]
  66. GehrungM. OrtuzarC.M. BermanA.G. O’DonovanM. FitzgeraldR.C. MarkowetzF. Triage-driven diagnosis of Barrett's esophagus for early detection of esophageal adenocarcinoma using deep learning.Nat Med2021275833841
    [Google Scholar]
  67. ShaheenN.J. FalkG.W. IyerP.G. GersonL.B. ACG clinical guideline: Diagnosis and management of barrett’s esophagus.Am. J. Gastroenterol.20161111305010.1038/ajg.2015.32226526079
    [Google Scholar]
  68. FitzgeraldR.C. di PietroM. O’DonovanM. MaroniR. MuldrewB. BeechamD.I. GehrungM. OffmanJ. TripathiM. SmithS.G. AigretB. WalterF.M. RubinG. SasieniP. BagewadiA. PatrickA. ShenoyA. RedmondA. MudduA. NorthropA. GrovesA. ShinerA. HeerA. TakharA. BowlesA. JarmanA. WongA. LucasA. GibbonsA. DharA. CurryA. LalondeA. SwinburnA. TurnerA. LydonA-M. GunstoneA. LeeA. NambiA. AriyarathenamA. EldenA. WilsonA. DonepudiB. CampbellB. UszyckaB. BowersB. CoghillB. de QuadrosB. CheahC. BrattenC. BrownC. MoorbeyC. ClisbyC. GordonC. SchrammC. CastleC. NewarkC. NorrisC. A’CourtC. GrahamC. FletcherC. GrocottC. ReesC. BakkerC. PaschalidesC. VickeryC. SchembriD. MorrisD. HaganD. CronkD. GoddardD. GrahamD. PhillipsD. PrabhuD. KejariwalD. GargD. LonsdaleD. ButterworthD. ClementsD. BradmanD. BlakeD. MatherE. O’FarrellE. MarkowetzF. AdamsF. PesolaF. ForbesG. TaylorG. CollinsG. IrvineG. FourieG. DoyleH. BarnesH. BowyerH. WhitingH. BealesI. BinnianI. BremnerI. JenningsI. TroiceanuI. ModelellI. EmmersonI. OrtizJ. LilleyJ. HarveyJ. VicarsJ. TakharJ. LarcombeJ. BornscheinJ. AldegatherJ. JohnsonJ. DuckerJ. SkinnerJ. DashJ. WalshJ. MirallesJ. RidgwayJ. InceJ. KennedyJ. HampsonK. MilneK. EllerbyK. PriddisK. RainsburyK. PowellK. GunnerK. RagunathK. KnoxK. BaseleyL. WhiteL. LovatL. BerneyL. CrockettL. MurrayL. WestwoodL. ChalkleyL. LeggettL. DaleL. ScovellL. BrooksL. SaundersL. OwenL. DilwershahM. BaldryM. CorcoranM. RoyM. MacedoM. AttahM. AnsonM-J. RutterM. WallardM. GawM. HuntM. Lea-HagertyM. PenacerradaM. BianchiM. Baker-MoffattM. CzajkowskiM. SleethM. BrewerN. WoodingN. ToddN. MillenN. ZolleO. WhiteheadO. OjechiP. MooreP. BanimP. SpellarP. BhandariP. KantP. NixonR. RussellR. RobertsR. SkuleR. WestR. FoxR. BeesleyR. GibbinsR. OsborneR. ThiagarajanS. BastimanS. WarburtonS. PaiS. Leith-RussellS. UttingS. WatsonS. WytrykowskiS. SinghS. MalhotraS. WoodsS. ConwayS. MateerS. MacraeS. SinghS. FourieS. CampbellS. Parslow-WilliamsS. GoelS. DellarS. JonesS. KnightS. Mackay-ThomasS. MukherjeeS. AllenS. HenryS. EvansT. LeightonT. BrayT. ShackletonT. SantoshV. GloverV. ChandrarajV. ElsonW. BriggsW. BarronZ. KhanZ. Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a primary care setting: A multicentre, pragmatic, randomised controlled trial.Lancet20203961024733334410.1016/S0140‑6736(20)31099‑032738955
    [Google Scholar]
  69. SchaffterT. BuistD.S.M. LeeC.I. NikulinY. RibliD. GuanY. LotterW. JieZ. DuH. WangS. FengJ. FengM. KimH.E. AlbiolF. AlbiolA. MorrellS. WojnaZ. AhsenM.E. AsifU. YepesJ.A. YohanandanS. CohenR.S. YiD. HoffB. YuT. NetoC.E. RubinD.L. LindholmP. MargoliesL.R. McBrideR.B. RothsteinJ.H. SiehW. Ben-AriR. HarrerS. TristerA. FriendS. NormanT. SahinerB. StrandF. GuinneyJ. StolovitzkyG. MackeyL. CahoonJ. ShenL. SohnJ.H. TrivediH. ShenY. ButurovicL. PereiraJ.C. CardosoJ.S. CastroE. KallebergK.T. PelkaO. NedjarI. GerasK.J. NensaF. GoanE. KoitkaS. CaballeroL. CoxD.D. KrishnaswamyP. PandeyG. FriedrichC.M. PerrinD. FookesC. ShiB. NegrieC.G. KawczynskiM. ChoK. KhooC.S. LoJ.Y. SorensenA.G. JungH. Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms.JAMA Netw. Open202033e20026510.1001/jamanetworkopen.2020.026532119094
    [Google Scholar]
  70. RuizR.A. LångK. Gubern-MeridaA. BroedersM. GennaroG. ClauserP. HelbichT.H. ChevalierM. TanT. MertelmeierT. WallisM.G. AnderssonI. ZackrissonS. MannR.M. SechopoulosI. Stand-alone artificial intelligence for breast cancer detection in mammography: Comparison with 101 radiologists.J. Natl. Cancer Inst.2019111991692210.1093/jnci/djy22230834436
    [Google Scholar]
  71. KimH.E. KimH.H. HanB.K. KimK.H. HanK. NamH. LeeE.H. KimE.K. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: A retrospective, multireader study.Lancet Digit. Health202023e138e14810.1016/S2589‑7500(20)30003‑033334578
    [Google Scholar]
  72. Artificial intelligence in mammography.Available from: https://www.nice.org.uk/advice/mib242/chapter/The-technologies
  73. YiP.H. SinghD. HarveyS.C. HagerG.D. MullenL.A. DeepCAT: Deep computer-aided triage of screening mammography.J. Digit. Imaging2021341273510.1007/s10278‑020‑00407‑033432446
    [Google Scholar]
  74. ArdilaD. KiralyA.P. BharadwajS. ChoiB. ReicherJ.J. PengL. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography.Nature Med.201925954961
    [Google Scholar]
  75. ArmatoS.G.III McLennanG. BidautL. McNitt-GrayM.F. MeyerC.R. ReevesA.P. ZhaoB. AberleD.R. HenschkeC.I. HoffmanE.A. KazerooniE.A. MacMahonH. van BeekE.J.R. YankelevitzD. BiancardiA.M. BlandP.H. BrownM.S. EngelmannR.M. LaderachG.E. MaxD. PaisR.C. QingD.P.Y. RobertsR.Y. SmithA.R. StarkeyA. BatraP. CaligiuriP. FarooqiA. GladishG.W. JudeC.M. MundenR.F. PetkovskaI. QuintL.E. SchwartzL.H. SundaramB. DoddL.E. FenimoreC. GurD. PetrickN. FreymannJ. KirbyJ. HughesB. CasteeleV.A. GupteS. SallamM. HeathM.D. KuhnM.H. DharaiyaE. BurnsR. FrydD.S. SalganicoffM. AnandV. ShreterU. VastaghS. CroftB.Y. ClarkeL.P. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans.Med. Phys.201138291593110.1118/1.352820421452728
    [Google Scholar]
  76. OkeJ.L. PickupL.C. DeclerckJ. CallisterM.E. BaldwinD. GustafsonJ. PeschlH. AtherS. TsakokM. ExellA. GleesonF. Development and validation of clinical prediction models to risk stratify patients presenting with small pulmonary nodules: A research protocol.Diagn. Progn. Res.2018212210.1186/s41512‑018‑0044‑331093569
    [Google Scholar]
  77. BaldwinD.R. GustafsonJ. PickupL. ArtetaC. NovotnyP. DeclerckJ. KadirT. FigueirasC. SterbaA. ExellA. PotesilV. HollandP. SpenceH. ClubleyA. O’DowdE. ClarkM. TurnerA.V. CallisterM.E.J. GleesonF.V. External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules.Thorax202075430631210.1136/thoraxjnl‑2019‑21410432139611
    [Google Scholar]
  78. SchelbP. KohlS. RadtkeJ.P. WiesenfarthM. KickingerederP. BickelhauptS. KuderT.A. StenzingerA. HohenfellnerM. SchlemmerH.P. Maier-HeinK.H. BonekampD. Classification of cancer at prostate MRI: Deep learning versus clinical PI-RADS assessment.Radiology2019293360761710.1148/radiol.201919093831592731
    [Google Scholar]
  79. MehralivandS. HarmonS.A. ShihJ.H. SmithC.P. LayN. ArgunB. BednarovaS. BaroniR.H. CandaA.E. ErcanK. GiromettiR. KaraarslanE. KuralA.R. PuryskoA.S. Rais-BahramiS. TonsoV.M. Magi-GalluzziC. GordetskyJ.B. MacarencoR.S.S. MerinoM.J. GumuskayaB. SaglicanY. SioleticS. WarrenA.Y. BarrettT. BittencourtL. CoskunM. KnaussC. LawY.M. MalayeriA.A. MargolisD.J. MarkoJ. YakarD. WoodB.J. PintoP.A. ChoykeP.L. SummersR.M. TurkbeyB. Multicenter multireader evaluation of an artificial intelligence–based attention mapping system for the detection of prostate cancer with multiparametric MRI.AJR Am. J. Roentgenol.2020215490391210.2214/AJR.19.2257332755355
    [Google Scholar]
  80. WildeboerR.R. van SlounR.J.G. WijkstraH. MischiM. Artificial intelligence in multiparametric prostate cancer imaging with focus on deep-learning methods.Comput. Methods Programs Biomed.202018910531610.1016/j.cmpb.2020.10531631951873
    [Google Scholar]
  81. ChenM. ZhaoH. Next-generation sequencing in liquid biopsy: Cancer screening and early detection.Hum. Genomics20191313410.1186/s40246‑019‑0220‑831370908
    [Google Scholar]
  82. IgnatiadisM. SledgeG.W. JeffreyS.S. Liquid biopsy enters the clinic — Implementation issues and future challenges.Natur. Rev. Clin. Oncol.202118297312
    [Google Scholar]
  83. What is the Galleri blood test?Available from: https://www.cancerresearchuk.org/about-cancer/tests-and-scans/blood-tests/galleri-blood-test
  84. TaoK. BianZ. ZhangQ. GuoX. YinC. WangY. ZhouK. WanS. ShiM. BaoD. YangC. XingJ. Machine learning-based genome-wide interrogation of somatic copy number aberrations in circulating tumor DNA for early detection of hepatocellular carcinoma.EBioMedicine20205610281110.1016/j.ebiom.2020.10281132512514
    [Google Scholar]
  85. BestM.G. RNA sequencing and swarm intelligence–enhanced classification algorithm development for blood-based disease diagnostics using spliced blood platelet RNA.Nature Protoc.20191412061234
    [Google Scholar]
  86. CucchiaraF. Del ReM. ValleggiS. RomeiC. PetriniI. LucchesiM. CrucittaS. RofiE. De LiperiA. ChellaA. RussoA. DanesiR. Integrating liquid biopsy and radiomics to monitor clonal heterogeneity of EGFR-positive non-small cell lung cancer.Front. Oncol.20201059383110.3389/fonc.2020.59383133489892
    [Google Scholar]
  87. RothP. WischhusenJ. HappoldC. ChandranP.A. HoferS. EiseleG. WellerM. KellerA. A specific miRNA signature in the peripheral blood of glioblastoma patients.J. Neurochem.2011118344945710.1111/j.1471‑4159.2011.07307.x21561454
    [Google Scholar]
  88. CohenJ.D. LiL. WangY. ThoburnC. AfsariB. DanilovaL. Detection and localization of surgically resectable cancers with a multi-analyte blood test.Science19793596378926930
    [Google Scholar]
  89. WongC.W. ChaudhryA. Radiogenomics of lung cancer.J. Thorac. Dis.20201295104510910.21037/jtd‑2019‑pitd‑1033145087
    [Google Scholar]
  90. KoJ. BaldassanoS.N. LohP.L. KordingK. LittB. IssadoreD. Machine learning to detect signatures of disease in liquid biopsies – A user’s guide.Lab Chip201818339540510.1039/C7LC00955K29192299
    [Google Scholar]
  91. ShenH. LiuT. CuiJ. BoroleP. BenjaminA. KordingK. IssadoreD. A web-based automated machine learning platform to analyze liquid biopsy data.Lab Chip202020122166217410.1039/D0LC00096E32420563
    [Google Scholar]
  92. YooB.C. KimK.H. WooS.M. MyungJ.K. Clinical multi-omics strategies for the effective cancer management.J. Proteomics20181889710610.1016/j.jprot.2017.08.01028821459
    [Google Scholar]
  93. AlonziR. Functional radiotherapy targeting using focused dose escalation.Clin. Oncol.2015271060161710.1016/j.clon.2015.06.01526456478
    [Google Scholar]
  94. RezaeijoS.M. HashemiB. MofidB. BakhshandehM. MahdaviA. HashemiM.S. The feasibility of a dose painting procedure to treat prostate cancer based on mpMR images and hierarchical clustering.Radiat. Oncol.202116118210.1186/s13014‑021‑01906‑234544468
    [Google Scholar]
  95. ZhouG.Q. WuC.F. DengB. GaoT.S. LvJ.W. LinL. An optimal posttreatment surveillance strategy for cancer survivors based on an individualized risk-based approach.Nat Commun2020111387210.1038/s41467‑020‑17672‑w
    [Google Scholar]
  96. TingWC LuYCA HoWC CheewakriangkraiC ChangHR LinCL Machine learning in prediction of second primary cancer and recurrence in colorectal cancer.Int J Med Sci202017328010.7150/ijms.37134
    [Google Scholar]
  97. ChangC.C. ChenS.H. Developing a novel machine learning-based classification scheme for predicting SPCs in breast cancer survivors.Front. Genet.20191084810.3389/fgene.2019.0084831620166
    [Google Scholar]
  98. ThomasC. MandrikO. SaundersC.L. ThompsonD. WhyteS. GriffinS. Usher-SmithJ.A. The costs and benefits of risk stratification for colorectal cancer screening based on phenotypic and genetic risk: A health economic analysis.Cancer Prev. Res.202114881182210.1158/1940‑6207.CAPR‑20‑062034039685
    [Google Scholar]
  99. HasnainZ. MasonJ. GillK. MirandaG. GillI.S. KuhnP. NewtonP.K. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients.PLoS One2019142e021097610.1371/journal.pone.021097630785915
    [Google Scholar]
  100. KulkarniP.M. RobinsonE.J. PradhanS.J. CorradoG.R.D. RohrB.R. TragerM.H. GeskinL.J. KlugerH.M. WongP.F. AcsB. RizkE.M. YangC. MondalM. MooreM.R. OsmanI. PhelpsR. HorstB.A. ChenZ.S. FerringerT. RimmD.L. WangJ. SaengerY.M. Deep learning based on standard H&E images of primary melanoma tumors identifies patients at risk for visceral recurrence and death.Clin. Cancer Res.20202651126113410.1158/1078‑0432.CCR‑19‑149531636101
    [Google Scholar]
  101. YamashitaR. LongJ. SaleemA. RubinD.L. ShenJ. Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images.Sci. Rep.2021111204710.1038/s41598‑021‑81506‑y33479370
    [Google Scholar]
  102. WoerlA.C. EcksteinM. GeigerJ. WagnerD.C. DaherT. StenzelP. FernandezA. HartmannA. WandM. RothW. FoerschS. Deep learning predicts molecular subtype of muscle-invasive bladder cancer from conventional histopathological slides.Eur. Urol.202078225626410.1016/j.eururo.2020.04.02332354610
    [Google Scholar]
  103. JonesH.J.S. CunninghamC. AskautrudH.A. DanielsenH.E. KerrD.J. DomingoE. MaughanT. LeedhamS.J. KoelzerV.H. Stromal composition predicts recurrence of early rectal cancer after local excision.Histopathology202179694795610.1111/his.1443834174109
    [Google Scholar]
  104. TangX. The role of artificial intelligence in medical imaging research.BJR Open.20192120190031
    [Google Scholar]
  105. ShenW.C. ChenS.W. WuK.C. HsiehT.C. LiangJ.A. HungY.C. YehL.S. ChangW.C. LinW.C. YenK.Y. KaoC.H. Prediction of local relapse and distant metastasis in patients with definitive chemoradiotherapy-treated cervical cancer by deep learning from [18F]-fluorodeoxyglucose positron emission tomography/computed tomography.Eur. Radiol.201929126741674910.1007/s00330‑019‑06265‑x31134366
    [Google Scholar]
  106. ZhangW. FangM. DongD. WangX. KeX. ZhangL. HuC. GuoL. GuanX. ZhouJ. ShanX. TianJ. Development and validation of a CT-based radiomic nomogram for preoperative prediction of early recurrence in advanced gastric cancer.Radiother. Oncol.2020145132010.1016/j.radonc.2019.11.02331869677
    [Google Scholar]
  107. LouB. DokenS. ZhuangT. WingerterD. GidwaniM. MistryN. LadicL. KamenA. AbazeedM.E. An image-based deep learning framework for individualising radiotherapy dose: A retrospective analysis of outcome prediction.Lancet Digit. Health201913e136e14710.1016/S2589‑7500(19)30058‑531448366
    [Google Scholar]
  108. LawryT. MutkoskiS. LeongN. Realizing the potential for AI in precision health.SciTech Lawyer20181512327
    [Google Scholar]
  109. SoenksenL.R. MaY. ZengC. BoussiouxL. CarballoV.K. NaL. WibergH.M. LiM.L. FuentesI. BertsimasD. Integrated multimodal artificial intelligence framework for healthcare applications.NPJ Digit. Med.20225114910.1038/s41746‑022‑00689‑436127417
    [Google Scholar]
  110. CirilloD. SolarzC.S. MoreyC. GuneyE. SubiratsL. MellinoS. Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare.NPJ Digit. Med.202031111
    [Google Scholar]
  111. MhasawadeV. ZhaoY. ChunaraR. Machine learning and algorithmic fairness in public and population health.Nat Mach Intell2021365966610.1038/s42256‑021‑00373‑4
    [Google Scholar]
  112. WinterJ.S. AI in healthcare: Data governance challenges.J. Hosp. Manag. Health Policy202058810.21037/jhmhp‑2020‑ai‑05
    [Google Scholar]
  113. MorleyJ. MachadoC.C.V. BurrC. CowlsJ. JoshiI. TaddeoM. FloridiL. The ethics of AI in health care: A mapping review.Soc. Sci. Med.202026011317210.1016/j.socscimed.2020.11317232702587
    [Google Scholar]
  114. WHO book orders2021Available from: http://apps.who.int/bookorders
  115. FaesL. LiuX. WagnerS.K. FuD.J. BalaskasK. SimD.A. BachmannL.M. KeaneP.A. DennistonA.K. A clinician’s guide to artificial intelligence: How to critically appraise machine learning studies.Transl. Vis. Sci. Technol.202092710.1167/tvst.9.2.732704413
    [Google Scholar]
  116. EstevaA. KuprelB. NovoaR.A. KoJ. SwetterS.M. BlauH.M. Dermatologist-level classification of skin cancer with deep neural networks.Nature2017542763910.1038/nature21056
    [Google Scholar]
  117. ZouJ. SchiebingerL. AI can be sexist and racist — it’s time to make it fair.Nature2018559771432432610.1038/d41586‑018‑05707‑830018439
    [Google Scholar]
  118. WenD. KhanS.M. Ji XuA. IbrahimH. SmithL. CaballeroJ. ZepedaL. de PerezB.C. DennistonA.K. LiuX. MatinR.N. Characteristics of publicly available skin cancer image datasets: A systematic review.Lancet Digit. Health202241e64e7410.1016/S2589‑7500(21)00252‑134772649
    [Google Scholar]
  119. RobinsonW.R. RensonA. NaimiA.I. Teaching yourself about structural racism will improve your machine learning.Biostatistics202021233934410.1093/biostatistics/kxz04031742353
    [Google Scholar]
  120. WilkinsonM.D. DumontierM. The FAIR guiding principles for scientific data management and stewardship.Sci. Data20163160018
    [Google Scholar]
  121. KimY.G. KimS. ChoC.E. SongI.H. LeeH.J. AhnS. Effectiveness of transfer learning for enhancing tumour classification with a convolutional neural network on frozen sections.Scient. Rep.202010119
    [Google Scholar]
  122. WangX. ChenH. XiangH. LinH. LinX. HengP.A. Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification.Med. Image Anal.20217010201010.1016/j.media.2021.10201033677262
    [Google Scholar]
  123. ChenL. BentleyP. MoriK. MisawaK. FujiwaraM. RueckertD. Self-supervised learning for medical image analysis using image context restoration.Med. Image Anal.20195810153910.1016/j.media.2019.10153931374449
    [Google Scholar]
  124. AziziS. MustafaB. RyanF. BeaverZ. FreybergJ. DeatonJ. Big self-supervised models advance medical image classification.2021 IEEE/CVF International Conference on Computer Vision (ICCV)20213478348810.1109/ICCV48922.2021.00346
    [Google Scholar]
  125. LiuY. ZhouY. LiuX. DongF. WangC. WangZ. Wasserstein GAN-based small-sample augmentation for new-generation artificial intelligence: A case study of cancer-staging data in biology.Engineering20195115616310.1016/j.eng.2018.11.018
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010298852240528123911
Loading
/content/journals/cpb/10.2174/0113892010298852240528123911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test