Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Caffeic acid, a phenolic compound of the hydroxycinnamic acid family, is abundant in various plant-based foods, such as fruits, vegetables, and coffee, alongside other biologically active compounds. Recognizing its potential to address various health issues and its widespread presence in commonly consumed foods underscores the importance of comprehending and harnessing the benefits of caffeic acid for human nutrition and well-being. This versatile substance, characterized by acrylic and phenolic functional groups, plays a pivotal role in the food and pharmaceutical industries. Furthermore, a detailed exploration of its pharmacokinetic properties, absorption, distribution, metabolism, and excretion enhances our understanding of how the human body processes it. Functioning as a precursor for essential compounds, caffeic acid contributes to formulations with notable anti-inflammatory, antiviral, anti-cancer, anti-diabetic, antibacterial, neuroprotective, and hepatoprotective qualities. Its current applications in treating Parkinson's and Alzheimer's disease underscore its therapeutic significance. This comprehensive analysis sheds light on caffeic acid's importance, showcasing its diverse applications across various domains and paving the way for further research and development to fully unlock its therapeutic potential. In conclusion, caffeic acid emerges as a bioactive substance with a broad spectrum of pharmacological properties, suggesting its potential utility in diverse therapeutic contexts. The comprehensive information provided in this article serves as a foundation for further research and learning regarding the various ways that caffeic acid supports human health.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010309341240517071344
2024-06-04
2025-10-27
Loading full text...

Full text loading...

References

  1. El-SeediH.R. El-SaidA.M.A. KhalifaS.A.M. GöranssonU. BohlinL. Borg-KarlsonA.K. VerpoorteR. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids.J. Agric. Food Chem.20126044108771089510.1021/jf301807g 22931195
    [Google Scholar]
  2. JiangR.W. LauK.M. HonP.M. MakT. WooK.S. FungK.P. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza.Curr. Med. Chem.200512223724610.2174/0929867053363397 15638738
    [Google Scholar]
  3. AlamM. AhmedS. ElasbaliA.M. AdnanM. AlamS. HassanM.I. PasupuletiV.R. Therapeutic implications of caffeic acid in cancer and neurological diseases.Front. Oncol.20221286050810.3389/fonc.2022.860508 35359383
    [Google Scholar]
  4. KhanF.A. MaalikA. MurtazaG. Inhibitory mechanism against oxidative stress of caffeic acid.Yao Wu Shi Pin Fen Xi2016244695702 28911606
    [Google Scholar]
  5. CliffordM.N. Chlorogenic acids and other cinnamates - nature, occurrence, dietary burden, absorption and metabolism.J. Sci. Food Agric.20008071033104310.1002/(SICI)1097‑0010(20000515)80:7<1033:AID‑JSFA595>3.0.CO;2‑T
    [Google Scholar]
  6. PurushothamanA. BabuS.S. NarothS. JanardananD. Antioxidant activity of caffeic acid: Thermodynamic and kinetic aspects on the oxidative degradation pathway.Free Radic. Res.2022569-1061763010.1080/10715762.2022.2161379 36576261
    [Google Scholar]
  7. SaivishM.V. PaccaC.C. da CostaV.G. de Lima MenezesG. da SilvaR.A. NeboL. da SilvaG.C.D. de Aguiar MilhimB.H.G. da Silva TeixeiraI. HenriqueT. MistrãoN.F.B. HernandesV.M. ZiniN. de CarvalhoA.C. FontouraM.A. RahalP. SacchettoL. MarquesR.E. NogueiraM.L. Caffeic acid has antiviral activity against ilhéus virus in vitro.Viruses202315249410.3390/v15020494 36851709
    [Google Scholar]
  8. ChangW.C. KuoP.L. ChenC.W. WuJ.S.B. ShenS.C. Caffeic acid improves memory impairment and brain glucose metabolism viaameliorating cerebral insulin and leptin signaling pathways in high-fat diet-induced hyperinsulinemic rats.Food Res. Int.201577243310.1016/j.foodres.2015.04.010
    [Google Scholar]
  9. TaramF. WinterA.N. LinsemanD.A. Neuroprotection comparison of chlorogenic acid and its metabolites against mechanistically distinct cell death-inducing agents in cultured cerebellar granule neuronsBrain Res20161648Pt A698010.1016/j.brainres.2016.07.028
    [Google Scholar]
  10. WangY. WangY. LiJ. HuaL. HanB. ZhangY. YangX. ZengZ. BaiH. YinH. LouJ. Effects of caffeic acid on learning deficits in a model of Alzheimer’s disease.Int. J. Mol. Med.201638386987510.3892/ijmm.2016.2683 27430591
    [Google Scholar]
  11. ZhangY. WuQ. ZhangL. WangQ. YangZ. LiuJ. FengL. Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease.Pharmacol. Res.201915010453810.1016/j.phrs.2019.104538 31707034
    [Google Scholar]
  12. YilmazS. Effects of dietary caffeic acid supplement on antioxidant, immunological and liver gene expression responses, and resistance of Nile tilapia, Oreochromis niloticus to Aeromonas veronii.Fish Shellfish Immunol.20198638439210.1016/j.fsi.2018.11.068 30502464
    [Google Scholar]
  13. BaiX. LiS. LiuX. AnH. KangX. GuoS. Caffeic acid, an active ingredient in coffee, combines with dox for multitarget combination therapy of lung cancer.J. Agric. Food Chem.202270278326833710.1021/acs.jafc.2c03009 35772797
    [Google Scholar]
  14. WanF. ZhongR. WangM. ZhouY. ChenY. YiB. HouF. LiuL. ZhaoY. ChenL. ZhangH. Caffeic acid supplement alleviates colonic inflammation and oxidative stress potentially through improved gut microbiota community in mice.Front. Microbiol.20211278421110.3389/fmicb.2021.784211 34867926
    [Google Scholar]
  15. KwonY.I. ApostolidisE. LabbeR.G. ShettyK. Inhibition of Staphylococcus aureus by phenolic phytochemicals of selected clonal herbs species of Lamiaceae family and likely mode of action through proline oxidation.Food Biotechnol.2007211718910.1080/08905430701191205
    [Google Scholar]
  16. ZhangH. StephanopoulosG. Engineering E. coli for caffeic acid biosynthesis from renewable sugars.Appl. Microbiol. Biotechnol.20139783333334110.1007/s00253‑012‑4544‑8 23179615
    [Google Scholar]
  17. RodriguesJ.L. AraújoR.G. PratherK.L.J. KluskensL.D. RodriguesL.R. Heterologous production of caffeic acid from tyrosine in Escherichia coli.Enzyme Microb. Technol.201571364410.1016/j.enzmictec.2015.01.001 25765308
    [Google Scholar]
  18. KonishiY. KobayashiS. Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal caco-2 cell monolayers.J. Agric. Food Chem.20045292518252610.1021/jf035407c 15113150
    [Google Scholar]
  19. LiJ. BaiY. BaiY. ZhuR. LiuW. CaoJ. AnM. TanZ. ChangY. Pharmacokinetics of caffeic acid, ferulic acid, formononetin, cryptotanshinone, and tanshinone IIA after oral administration of naoxintong capsule in rat by HPLC-MS/MS.Evid. Based Complement. Alternat. Med.2017201711210.1155/2017/9057238 28757891
    [Google Scholar]
  20. KishidaK. MatsumotoH. Urinary excretion rate and bioavailability of chlorogenic acid, caffeic acid, p-coumaric acid, and ferulic acid in non-fasted rats maintained under physiological conditions.Heliyon2019510e0270810.1016/j.heliyon.2019.e02708 31720464
    [Google Scholar]
  21. AzumaK. IppoushiK. NakayamaM. ItoH. HigashioH. TeraoJ. Absorption of chlorogenic acid and caffeic acid in rats after oral administration.J. Agric. Food Chem.200048115496550010.1021/jf000483q 11087508
    [Google Scholar]
  22. JamaliN. Mostafavi-PourZ. ZalF. KasraeianM. PoordastT. NejabatN. Antioxidant ameliorative effect of caffeic acid on the ectopic endometrial cells separated from patients with endometriosis.Taiwan. J. Obstet. Gynecol.202160221622010.1016/j.tjog.2020.12.003 33678318
    [Google Scholar]
  23. Genaro-MattosT.C. MaurícioÂ.Q. RettoriD. AlonsoA. Hermes-LimaM. Antioxidant activity of caffeic acid against iron-induced free radical generation-a chemical approach.PLoS One2015106e012996310.1371/journal.pone.0129963 26098639
    [Google Scholar]
  24. DamascenoS.S. DantasB.B. Ribeiro-FilhoJ. AntônioM. AraújoD. Galberto M da CostaJ. Chemical properties of caffeic and ferulic acids in biological system: Implications in cancer therapy. a review.Curr. Pharm. Des.2017232030153023 27928956
    [Google Scholar]
  25. MedinaI. UndelandI. LarssonK. StorrøI. RustadT. JacobsenC. KristinováV. GallardoJ.M. Activity of caffeic acid in different fish lipid matrices: A review.Food Chem.2012131373074010.1016/j.foodchem.2011.09.032
    [Google Scholar]
  26. ZhengL.F. DaiF. ZhouB. YangL. LiuZ.L. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure–activity relationship.Food Chem. Toxicol.200846114915610.1016/j.fct.2007.07.010 17764801
    [Google Scholar]
  27. CaiH. HuangX. XuS. ShenH. ZhangP. HuangY. JiangJ. SunY. JiangB. WuX. YaoH. XuJ. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy.Eur. J. Med. Chem.20161088910310.1016/j.ejmech.2015.11.013 26638042
    [Google Scholar]
  28. UtsunomiyaH. IchinoseM. IkedaK. UozakiM. MorishitaJ. KuwaharaT. KoyamaA.H. YamasakiH. Inhibition by caffeic acid of the influenza A virus multiplication in vitro.Int. J. Mol. Med.20143441020102410.3892/ijmm.2014.1859 25050906
    [Google Scholar]
  29. IkedaK. TsujimotoK. UozakiM. NishideM. SuzukiY. KoyamaA.H. YamasakiH. Inhibition of multiplication of herpes simplex virus by caffeic acid.Int. J. Mol. Med.2011284595598 21725588
    [Google Scholar]
  30. ShenJ. WangG. ZuoJ. Caffeic acid inhibits HCV replication via induction of IFNα antiviral response through p62-mediated Keap1/Nrf2 signaling pathway.Antiviral Res.201815416617310.1016/j.antiviral.2018.04.008 29656059
    [Google Scholar]
  31. OgawaM. ShirasagoY. AndoS. ShimojimaM. SaijoM. FukasawaM. Caffeic acid, a coffee-related organic acid, inhibits infection by severe fever with thrombocytopenia syndrome virus in vitro.J. Infect. Chemother.201824859760110.1016/j.jiac.2018.03.005 29628386
    [Google Scholar]
  32. JungU.J. LeeM.K. ParkY.B. JeonS.M. ChoiM.S. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice.J. Pharmacol. Exp. Ther.2006318247648310.1124/jpet.106.105163 16644902
    [Google Scholar]
  33. Muhammad Abdul KadarN.N. AhmadF. TeohS.L. YahayaM.F. Caffeic acid on metabolic syndrome: A review.Molecules20212618549010.3390/molecules26185490 34576959
    [Google Scholar]
  34. ChaoC. MongM. ChanK. YinM. Anti‐glycative and anti‐inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice.Mol. Nutr. Food Res.201054338839510.1002/mnfr.200900087 19885845
    [Google Scholar]
  35. OršolićN. SirovinaD. OdehD. GajskiG. BaltaV. ŠverL. Jazvinšćak JembrekM. Efficacy of caffeic acid on diabetes and its complications in the mouse.Molecules20212611326210.3390/molecules26113262 34071554
    [Google Scholar]
  36. LiuY. LiuS. WangH. SuW. Protective effect of caffeic acid on streptozotocin induced gestational diabetes mellitus in rats: Possible mechanism.Pak. J. Zool.20215331045105210.17582/journal.pjz/20200106060120
    [Google Scholar]
  37. CastroM.F.V. StefanelloN. AssmannC.E. BaldissarelliJ. BagatiniM.D. da SilvaA.D. da CostaP. BorbaL. da CruzI.B.M. MorschV.M. SchetingerM.R.C. Modulatory effects of caffeic acid on purinergic and cholinergic systems and oxi-inflammatory parameters of streptozotocin-induced diabetic rats.Life Sci.202127711942110.1016/j.lfs.2021.119421 33785337
    [Google Scholar]
  38. XuW. LuoQ. WenX. XiaoM. MeiQ. Antioxidant and anti-diabetic effects of caffeic acid in a rat model of diabetes.Trop. J. Pharm. Res.20201961227123210.4314/tjpr.v19i6.17
    [Google Scholar]
  39. TsudaS. EgawaT. MaX. OshimaR. KurogiE. HayashiT. Coffee polyphenol caffeic acid but not chlorogenic acid increases 5′AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle.J. Nutr. Biochem.201223111403140910.1016/j.jnutbio.2011.09.001 22227267
    [Google Scholar]
  40. VasilevaL.V. SavovaM.S. AmirovaK.M. Balcheva-SivenovaZ. FerranteC. OrlandoG. WabitschM. GeorgievM.I. Caffeic and chlorogenic acids synergistically activate browning program in human adipocytes: Implications of AMPK- and PPAR-mediated pathways.Int. J. Mol. Sci.20202124974010.3390/ijms21249740 33371201
    [Google Scholar]
  41. PavlíkováN. Caffeic acid and diseases-mechanisms of action.Int. J. Mol. Sci.202224158810.3390/ijms24010588 36614030
    [Google Scholar]
  42. RezgR. MornaguiB. SantosJ.S.O. DulinF. El-FazaaS. El-hajN.B. BureauR. GharbiN. Protective effects of caffeic acid against hypothalamic neuropeptides alterations induced by malathion in rat.Environ. Sci. Pollut. Res. Int.20152286198620710.1007/s11356‑014‑3824‑5 25404496
    [Google Scholar]
  43. LiangG. ShiB. LuoW. YangJ. The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats.Behav. Brain Funct.20151111810.1186/s12993‑015‑0064‑x 25907417
    [Google Scholar]
  44. ZhouY. FangS. YeY. ChuL. ZhangW. WangM. WeiE. Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats.Acta Pharmacol. Sin.20062791103111010.1111/j.1745‑7254.2006.00406.x 16923329
    [Google Scholar]
  45. ZhaoH.P. FengJ. SunK. LiuY.Y. WeiX.H. FanJ.Y. HuangP. MaoX.W. ZhouZ. WangC.S. WangX. HanJ.Y. Caffeic acid inhibits acute hyperhomocysteinemia-induced leukocyte rolling and adhesion in mouse cerebral venules.Microcirculation201219323324410.1111/j.1549‑8719.2011.00151.x 22145713
    [Google Scholar]
  46. AynaA. ÖzbolatS.N. DarendeliogluE. Quercetin, chrysin, caffeic acid and ferulic acid ameliorate cyclophosphamide-induced toxicities in SH-SY5Y cells.Mol. Biol. Rep.202047118535854310.1007/s11033‑020‑05896‑4 33040267
    [Google Scholar]
  47. SantosN.A.G. MartinsN.M. SilvaR.B. FerreiraR.S. SistiF.M. SantosA.C. Caffeic acid phenethyl ester (CAPE) protects PC12 cells from MPP+ toxicity by inducing the expression of neuron-typical proteins.Neurotoxicology20144513113810.1016/j.neuro.2014.09.007 25454720
    [Google Scholar]
  48. GoyalA. SolankiK. VermaA. Luteolin: Nature’s promising warrior against Alzheimer’s and Parkinson’s disease.J. Biochem. Mol. Toxicol.2024381e2361910.1002/jbt.23619 38091364
    [Google Scholar]
  49. Keshav Bansal MishraS. SinghV. BajpaiM. Nutraceuticals: A complementary approach in the management of Alzheimer’s disease.Neurochem. J.202317342344210.1134/S1819712423030030
    [Google Scholar]
  50. ChangW. HuangD. LoY.M. TeeQ. KuoP. WuJ.S. HuangW. ShenS. Protective effect of caffeic acid against alzheimer’s disease pathogenesis via modulating cerebral insulin signaling, β-amyloid accumulation, and synaptic plasticity in hyperinsulinemic rats.J. Agric. Food Chem.201967277684769310.1021/acs.jafc.9b02078 31203623
    [Google Scholar]
  51. AndradeS. LoureiroJ.A. PereiraM.C. Caffeic acid for the prevention and treatment of Alzheimer’s disease: The effect of lipid membranes on the inhibition of aggregation and disruption of Aβ fibrils.Int. J. Biol. Macromol.202119085386110.1016/j.ijbiomac.2021.08.198 34480909
    [Google Scholar]
  52. AraiT. OhnoA. MoriK. KuwataH. MizunoM. ImaiK. HaraS. ShibanumaM. KuriharaM. MiyataN. NakagawaH. FukuharaK. Inhibition of amyloid fibril formation and cytotoxicity by caffeic acid-conjugated amyloid-β C-terminal peptides.Bioorg. Med. Chem. Lett.201626225468547110.1016/j.bmcl.2016.10.027 27789140
    [Google Scholar]
  53. KimJ.H. WangQ. ChoiJ.M. LeeS. ChoE.J. Protective role of caffeic acid in an Aβ 25-35 -induced Alzheimer’s disease model.Nutr. Res. Pract.20159548048810.4162/nrp.2015.9.5.480 26425277
    [Google Scholar]
  54. HuangY. JinM. PiR. ZhangJ. ChenM. OuyangY. LiuA. ChaoX. LiuP. LiuJ. RamassamyC. QinJ. Protective effects of caffeic acid and caffeic acid phenethyl ester against acrolein-induced neurotoxicity in HT22 mouse hippocampal cells.Neurosci. Lett.201353514615110.1016/j.neulet.2012.12.051 23313590
    [Google Scholar]
  55. KhanK.A. KumarN. NayakP.G. NampoothiriM. ShenoyR.R. KrishnadasN. RaoC.M. MudgalJ. Impact of caffeic acid on aluminium chloride-induced dementia in rats.J. Pharm. Pharmacol.201365121745175210.1111/jphp.12126 24236984
    [Google Scholar]
  56. HosseiniR. MoosaviF. RajaianH. SilvaT. Magalhães e SilvaD. SoaresP. SasoL. EdrakiN. MiriR. BorgesF. FiruziO. FiruziO. Discovery of neurotrophic agents based on hydroxycinnamic acid scaffold.Chem. Biol. Drug Des.201688692693710.1111/cbdd.12829 27465784
    [Google Scholar]
  57. VermaA. ChaudharyS. SolankiK. GoyalA. YadavH.N. Exendin‐4: A potential therapeutic strategy for Alzheimer’s disease and Parkinson’s disease.Chem. Biol. Drug Des.20241031e1442610.1111/cbdd.14426 38230775
    [Google Scholar]
  58. SinghN.K. SinghA. VarshneyM. AgrawalR. A research update on exendin-4 as a novel molecule against Parkinson’s disease.Curr. Mol. Med.202323988990010.2174/1566524023666230529093314 37254536
    [Google Scholar]
  59. BansalK. SinghS. SinghV. BajpaiM. Nutraceuticals a food for thought in the treatment of Parkinson’s disease.Curr. Nutr. Food Sci.202319996197710.2174/1573401319666230515104325
    [Google Scholar]
  60. ZaitoneS.A. AhmedE. ElsherbinyN.M. MehannaE.T. El-KherbetawyM.K. ElSayedM.H. AlshareefD.M. MoustafaY.M. Caffeic acid improves locomotor activity and lessens inflammatory burden in a mouse model of rotenone-induced nigral neurodegeneration: Relevance to Parkinson’s disease therapy.Pharmacol. Rep.2019711324110.1016/j.pharep.2018.08.004 30368226
    [Google Scholar]
  61. VauzourD. CoronaG. SpencerJ.P.E. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.Arch. Biochem. Biophys.2010501110611110.1016/j.abb.2010.03.016 20361927
    [Google Scholar]
  62. VauzourD. VafeiadouK. SpencerJ.P.E. Inhibition of the formation of the neurotoxin 5-S-cysteinyl-dopamine by polyphenols.Biochem. Biophys. Res. Commun.2007362234034610.1016/j.bbrc.2007.07.153 17716620
    [Google Scholar]
  63. TsaiS. ChaoC. YinM. Preventive and therapeutic effects of caffeic acid against inflammatory injury in striatum of MPTP-treated mice.Eur. J. Pharmacol.20116702-344144710.1016/j.ejphar.2011.09.171 21970803
    [Google Scholar]
  64. MiyazakiI. IsookaN. WadaK. KikuokaR. KitamuraY. AsanumaM. Effects of enteric environmental modification by coffee components on neurodegeneration in rotenone-treated mice.Cells20198322110.3390/cells8030221 30866481
    [Google Scholar]
  65. OzansoyM. BaşakA.N. The central theme of Parkinson’s disease: α-synuclein.Mol. Neurobiol.201347246046510.1007/s12035‑012‑8369‑3 23180276
    [Google Scholar]
  66. ZhangH. BirchJ. MaZ.F. XieC. YangH. BekhitA.E.D. DiasG. Optimization of microwave-assisted extraction of bioactive compounds from New Zealand and Chinese Asparagus officinalis L. roots.J. Food Sci. Technol.201956279981010.1007/s13197‑018‑3540‑0 30906038
    [Google Scholar]
  67. FaziliN.A. NaeemA. Anti-fibrillation potency of caffeic acid against an antidepressant induced fibrillogenesis of human α-synuclein: Implications for Parkinson’s disease.Biochimie201510817818510.1016/j.biochi.2014.11.011 25461276
    [Google Scholar]
  68. ManciniR.S. WangY. WeaverD.F. Phenylindanes in brewed coffee inhibit amyloid-beta and tau aggregation.Front. Neurosci.20181273510.3389/fnins.2018.00735 30369868
    [Google Scholar]
  69. JanbazK.H. SaeedS.A. GilaniA.H. Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents.Phytomedicine200411542443010.1016/j.phymed.2003.05.002 15330498
    [Google Scholar]
  70. Pérez-AlvarezV. BobadillaR.A. MurielP. Structure–hepatoprotective activity relationship of 3,4‐dihydroxycinnamic acid (caffeic acid) derivatives.J. Appl. Toxicol.200121652753110.1002/jat.806 11746202
    [Google Scholar]
  71. OlayinkaE. OlaO. OreA. AdeyemoO. Ameliorative effect of caffeic acid on capecitabine-induced hepatic and renal dysfunction: Involvement of the antioxidant defence system.Medicines (Basel)2017447810.3390/medicines4040078 29068374
    [Google Scholar]
  72. PariL. PrasathA. Efficacy of caffeic acid in preventing nickel induced oxidative damage in liver of rats.Chem. Biol. Interact.20081732778310.1016/j.cbi.2008.02.010 18405891
    [Google Scholar]
  73. KuoY.Y. JimW.T. SuL.C. ChungC.J. LinC.Y. HuoC. TsengJ.C. HuangS.H. LaiC.J. ChenB.C. WangB.J. ChanT.M. LinH.P. ChangW.S. ChangC.R. ChuuC.P. Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer.Int. J. Mol. Sci.20151612107481076610.3390/ijms160510748 25984601
    [Google Scholar]
  74. KleczkaA. DzikR. Kabała-DzikA. Caffeic acid phenethyl ester (CAPE) synergistically enhances paclitaxel activity in ovarian cancer cells.Molecules20232815581310.3390/molecules28155813 37570782
    [Google Scholar]
  75. FangQ. XinW. ChenL. FuY. QiY. DingH. FangL. Caffeic acid phenethyl ester suppresses metastasis of breast cancer cells by inactivating FGFR1 via MD2.PLoS One2023187e028903110.1371/journal.pone.0289031 37490511
    [Google Scholar]
  76. ChenC. KuoY.H. LinC.C. ChaoC.Y. PaiM.H. ChiangE.P.I. TangF.Y. Decyl caffeic acid inhibits the proliferation of colorectal cancer cells in an autophagy-dependent manner in vitro and in vivo.PLoS One2020155e023283210.1371/journal.pone.0232832 32401800
    [Google Scholar]
  77. TsengJ.C. WangB.J. WangY.P. KuoY.Y. ChenJ.K. HourT.C. KuoL.K. HsiaoP.J. YehC.C. KaoC.L. ShihL.J. ChuuC.P. Caffeic acid phenethyl ester suppresses EGFR/FAK/Akt signaling, migration, and tumor growth of prostate cancer cells.Phytomedicine202311615486010.1016/j.phymed.2023.154860 37201366
    [Google Scholar]
  78. ZhangM. ZhouJ. WangL. LiB. GuoJ. GuanX. HanQ. ZhangH. Caffeic acid reduces cutaneous tumor necrosis factor alpha (TNF-α), IL-6 and IL-1β levels and ameliorates skin edema in acute and chronic model of cutaneous inflammation in mice.Biol. Pharm. Bull.201437334735410.1248/bpb.b13‑00459 24583856
    [Google Scholar]
  79. LiuM. SongS. LiH. JiangX. YinP. WanC. LiuX. LiuF. XuJ. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide.J. Dairy Sci.20149752856286510.3168/jds.2013‑7600 24612802
    [Google Scholar]
  80. YangW.S. JeongD. YiY.S. ParkJ.G. SeoH. MohS.H. HongS. ChoJ.Y. IRAK1/4-targeted anti-inflammatory action of caffeic acid.Mediators Inflamm.2013201311210.1155/2013/518183 24379523
    [Google Scholar]
  81. ParkM.Y. KangD.H. Antibacterial activity of caffeic acid combined with UV-A light against Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes.Appl. Environ. Microbiol.20218715e00631e2110.1128/AEM.00631‑21 33990307
    [Google Scholar]
  82. NiuY. WangK. ZhengS. WangY. RenQ. LiH. DingL. LiW. ZhangL. Antibacterial effect of caffeic acid phenethyl ester on cariogenic bacteria and Streptococcus mutans biofilms.Antimicrob. Agents Chemother.2020649e00251e2010.1128/AAC.00251‑20 32540977
    [Google Scholar]
  83. SaavedraM. BorgesA. DiasC. AiresA. BennettR. RosaE. SimõesM. Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria.Med. Chem.20106317418310.2174/1573406411006030174 20632977
    [Google Scholar]
  84. SivakumarS. Smiline GirijaA.S. Vijayashree PriyadharsiniJ. Evaluation of the inhibitory effect of caffeic acid and gallic acid on tetR and tetM efflux pumps mediating tetracycline resistance in Streptococcus sp., using computational approach.J. King Saud Univ. Sci.202032190490910.1016/j.jksus.2019.05.003
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010309341240517071344
Loading
/content/journals/cpb/10.2174/0113892010309341240517071344
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test