Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Objectives

This review paper examines biotechnological methods for enhancing edible insects using enzymatic hydrolysis and fermentation. Evaluations involve improving functionality, analyzing consumer acceptability elements, guaranteeing safety and quality, negotiating regulatory frameworks, and suggesting field breakthroughs and applications.

Methods

Our method comprises a thorough literature analysis and academic database searches for edible insect enzymatic hydrolysis and fermentation investigations. Based on gaps in the literature, we investigate edible insect safety, consumer acceptability, and legal and regulatory issues.

Results

The results show biotechnological advances in enzymatic hydrolysis and fermentation for edible insect functioning. Sensory and cultural aspects affect consumer acceptability. To ensure edible insect product safety, hazards and pollutants are addressed. The legal analysis highlights compliance issues and possibilities.

Conclusion

This review shows how enzymatic hydrolysis and fermentation improve edible insect functioning, safety, and nutrition. The review includes consumer acceptability dynamics, legal issues, and safety analysis.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010304236240517060354
2024-06-04
2025-10-27
Loading full text...

Full text loading...

References

  1. ProspectsU.N. World Population Prospects 2019: Highlights.2019Available From: https://population.un.org/wpp/Publications/Files/WPP2019_10KeyFindings.pdf
    [Google Scholar]
  2. GuinéR.P.F. FlorençaS.G. AnjosO. BoustaniN.M. Chuck-HernándezC. SarićM.M. FerreiraM. CostaC.A. BartkieneE. CardosoA.P. TarceaM. CorreiaP.M.R. CamposS. PapageorgiouM. CaminoD.A. KorzeniowskaM. Černelič-BizjakM. KrumaZ. DamarliE. FerreiraV. DjekicI. Are Consumers Aware of Sustainability Aspects Related to Edible Insects? Results from a Study Involving 14 Countries.Sustainability (Basel)202214211412510.3390/su142114125
    [Google Scholar]
  3. KimT.K. YongH.I. KangM.C. JungS. JangH.W. ChoiY.S. Effects of high hydrostatic pressure on technical functional properties of edible insect protein.Food Sci. Anim. Resour.202141218519510.5851/kosfa.2020.e85 33987542
    [Google Scholar]
  4. ZhangZ.Q. ChenS.C. XiaoJ.H. HuangD.W. State-of-the-art review of edible insect: From bioactives, pretreatment to enrichment.Food Biosci.20245910387910.1016/j.fbio.2024.103879
    [Google Scholar]
  5. de MatosF.M. RaseraG.B. de CastroR.J. Insects as a sustainable source of emerging proteins and their processing to obtain bioactive compounds: An updated review.Sustainable Food Technol.20242193110.1039/D3FB00097D
    [Google Scholar]
  6. KhampakoolA. SoisungwanS. YouS. ParkS.H. Infrared assisted freeze-drying (IRAFD) to produce shelf-stable insect food from Protaetia brevitarsis (white-spotted flower chafer) larva.Food Sci. Anim. Resour.202040581383010.5851/kosfa.2020.e60 32968732
    [Google Scholar]
  7. KimT.K. YongH.I. KimY.B. KimH.W. ChoiY.S. Edible insects as a protein source: A review of public perception, processing technology, and research trends.Food Sci. Anim. Resour.201939452154010.5851/kosfa.2019.e53 31508584
    [Google Scholar]
  8. KwakK.W. KimS.Y. AnK.S. KimY.S. ParkK. KimE. HwangJ.S. KimM.A. RyuH.Y. YoonH.J. Subacute oral toxicity evaluation of freeze-dried powder of Locusta migratoria.Food Sci. Anim. Resour.202040579581210.5851/kosfa.2020.e55 32968731
    [Google Scholar]
  9. Jantzen da Silva LucasA. Menegon de OliveiraL. da RochaM. PrenticeC. Edible insects: An alternative of nutritional, functional and bioactive compounds.Food Chem.202031112602210.1016/j.foodchem.2019.126022 31869637
    [Google Scholar]
  10. Melgar-LalanneG. Hernández-ÁlvarezA.J. Salinas-CastroA. Edible insects processing: Traditional and innovative technologies.Compr. Rev. Food Sci. Food Saf.20191841166119110.1111/1541‑4337.12463 33336989
    [Google Scholar]
  11. MyersG. PettigrewS. A qualitative exploration of the factors underlying seniors’ receptiveness to entomophagy.Food Res. Int.201810316316910.1016/j.foodres.2017.10.032 29389602
    [Google Scholar]
  12. SosaD.A. FoglianoV. Potential of insect-derived ingredients for food applications. Insect Physiology and Ecology.LondonIntechOpen Ltd.201710.5772/67318
    [Google Scholar]
  13. Castro-LópezC. Santiago-LópezL. Vallejo-CordobaB. González-CórdovaA.F. LiceagaA.M. GarcíaH.S. Hernández-MendozaA. An insight to fermented edible insects: A global perspective and prospective.Food Res. Int.202013710975010.1016/j.foodres.2020.109750 33233312
    [Google Scholar]
  14. ManfrediniP.G. CavanhiV.A.F. CostaJ.A.V. CollaL.M. Bioactive peptides and proteases: Characteristics, applications and the simultaneous production in solid-state fermentation.Biocatal. Biotransform.202139536037710.1080/10242422.2020.1849151
    [Google Scholar]
  15. RizwanD. MasoodiF.A. WaniS.M. MirS.A. Bioactive peptides from fermented foods and their relevance in COVID-19 mitigation. Food Production.Processing and Nutrition2023515310.1186/s43014‑023‑00165‑w
    [Google Scholar]
  16. SousaP. BorgesS. PintadoM. Enzymatic hydrolysis of insect Alphitobius diaperinus towards the development of bioactive peptide hydrolysates.Food Funct.20201143539354810.1039/D0FO00188K 32255460
    [Google Scholar]
  17. MajumderK. WuJ. Purification and characterisation of angiotensin I converting enzyme (ACE) inhibitory peptides derived from enzymatic hydrolysate of ovotransferrin.Food Chem.201112641614161910.1016/j.foodchem.2010.12.039 25213935
    [Google Scholar]
  18. LiuJ. YuZ. ZhaoW. LinS. WangE. ZhangY. HaoH. WangZ. ChenF. Isolation and identification of angiotensin-converting enzyme inhibitory peptides from egg white protein hydrolysates.Food Chem.201012241159116310.1016/j.foodchem.2010.03.108
    [Google Scholar]
  19. ChenJ. LiuS. YeR. CaiG. JiB. WuY. Angiotensin-I converting enzyme (ACE) inhibitory tripeptides from rice protein hydrolysate: Purification and characterization.J. Funct. Foods2013541684169210.1016/j.jff.2013.07.013
    [Google Scholar]
  20. HimayaS.W.A. NgoD.H. RyuB. KimS.K. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress.Food Chem.201213241872188210.1016/j.foodchem.2011.12.020
    [Google Scholar]
  21. VercruysseL. SmaggheG. HerregodsG. Van CampJ. ACE inhibitory activity in enzymatic hydrolysates of insect protein.J. Agric. Food Chem.200553135207521110.1021/jf050337q 15969498
    [Google Scholar]
  22. HallF. LiceagaA. Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding.J. Funct. Foods20206410363410.1016/j.jff.2019.103634
    [Google Scholar]
  23. CohenP. GoedertM. GSK3 inhibitors: Development and therapeutic potential.Nat. Rev. Drug Discov.20043647948710.1038/nrd1415 15173837
    [Google Scholar]
  24. HallF. JohnsonP.E. LiceagaA. Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein.Food Chem.2018262394710.1016/j.foodchem.2018.04.058 29751919
    [Google Scholar]
  25. D’AntonioV. BattistaN. SacchettiG. Di MattiaC. SerafiniM. Functional properties of edible insects: A systematic review.Nutr. Res. Rev.20233619811910.1017/S0954422421000366 34819193
    [Google Scholar]
  26. MittalR.K. MishraR. SharmaV. PurohitP. Bioactive exploration in functional foods: Unlocking nature’s treasures.Curr. Pharm. Biotechnol.2024 38031768
    [Google Scholar]
  27. SchiemerC. HalloranA. JespersenK. KaukuaP. Marketing insects: Superfood or solution-food?Edible Insects in Sustainable Food Systems.ChamSpringer2018
    [Google Scholar]
  28. SinghM.P. SoniK. BhamraR. MittalR.K. Superfood: Value and need.Curr. Nutr. Food Sci.2022181656810.2174/1573401317666210420123013
    [Google Scholar]
  29. De MarchiL. WangorschA. ZoccatelliG. Allergens from edible insects: Cross-reactivity and effects of processing.Curr. Allergy Asthma Rep.20212153510.1007/s11882‑021‑01012‑z 34056688
    [Google Scholar]
  30. ToldráF. ReigM. AristoyM.C. MoraL. Generation of bioactive peptides during food processing.Food Chem.201826739540410.1016/j.foodchem.2017.06.119 29934183
    [Google Scholar]
  31. YangR. ZhaoX. KuangZ. YeM. LuoG. XiaoG. LiaoS. LiL. XiongZ. Optimization of antioxidant peptide production in the hydrolysis of silkworm (Bombyx mori L.) pupa protein using response surface methodology.J. Food Agric. Environ.2013111952956
    [Google Scholar]
  32. YoonS. WongN.A.K. ChaeM. AuhJ.H. Comparative characterization of protein hydrolysates from three edible insects: Mealworm larvae, adult crickets, and silkworm pupae.Foods201981156310.3390/foods8110563 31717478
    [Google Scholar]
  33. DaroitD.J. BrandelliA. In vivo bioactivities of food protein-derived peptides – a current review.Curr. Opin. Food Sci.20213912012910.1016/j.cofs.2021.01.002
    [Google Scholar]
  34. SinghK.P. JayasomuR.S. Bombyx mori – A Review of its Potential as a Medicinal Insect.Pharm. Biol.2002401283210.1076/phbi.40.1.28.5857
    [Google Scholar]
  35. ChourasiaR. PhukonL.C. SinghS.P. RaiA.K. SahooD. Role of enzymatic bioprocesses for the production of functional food and nutraceuticals.Biomass, Biofuels, Biochemicals.AmsterdamElsevier202010.1016/B978‑0‑12‑819820‑9.00015‑6
    [Google Scholar]
  36. PurschkeB. MeinlschmidtP. HornC. RiederO. JägerH. Improvement of techno-functional properties of edible insect protein from migratory locust by enzymatic hydrolysis.Eur. Food Res. Technol.20182446999101310.1007/s00217‑017‑3017‑9
    [Google Scholar]
  37. DeviW.D. BonysanaR. KapesaK. RaiA.K. MukherjeeP.K. RajashekarY. Potential of edible insects as source of functional foods: Biotechnological approaches for improving functionality.Systems Microbiology and Biomanufacturing20222346147210.1007/s43393‑022‑00089‑5
    [Google Scholar]
  38. Can KaracaA. NickersonM. CaggiaC. RandazzoC.L. BalangeA.K. CarrilloC. GallegoM. Sharifi-RadJ. KamilogluS. CapanogluE. Nutritional and functional properties of novel protein sources.Food Rev. Int.20233996045607710.1080/87559129.2022.2067174
    [Google Scholar]
  39. Real HernandezL.M. Gonzalez de MejiaE. Enzymatic production, bioactivity, and bitterness of chickpea (Cicer arietinum) peptides.Compr. Rev. Food Sci. Food Saf.20191861913194610.1111/1541‑4337.12504 33336957
    [Google Scholar]
  40. GhoshS. Meyer-RochowV.B. JungC. Processing of edible insects for protein production.Insects as Food and Food Ingredients.Cambridge, MassachusettsAcademic Press202410.1016/B978‑0‑323‑95594‑2.00010‑0
    [Google Scholar]
  41. VercruysseL. SmaggheG. BeckersT. CampJ.V. Antioxidative and ACE inhibitory activities in enzymatic hydrolysates of the cotton leafworm, Spodoptera littoralis.Food Chem.20091141384310.1016/j.foodchem.2008.09.011
    [Google Scholar]
  42. TeixeiraC.S.S. VillaC. CostaJ. FerreiraI.M.P.L.V.O. MafraI. Edible insects as a novel source of bioactive peptides: A systematic review.Foods20231210202610.3390/foods12102026 37238844
    [Google Scholar]
  43. SarkarP. ValacchiG. DuaryR.K. Proteome composition and profiling of bioactive peptides of edible Antheraea assamensis pupae by sequential enzymatic digestion and kinetic modeling of in vitro gastrointestinal digestion.Eur. Food Res. Technol.20212021123
    [Google Scholar]
  44. VercruysseL. SmaggheG. MatsuiT. Van CampJ. Purification and identification of an angiotensin I converting enzyme (ACE) inhibitory peptide from the gastrointestinal hydrolysate of the cotton leafworm, Spodoptera littoralis.Process Biochem.200843890090410.1016/j.procbio.2008.04.014
    [Google Scholar]
  45. NongoniermaA.B. FitzGeraldR.J. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review.Innov. Food Sci. Emerg. Technol.20174323925210.1016/j.ifset.2017.08.014
    [Google Scholar]
  46. LiceagaA.M. Aguilar-ToaláJ.E. Vallejo-CordobaB. González-CórdovaA.F. Hernández-MendozaA. Insects as an alternative protein source.Annu. Rev. Food Sci. Technol.2022131193410.1146/annurev‑food‑052720‑112443 34699254
    [Google Scholar]
  47. ZielińskaE. KaraśM. JakubczykA. Antioxidant activity of predigested protein obtained from a range of farmed edible insects.Int. J. Food Sci. Technol.201752230631210.1111/ijfs.13282
    [Google Scholar]
  48. ZielińskaE. BaraniakB. KaraśM. RybczyńskaK. JakubczykA. Selected species of edible insects as a source of nutrient composition.Food Res. Int.20157746046610.1016/j.foodres.2015.09.008
    [Google Scholar]
  49. WuQ.Y. JiaJ.Q. TanG.X. XuJ.L. GuiZ.Z. Physicochemical properties of silkworm larvae protein isolate and gastrointestinal hydrolysate bioactivities.Afr. J. Biotechnol.2011103261456153
    [Google Scholar]
  50. WuQ. JiaJ. YanH. DuJ. GuiZ. A novel angiotensin-І converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study.Peptides201568172410.1016/j.peptides.2014.07.026 25111373
    [Google Scholar]
  51. JiaJ. WuQ. YanH. GuiZ. Purification and molecular docking study of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide from alcalase hydrolysate of ultrasonic-pretreated silkworm pupa (Bombyx mori) protein.Process Biochem.201550587688310.1016/j.procbio.2014.12.030
    [Google Scholar]
  52. DaiC. MaH. LuoL. YinX. Angiotensin I-converting enzyme (ACE) inhibitory peptide derived from Tenebrio molitor (L.) larva protein hydrolysate.Eur. Food Res. Technol.2013236468168910.1007/s00217‑013‑1923‑z
    [Google Scholar]
  53. HallF.G. JonesO.G. O’HaireM.E. LiceagaA.M. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates.Food Chem.201722441442210.1016/j.foodchem.2016.11.138 28159288
    [Google Scholar]
  54. KumariR. SanjuktaS. SahooD. RaiA.K. Functional peptides in Asian protein rich fermented foods: Production and health benefits.Systems Microbiology and Biomanufacturing20222111310.1007/s43393‑021‑00040‑0
    [Google Scholar]
  55. AdeboO.A. Gabriela Medina-MezaI. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review.Molecules202025492710.3390/molecules25040927 32093014
    [Google Scholar]
  56. AdeboO.A. African sorghum-based fermented foods: Past, current and future prospects.Nutrients2020124111110.3390/nu12041111 32316319
    [Google Scholar]
  57. KlunderH.C. Wolkers-RooijackersJ. KorpelaJ.M. NoutM.J.R. Microbiological aspects of processing and storage of edible insects.Food Control201226262863110.1016/j.foodcont.2012.02.013
    [Google Scholar]
  58. BorremansA. LenaertsS. CrauwelsS. LievensB. Van CampenhoutL. Marination and fermentation of yellow mealworm larvae (Tenebrio molitor).Food Control201892475210.1016/j.foodcont.2018.04.036
    [Google Scholar]
  59. MouritsenO.G. DuelundL. CallejaG. FrøstM.B. Flavour of fermented fish, insect, game, and pea sauces: Garum revisited.Int. J. Gastron. Food Sci.20179162810.1016/j.ijgfs.2017.05.002
    [Google Scholar]
  60. De SmetJ. LenaertsS. BorremansA. ScholliersJ. Van Der BorghtM. Van CampenhoutL. Stability assessment and laboratory scale fermentation of pastes produced on a pilot scale from mealworms (Tenebrio molitor).Lebensm. Wiss. Technol.201910211312110.1016/j.lwt.2018.12.017
    [Google Scholar]
  61. KewuyemiY.O. KesaH. ChinmaC.E. AdeboO.A. Fermented edible insects for promoting food security in Africa.Insects202011528310.3390/insects11050283 32380684
    [Google Scholar]
  62. BorremansA. SmetsR. Van CampenhoutL. Fermentation versus meat preservatives to extend the shelf life of mealworm (Tenebrio molitor) paste for feed and food applications.Front. Microbiol.202011151010.3389/fmicb.2020.01510 32760364
    [Google Scholar]
  63. ChoJ.H. ZhaoH.L. KimJ.S. KimS.H. ChungC.H. Characteristics of fermented seasoning sauces using Tenebrio molitor larvae.Innov. Food Sci. Emerg. Technol.20184518619510.1016/j.ifset.2017.10.010
    [Google Scholar]
  64. RoncoliniA. MilanovićV. CardinaliF. OsimaniA. GarofaloC. SabbatiniR. ClementiF. PasquiniM. MozzonM. FoligniR. RaffaelliN. ZamporliniF. MinazzatoG. TrombettaM.F. Van BuitenenA. Van CampenhoutL. AquilantiL. Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional and sensory features of bread.PLoS One2019142e021174710.1371/journal.pone.0211747 30707742
    [Google Scholar]
  65. da Rosa MachadoC. ThysR.C.S. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads.Innov. Food Sci. Emerg. Technol.20195610218010.1016/j.ifset.2019.102180
    [Google Scholar]
  66. ChoH.D. MinH.J. WonY.S. AhnH.Y. ChoY.S. SeoK.I. Solid state fermentation process with Aspergillus kawachii enhances the cancer-suppressive potential of silkworm larva in hepatocellular carcinoma cells.BMC Complement. Altern. Med.201919124110.1186/s12906‑019‑2649‑7 31488109
    [Google Scholar]
  67. UlugS.K. JahandidehF. WuJ. Novel technologies for the production of bioactive peptides.Trends Food Sci. Technol.2021108273910.1016/j.tifs.2020.12.002
    [Google Scholar]
  68. de CastroR.J.S. SatoH.H. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries.Food Res. Int.20157418519810.1016/j.foodres.2015.05.013 28411983
    [Google Scholar]
  69. Cruz-CasasD.E. AguilarC.N. Ascacio-ValdésJ.A. Rodríguez-HerreraR. Chávez-GonzálezM.L. Flores-GallegosA.C. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides.Food Chemistry: Molecular Sciences2021310004710.1016/j.fochms.2021.100047 35415659
    [Google Scholar]
  70. MatosF.M. CastroR.J. Edible insects as potential sources of proteins for obtaining bioactive peptides.Braz. J. Food. Technol.202124e202004410.1590/1981‑6723.04420
    [Google Scholar]
  71. MintahB.K. HeR. DabbourM. XiangJ. AgyekumA.A. MaH. Techno-functional attribute and antioxidative capacity of edible insect protein preparations and hydrolysates thereof: Effect of multiple mode sonochemical action.Ultrason. Sonochem.20195810467610.1016/j.ultsonch.2019.104676 31450306
    [Google Scholar]
  72. Rivero-PinoF. Espejo-CarpioF.J. Pérez-GálvezR. GuadixA. GuadixE.M. Effect of ultrasound pretreatment and sequential hydrolysis on the production of Tenebrio molitor antidiabetic peptides.Food Bioprod. Process.202012321722410.1016/j.fbp.2020.07.003
    [Google Scholar]
  73. AllenzaP. EldridgeR. High-throughput screening and insect genomics for new insecticide leads. Insecticides Design Using Advanced Technologies.Berlin, HeidelbergSpringer2007678610.1007/978‑3‑540‑46907‑0_3
    [Google Scholar]
  74. FaumanE.B. HopkinsA.L. GroomC.R. Structural bioinformatics in drug discovery. Structural Bioinformatics.Hoboken, New JerseyWiley20034410.1002/0471721204.ch23
    [Google Scholar]
  75. SmaggheG. Insect cell lines as tools in insecticide mode of action research. Insecticides design using advanced technologies.Berlin, GermanySpringer200744
    [Google Scholar]
  76. de CarvalhoN.M. MadureiraA.R. PintadoM.E. The potential of insects as food sources – a review.Crit. Rev. Food Sci. Nutr.202060213642365210.1080/10408398.2019.1703170 31868531
    [Google Scholar]
  77. OrsiL. VoegeL.L. StranieriS. Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany.Food Res. Int.201912510857310.1016/j.foodres.2019.108573 31554134
    [Google Scholar]
  78. DupontJ. FiebelkornF. Attitudes and acceptance of young people toward the consumption of insects and cultured meat in Germany.Food Qual. Prefer.20208510398310.1016/j.foodqual.2020.103983
    [Google Scholar]
  79. SogariG. MenozziD. MoraC. Exploring young foodies'; knowledge and attitude regarding entomophagy: A qualitative study in Italy.Int. J. Gastron. Food Sci.20177161910.1016/j.ijgfs.2016.12.002
    [Google Scholar]
  80. SchäufeleI. Barrera AlboresE. HammU. The role of species for the acceptance of edible insects: Evidence from a consumer survey.Br. Food J.201912192190220410.1108/BFJ‑01‑2019‑0017
    [Google Scholar]
  81. SogariG. Entomophagy and Italian consumers: An exploratory analysis.Prog. Nutr.2015174311316
    [Google Scholar]
  82. BergerS. ChristandlF. BitterlinD. WyssA.M. The social insectivore: Peer and expert influence affect consumer evaluations of insects as food.Appetite201914110433810.1016/j.appet.2019.104338 31260707
    [Google Scholar]
  83. JensenN.H. LieberothA. We will eat disgusting foods together – Evidence of the normative basis of Western entomophagy-disgust from an insect tasting.Food Qual. Prefer.20197210911510.1016/j.foodqual.2018.08.012
    [Google Scholar]
  84. SchlupY. BrunnerT. Prospects for insects as food in Switzerland: A tobit regression.Food Qual. Prefer.201864374610.1016/j.foodqual.2017.10.010
    [Google Scholar]
  85. VerbekeW. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society.Food Qual. Prefer.20153914715510.1016/j.foodqual.2014.07.008
    [Google Scholar]
  86. LammersP. UllmannL.M. FiebelkornF. Acceptance of insects as food in Germany: Is it about sensation seeking, sustainability consciousness, or food disgust?Food Qual. Prefer.201977788810.1016/j.foodqual.2019.05.010
    [Google Scholar]
  87. PalmieriN. PeritoM.A. MacrìM.C. LupiC. Exploring consumers’ willingness to eat insects in Italy.Br. Food J.2019121112937295010.1108/BFJ‑03‑2019‑0170
    [Google Scholar]
  88. van HuisA. Insects as food and feed, a new emerging agricultural sector: A review.J. Insects Food Feed202061274410.3920/JIFF2019.0017
    [Google Scholar]
  89. PowellP.A. JonesC.R. ConsedineN.S. It’s not queasy being green: The role of disgust in willingness-to-pay for more sustainable product alternatives.Food Qual. Prefer.20197810373710.1016/j.foodqual.2019.103737
    [Google Scholar]
  90. DagevosH. A literature review of consumer research on edible insects: Recent evidence and new vistas from 2019 studies.J. Insects Food Feed20217324925910.3920/JIFF2020.0052
    [Google Scholar]
  91. CicatielloC. VitaliA. LaceteraN. How does it taste? Appreciation of insect-based snacks and its determinants.Int. J. Gastron. Food Sci.20202110021110.1016/j.ijgfs.2020.100211
    [Google Scholar]
  92. HarmsE. PiroletN. Consumer acceptance of insect-based burgers.Appetite201813030610.1016/j.appet.2018.05.195
    [Google Scholar]
  93. Caparros MegidoR. SablonL. GeuensM. BrostauxY. AlabiT. BleckerC. DrugmandD. HaubrugeÉ. FrancisF. Edible insects acceptance by B elgian consumers: Promising attitude for entomophagy development.J. Sens. Stud.2014291142010.1111/joss.12077
    [Google Scholar]
  94. WilkinsonK. MuhlhauslerB. MotleyC. CrumpA. BrayH. AnkenyR. Australian consumers’ awareness and acceptance of insects as food.Insects2018924410.3390/insects9020044 29671798
    [Google Scholar]
  95. BartkowiczJ. Babicz-ZielińskaE. Acceptance of bars with edible insects by a selected group of students from Tri-City, Poland.Czech J. Food Sci.202038319219710.17221/236/2019‑CJFS
    [Google Scholar]
  96. ÇabukB. YılmazB. Fortification of traditional egg pasta (erişte) with edible insects: Nutritional quality, cooking properties and sensory characteristics evaluation.J. Food Sci. Technol.20205772750275710.1007/s13197‑020‑04315‑7 32549625
    [Google Scholar]
  97. RibeiroJ.C. LimaR.C. MaiaM.R.G. AlmeidaA.A. FonsecaA.J.M. CabritaA.R.J. CunhaL.M. Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars.Lebensm. Wiss. Technol.201911310833510.1016/j.lwt.2019.108335
    [Google Scholar]
  98. LunaG.C. Martin-GonzalezF.S. MauerL.J. LiceagaA.M. Cricket (Acheta domesticus) protein hydrolysates’ impact on the physicochemical, structural and sensory properties of tortillas and tortilla chips.J. Insects Food Feed20217110912010.3920/JIFF2020.0010
    [Google Scholar]
  99. ManciniS. MoruzzoR. RiccioliF. PaciG. European consumers’ readiness to adopt insects as food. A review.Food Res. Int.201912266167810.1016/j.foodres.2019.01.041 31229126
    [Google Scholar]
  100. AwobusuyiT.D. PillayK. SiwelaM. Consumer acceptance of biscuits supplemented with a sorghum–insect meal.Nutrients202012489510.3390/nu12040895 32218250
    [Google Scholar]
  101. TanH.S.G. FischerA.R.H. van TrijpH.C.M. StiegerM. Tasty but nasty? Exploring the role of sensory-liking and food appropriateness in the willingness to eat unusual novel foods like insects.Food Qual. Prefer.20164829330210.1016/j.foodqual.2015.11.001
    [Google Scholar]
  102. TanH.S.G. TibboelC.J. StiegerM. Why do unusual novel foods like insects lack sensory appeal? Investigating the underlying sensory perceptions.Food Qual. Prefer.201760485810.1016/j.foodqual.2017.03.012
    [Google Scholar]
  103. ModlinskaK. AdamczykD. GoncikowskaK. MaisonD. PisulaW. The effect of labelling and visual properties on the acceptance of foods containing insects.Nutrients2020129249810.3390/nu12092498 32824991
    [Google Scholar]
  104. Gómez-LucianoC.A. de AguiarL.K. VriesekoopF. UrbanoB. Consumers’ willingness to purchase three alternatives to meat proteins in the United Kingdom, Spain, Brazil and the Dominican Republic.Food Qual. Prefer.20197810373210.1016/j.foodqual.2019.103732
    [Google Scholar]
  105. LiuA.J. LiJ. GómezM.I. Factors influencing consumption of edible insects for Chinese consumers.Insects20191111010.3390/insects11010010 31861955
    [Google Scholar]
  106. DelicatoC. SchoutetenJ.J. DewettinckK. GellynckX. Tzompa-SosaD.A. Consumers’ perception of bakery products with insect fat as partial butter replacement.Food Qual. Prefer.20207910375510.1016/j.foodqual.2019.103755
    [Google Scholar]
  107. SidaliK.L. PizzoS. Garrido-PérezE.I. SchamelG. Between food delicacies and food taboos: A structural equation model to assess Western students’ acceptance of Amazonian insect food.Food Res. Int.2019115838910.1016/j.foodres.2018.07.027 30599985
    [Google Scholar]
  108. BatatW. PeterP. The healthy and sustainable bugs appetite: Factors affecting entomophagy acceptance and adoption in Western food cultures.J. Consum. Mark.202037329130310.1108/JCM‑10‑2018‑2906
    [Google Scholar]
  109. ClarksonC. MirosaM. BirchJ. Consumer acceptance of insects and ideal product attributes.Br. Food J.2018120122898291110.1108/BFJ‑11‑2017‑0645
    [Google Scholar]
  110. VerneauF. La BarberaF. KolleS. AmatoM. Del GiudiceT. GrunertK. The effect of communication and implicit associations on consuming insects: An experiment in Denmark and Italy.Appetite2016106303610.1016/j.appet.2016.02.006 26855371
    [Google Scholar]
  111. IannuzziE. SistoR. NigroC. The willingness to consume insect-based food: An empirical research on Italian consumers.Agric. Econ.20196510454462
    [Google Scholar]
  112. NybergM. OlssonV. WendinK. ‘Would you like to eat an insect?’—Children’s perceptions of and thoughts about eating insects.Int. J. Consum. Stud.202145224825810.1111/ijcs.12616
    [Google Scholar]
  113. MotokiK. IshikawaS. SpenceC. VelascoC. Contextual acceptance of insect-based foods.Food Qual. Prefer.20208510398210.1016/j.foodqual.2020.103982
    [Google Scholar]
  114. SogariG. BoguevaD. MarinovaD. Australian consumers’ response to insects as food.Agriculture20199510810.3390/agriculture9050108
    [Google Scholar]
  115. PamboK.O. MbecheR.M. OkelloJ.J. MoseG.N. KinyuruJ.N. Intentions to consume foods from edible insects and the prospects for transforming the ubiquitous biomass into food.Agric. Human Values201835488589810.1007/s10460‑018‑9881‑5
    [Google Scholar]
  116. RubyM.B. RozinP. Disgust, sushi consumption, and other predictors of acceptance of insects as food by Americans and Indians.Food Qual. Prefer.20197415516210.1016/j.foodqual.2019.01.013
    [Google Scholar]
  117. TuccilloF. MarinoM.G. TorriL. Italian consumers’ attitudes towards entomophagy: Influence of human factors and properties of insects and insect-based food.Food Res. Int.202013710961910.1016/j.foodres.2020.109619 33233207
    [Google Scholar]
  118. DoddsW.B. MonroeK.B. The Effect of Brand and Price Information on Subjective Product Evaluations. Metasearch for University of St.Gallen, Library.Adv. Consum. Res.1985128590
    [Google Scholar]
  119. LensveltE.J.S. SteenbekkersL.P.A. Exploring consumer acceptance of entomophagy: A survey and experiment in Australia and the Netherlands.Ecol. Food Nutr.201453554356110.1080/03670244.2013.879865 25105864
    [Google Scholar]
  120. BergerS. ChristandlF. SchmidtC. BaertschC. Price-based quality inferences for insects as food.Br. Food J.201812071615162710.1108/BFJ‑08‑2017‑0434
    [Google Scholar]
  121. GedrovicaI. Insects as food-the opinion of Latvian consumers.American Journal of Entomology201933566010.11648/j.aje.20190303.11
    [Google Scholar]
  122. WoolfE. ZhuY. EmoryK. ZhaoJ. LiuC. Willingness to consume insect-containing foods: A survey in the United States.Lebensm. Wiss. Technol.201910210010510.1016/j.lwt.2018.12.010
    [Google Scholar]
  123. Zielińska, E.; Zieliński, D.; Karaś, M.; Jakubczyk, A. Exploration of consumer acceptance of insects as food in Poland.J. Insects Food Feed20206438339210.3920/JIFF2019.0055
    [Google Scholar]
  124. ManciniS. SogariG. MenozziD. NuvoloniR. TorraccaB. MoruzzoR. PaciG. Factors predicting the intention of eating an insect-based product.Foods20198727010.3390/foods8070270 31331106
    [Google Scholar]
  125. BartonA. RichardsonC.D. McSweeneyM.B. Consumer attitudes toward entomophagy before and after evaluating cricket (Acheta domesticus)‐based protein powders.J. Food Sci.202085378178810.1111/1750‑3841.15043 32017110
    [Google Scholar]
  126. VerneauF. La BarberaF. AmatoM. RiversoR. GrunertK.G. Assessing the role of food related lifestyle in predicting intention towards edible insects.Insects2020111066010.3390/insects11100660 32992806
    [Google Scholar]
  127. ChangH.P. MaC.C. ChenH.S. Climate change and consumer’s attitude toward insect food.Int. J. Environ. Res. Public Health2019169160610.3390/ijerph16091606 31071928
    [Google Scholar]
  128. MenozziD. SogariG. VenezianiM. SimoniE. MoraC. Eating novel foods: An application of the Theory of Planned Behaviour to predict the consumption of an insect-based product.Food Qual. Prefer.201759273410.1016/j.foodqual.2017.02.001
    [Google Scholar]
  129. HouseJ. Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications.Appetite2016107475810.1016/j.appet.2016.07.023 27444958
    [Google Scholar]
  130. Van ThielenL. VermuytenS. StormsB. RumpoldB. Van CampenhoutL. Consumer acceptance of foods containing edible insects in Belgium two years after their introduction to the market.J. Insects Food Feed201951354410.3920/JIFF2017.0075
    [Google Scholar]
  131. PascucciS. MagistrisT.D. Information bias condemning radical food innovators? The case of insect-based products in the Netherlands.Int. Food Agribus. Manage Rev.2013163116
    [Google Scholar]
  132. RozinP. FallonA. The psychological categorization of foods and non-foods: A preliminary taxonomy of food rejections.Appetite19801319320110.1016/S0195‑6663(80)80027‑4
    [Google Scholar]
  133. AlemuM.H. OlsenS.B. VedelS.E. PamboK.O. OwinoV.O. Combining product attributes with recommendation and shopping location attributes to assess consumer preferences for insect-based food products.Food Qual. Prefer.201755455710.1016/j.foodqual.2016.08.009
    [Google Scholar]
  134. KhalilR. KallasZ. HaddarahA. El OmarF. PujolàM. Impact of Covid-19 pandemic on willingness to consume insect-based food products in Catalonia.Foods202110480510.3390/foods10040805 33917989
    [Google Scholar]
  135. CollinsC.M. VaskouP. KountourisY. Insect food products in the western world: Assessing the potential of a new ‘green’market.Ann. Entomol. Soc. Am.2019112651852810.1093/aesa/saz015 31741488
    [Google Scholar]
  136. StoopsJ. CrauwelsS. WaudM. ClaesJ. LievensB. Van CampenhoutL. Microbial community assessment of mealworm larvae ( Tenebrio molitor ) and grasshoppers ( Locusta migratoria migratorioides ) sold for human consumption.Food Microbiol.201653Pt B12212710.1016/j.fm.2015.09.010 26678139
    [Google Scholar]
  137. NyenjeM.E. OdjadjareC.E. TanihN.F. GreenE. NdipR.N. Foodborne pathogens recovered from ready-to-eat foods from roadside cafeterias and retail outlets in Alice, Eastern Cape Province, South Africa: Public health implications.Int. J. Environ. Res. Public Health2012982608261910.3390/ijerph9082608 23066386
    [Google Scholar]
  138. GarofaloC. OsimaniA. MilanovićV. TaccariM. CardinaliF. AquilantiL. RioloP. RuschioniS. IsidoroN. ClementiF. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing.Food Microbiol.201762152210.1016/j.fm.2016.09.012 27889142
    [Google Scholar]
  139. LiceagaA.M. Processing insects for use in the food and feed industry.Curr. Opin. Insect Sci.202148323610.1016/j.cois.2021.08.002 34455091
    [Google Scholar]
  140. GemedeH.F. RattaN. Antinutritional factors in plant foods: Potential health benefits and adverse effects.Int. J. Nutr. Food Sci.20143428439
    [Google Scholar]
  141. EkopE.A. UdohA.I. AkpanP.E. Proximate and anti-nutrient composition of four edible insects in Akwa Ibom State, Nigeria.World Journal of Applied Science and Technology.201022224231
    [Google Scholar]
  142. MusundireR. ZvidzaiC.J. ChideweC. SamendeB.K. ManditseraF.A. Nutrient and anti-nutrient composition of Henicus whellani (Orthoptera: Stenopelmatidae), an edible ground cricket, in south-eastern Zimbabwe.Int. J. Trop. Insect Sci.201434422323110.1017/S1742758414000484
    [Google Scholar]
  143. De PaepeE. WautersJ. Van Der BorghtM. ClaesJ. HuysmanS. CroubelsS. VanhaeckeL. Ultra-high-performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for multi-residue screening of pesticides, (veterinary) drugs and mycotoxins in edible insects.Food Chem.201929318719610.1016/j.foodchem.2019.04.082 31151600
    [Google Scholar]
  144. PomaG. CuykxM. AmatoE. CalapriceC. FocantJ.F. CovaciA. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption.Food Chem. Toxicol.2017100707910.1016/j.fct.2016.12.006 28007452
    [Google Scholar]
  145. BrühlC.A. BakanovN. KötheS. EichlerL. SorgM. HörrenT. MühlethalerR. MeinelG. LehmannG.U.C. Direct pesticide exposure of insects in nature conservation areas in Germany.Sci. Rep.20211112414410.1038/s41598‑021‑03366‑w 34916546
    [Google Scholar]
  146. Calatayud-VernichP. CalatayudF. SimóE. PicóY. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure.Environ. Pollut.201824110611410.1016/j.envpol.2018.05.062 29803024
    [Google Scholar]
  147. CharltonA.J. DickinsonM. WakefieldM.E. FitchesE. KenisM. HanR. ZhuF. KoneN. GrantM. DevicE. BruggemanG. PriorR. SmithR. Exploring the chemical safety of fly larvae as a source of protein for animal feed.J. Insects Food Feed20151171610.3920/JIFF2014.0020
    [Google Scholar]
  148. GreenfieldR. AkalaN. van der Bank, F.H. Heavy metal concentrations in two populations of Mopane worms (Imbrasia belina) in the Kruger National Park pose a potential human health risk.Bull. Environ. Contam. Toxicol.201493331632110.1007/s00128‑014‑1324‑4 24974173
    [Google Scholar]
  149. BanjoA.D. LawalO.A. FasunwonB.T. AlimiG.O. Alkali and heavy metal contaminants of some selected edible arthropods in South Western Nigeria. Am.-.Eurasian J. Toxicol. Sci.201022529
    [Google Scholar]
  150. ZhangZ.S. LuX.G. WangQ.C. ZhengD.M. Mercury, cadmium and lead biogeochemistry in the soil-plant-insect system in Huludao City.Bull. Environ. Contam. Toxicol.200983225525910.1007/s00128‑009‑9688‑6 19280090
    [Google Scholar]
  151. HyunS.H. KwonK.H. ParkK.H. JeongH.C. KwonO. TindwaH. HanY.S. Evaluation of nutritional status of an edible grasshopper,O xya C hinensis F ormosana.Entomol. Res.201242528429010.1111/j.1748‑5967.2012.00469.x
    [Google Scholar]
  152. MusundireR. OsugaI.M. ChesetoX. IrunguJ. TortoB. Aflatoxin contamination detected in nutrient and anti-oxidant rich edible stink bug stored in recycled grain containers.PLoS One2016111e014591410.1371/journal.pone.0145914 26731419
    [Google Scholar]
  153. van der Fels-KlerxH.J. CamenzuliL. BellucoS. MeijerN. RicciA. Food safety issues related to uses of insects for feeds and foods.Compr. Rev. Food Sci. Food Saf.20181751172118310.1111/1541‑4337.12385 33350154
    [Google Scholar]
  154. DiGiacomoK. LeuryB.J. Review: Insect meal: A future source of protein feed for pigs?Animal201913123022303010.1017/S1751731119001873 31414653
    [Google Scholar]
  155. Premrov BajukB. ZrimšekP. KotnikT. LeonardiA. KrižajI. Jakovac StrajnB. Insect protein-based diet as potential risk of allergy in dogs.Animals (Basel)2021117194210.3390/ani11071942 34209808
    [Google Scholar]
  156. JanczewskaD. Jakościowy aspekt logistycznych decyzji zaopatrzeniowych w przedsiębiorstwach w branży cukierniczej. Zarządzanie Innow. Gospod.Bizn.201526174
    [Google Scholar]
  157. van HuisA. RumpoldB.A. van der Fels-KlerxH.J. TomberlinJ.K. Advancing edible insects as food and feed in a circular economy.J. Insects Food Feed20217593594810.3920/JIFF2021.x005
    [Google Scholar]
  158. HanboonsongY. JamjanyaT. DurstP.B. Six-legged livestock: Edible insect farming, collection and marketing in Thailand.BangkokRAP Publication2013
    [Google Scholar]
  159. MariodA.A. The legislative status of edible insects in the World.African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components.Berlin, HeidelbergSpringer202014114810.1007/978‑3‑030‑32952‑5_9
    [Google Scholar]
  160. van HuisA. Edible crickets, but which species?J. Insects Food Feed202062919410.3920/JIFF2020.x001
    [Google Scholar]
  161. HalloranA. VantommeP. HanboonsongY. EkesiS. Regulating edible insects: The challenge of addressing food security, nature conservation, and the erosion of traditional food culture.Food Secur.20157373974610.1007/s12571‑015‑0463‑8
    [Google Scholar]
  162. Lähteenmäki-UutelaA. Hénault-EthierL. MarimuthuS.B. TalibovS. AllenR.N. NemaneV. VandenbergG.W. JózefiakD. The impact of the insect regulatory system on the insect marketing system.J. Insects Food Feed20184318719810.3920/JIFF2017.0073
    [Google Scholar]
  163. GrabowskiN.T. TchibozoS. AbdulmawjoodA. AcheukF. M’Saad GuerfaliM. SayedW.A.A. PlötzM. Edible insects in Africa in terms of food, wildlife resource, and pest management legislation.Foods20209450210.3390/foods9040502 32316132
    [Google Scholar]
  164. PatilS.R. CatesS. MoralesR. Consumer food safety knowledge, practices, and demographic differences: Findings from a meta-analysis.J. Food Prot.20056891884189410.4315/0362‑028X‑68.9.1884 16161688
    [Google Scholar]
  165. KwiatekK BakułaT SieradzkiZ OsińskiZ KowalczykE Guidelines for good hygienic practice in the production of insects for feed and food purposes.2021
    [Google Scholar]
  166. WilderspinD.E. HalloranA. The effects of regulation, legislation and policy on consumption of edible insects in the global south. Edible Insects.Sustainable Food Systems.Berlin, HeidelbergSpringer2018
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010304236240517060354
Loading
/content/journals/cpb/10.2174/0113892010304236240517060354
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test