Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Nanotechnology has the potential to offer elegant solutions to problems experienced in the medical field, such as poor drug delivery efficiency and microbial resistance. In this sense, it is interesting to associate nanomaterials with substances that also offer desirable properties to favor human health. Green propolis is an example of a material that contains some of these useful substances. The phenolic acids present in this type of propolis have already been proven to present, for example, antimicrobial, immunostimulant, and antioxidant activities. In this minireview, recent nano solutions based on green propolis, presented through manuscripts recently published, receive attention due to their useful properties in the medical field. Limitations to the clinical use of nanomaterials and the future prospects are also addressed.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010310716240515100733
2024-05-28
2026-02-01
Loading full text...

Full text loading...

References

  1. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. SupuranC.T. Natural products in drug discovery: advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  2. DzoboK. The role of natural products as sources of therapeutic agents for innovative drug discovery.Comprehensive Pharmacology2022202240842210.1016/B978‑0‑12‑820472‑6.00041‑4
    [Google Scholar]
  3. CalixtoJ.B. The role of natural products in modern drug discovery.An. Acad. Bras. Cienc.2019913Suppl. 3e2019010510.1590/0001‑376520192019010531166478
    [Google Scholar]
  4. FerreiraS.H. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca.Br. J. Pharmacol. Chemother.196524116316910.1111/j.1476‑5381.1965.tb02091.x14302350
    [Google Scholar]
  5. WaniM.C. TaylorH.L. WallM.E. CoggonP. McPhailA.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia.J. Am. Chem. Soc.19719392325232710.1021/ja00738a0455553076
    [Google Scholar]
  6. TuY. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine.Nat. Med.201117101217122010.1038/nm.247121989013
    [Google Scholar]
  7. ThomfordN. SenthebaneD. RoweA. MunroD. SeeleP. MaroyiA. DzoboK. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery.Int. J. Mol. Sci.2018196157810.3390/ijms1906157829799486
    [Google Scholar]
  8. DaviesM.K. HollmanA. The opium poppy, morphine, and verapamil.Br. Heart J.20028813-a310.1136/heart.88.1.3‑a12067923
    [Google Scholar]
  9. GaynesR. The discovery of penicillin—new insights after more than 75 years of clinical use.Emerg. Infect. Dis.201723584985310.3201/eid2305.161556
    [Google Scholar]
  10. Rivera-YañezN. Ruiz-HurtadoP.A. Rivera-YañezC.R. Arciniega-MartínezI.M. Yepez-OrtegaM. Mendoza-ArroyoB. Rebollar-RuízX.A. Méndez-CruzA.R. Reséndiz-AlborA.A. Nieto-YañezO. The role of propolis as a natural product with potential gastric cancer treatment properties: A systematic review.Foods202312241510.3390/foods1202041536673507
    [Google Scholar]
  11. AbduhM.Y. AdamA. FadhlullahM. PutraR.E. ManurungR. Production of propolis and honey from Tetragonula laeviceps cultivated in Modular Tetragonula Hives.Heliyon2020611e0540510.1016/j.heliyon.2020.e0540533204881
    [Google Scholar]
  12. Kurek-GóreckaA. GóreckiM. Rzepecka-StojkoA. BalwierzR. StojkoJ. Bee products in dermatology and skin care.Molecules202025355656110.3390/molecules2503055632012913
    [Google Scholar]
  13. MachadoB.A.S. SilvaR.P.D. BarretoG.A. CostaS.S. SilvaD.F. BrandãoH.N. RochaJ.L.C. DellagostinO.A. HenriquesJ.A.P. Umsza-GuezM.A. PadilhaF.F. Chemical composition and biological activity of extracts obtained by supercritical extraction and ethanolic extraction of brown, green and red propolis derived from different geographic regions in brazil.PLoS One2016111e014595410.1371/journal.pone.014595426745799
    [Google Scholar]
  14. Devequi-NunesD. MachadoB.A.S. BarretoG.A. Rebouças SilvaJ. da SilvaD.F. da RochaJ.L.C. BrandãoH.N. BorgesV.M. Umsza-GuezM.A. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction.PLoS One20181312e020767610.1371/journal.pone.020767630513100
    [Google Scholar]
  15. ReisJ.H.O. BarretoG.A. CerqueiraJ.C. AnjosJ.P. AndradeL.N. PadilhaF.F. DruzianJ.I. MachadoB.A.S. Evaluation of the antioxidant profile and cytotoxic activity of red propolis extracts from different regions of northeastern Brazil obtained by conventional and ultrasound-assisted extraction.PLoS One2019147e021906310.1371/journal.pone.021906331276476
    [Google Scholar]
  16. SunS. LiuM. HeJ. LiK. ZhangX. YinG. Identification and determination of seven phenolic acids in brazilian green propolis by UPLC-ESI-QTOF-MS and HPLC.Molecules2019249179110.3390/molecules2409179131075821
    [Google Scholar]
  17. CarvalhoG.J.L. SodréG.S. Application of propolis in agriculture.Arq. Inst. Biol.202188e063201910.1590/1808‑1657000632019
    [Google Scholar]
  18. BankovaV. Chemical diversity of propolis and the problem of standardization.J. Ethnopharmacol.20051001-211411710.1016/j.jep.2005.05.00415993016
    [Google Scholar]
  19. PilarioK.E. TielemansA. MojicaE.R.E. Geographical discrimination of propolis using dynamic time warping kernel principal components analysis.Expert Syst. Appl.202218711593810.1016/j.eswa.2021.115938
    [Google Scholar]
  20. El-SayedS.M. Abo-SalemO.M. AlyH.A. MansourA.M. Potential antidiabetic and hypolipidemic effects of propolis extract in streptozotocin-induced diabetic rats.Pak. J. Pharm. Sci.200922216817419339227
    [Google Scholar]
  21. ZhaoL. PuL. WeiJ. LiJ. WuJ. XinZ. GaoW. GuoC. Brazilian green propolis improves antioxidant function in patients with type 2 diabetes mellitus.Int. J. Environ. Res. Public Health201613549810.3390/ijerph1305049827187435
    [Google Scholar]
  22. WashioK. ShimamotoY. KitamuraH. <b>Brazilian propolis extract increases leptin expression in mouse </b><b>adipocytes </b>.Biomed. Res.201536534334610.2220/biomedres.36.34326522151
    [Google Scholar]
  23. FerreiraJ.C. ReisM.B. CoelhoG.D.P. GastaldelloG.H. PetiA.P.F. RodriguesD.M. BastosJ.K. CampoV.L. SorgiC.A. FaccioliL.H. GardinassiL.G. Tefé-SilvaC. ZoccalK.F. Baccharin and p-coumaric acid from green propolis mitigate inflammation by modulating the production of cytokines and eicosanoids.J. Ethnopharmacol.2021278611425510.1016/j.jep.2021.11425534062248
    [Google Scholar]
  24. TakashimaM. IchiharaK. HirataY. Neuroprotective effects of Brazilian green propolis on oxytosis/ferroptosis in mouse hippocampal HT22 cells.Food Chem. Toxicol.2019132311066910.1016/j.fct.2019.11066931299294
    [Google Scholar]
  25. AssisMAS RamosLP HasnaAA QueirozTS PereiraTC LimaPM MarcucciMC CarvalhoCAT de OliveiraLD Antimicrobial and antibiofilm effect of brazilian green propolis aqueous extract against dental anaerobic bacteria.Molecules202227238128
    [Google Scholar]
  26. VeigaR.S. De MendonçaS. MendesP.B. PaulinoN. MimicaM.J. Lagareiro NettoA.A. LiraI.S. LópezB.G.C. NegrãoV. MarcucciM.C. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC.J. Appl. Microbiol.2017122491192010.1111/jam.1340028066967
    [Google Scholar]
  27. CostaP. AlmeidaM.O. LemosM. ArrudaC. CasotiR. SomensiL.B. BoeingT. MariottM. da SilvaR.C.M.V.A.F. SteinB.D.P. SouzaP. dos SantosA.C. BastosJ.K. da SilvaL.M. AndradeS.F. Artepillin C, drupanin, aromadendrin-4′-O-methyl-ether and kaempferide from Brazilian green propolis promote gastroprotective action by diversified mode of action.J. Ethnopharmacol.2018226828910.1016/j.jep.2018.08.00630107246
    [Google Scholar]
  28. FariaT.F. FariaR.F. KamadaI. BarretoL.C.L.S. Topical use of green propolis for wound healing: A systematic review of the literature.ESTIMA, Brazil. J. Enterost. Ther.202220e022210.30886/estima.v20.1135_IN
    [Google Scholar]
  29. GaoW. WuJ. WeiJ. PuL. GuoC. YangJ. YangM. LuoH. Brazilian green propolis improves immune function in aged mice.J. Clin. Biochem. Nutr.201455171010.3164/jcbn.13‑7025120274
    [Google Scholar]
  30. FioriniA.C. ScorzaC.A. de AlmeidaA.C.G. FonsecaM.C.M. FinstererJ. FonsecaF.L.A. ScorzaF.A. Antiviral activity of brazilian green propolis extract against SARS-CoV-2 (Severe Acute Respiratory Syndrome : Coronavirus 2) infection: case report and review.Clinics202176e235710.6061/clinics/2021/e235733503192
    [Google Scholar]
  31. SilveiraM.A.D. MenezesM.A. de SouzaS.P. GalvãoE.B.S. BerrettaA.A. CaldasJ. TeixeiraM.B. GomesM.M.D. DamianiL.P. BahienseB.A. CabralJ.B. De OliveiraC.W.L.M. MascarenhasT.R. PinheiroP.C.G. AlvesM.S. de MeloR.M.V. LeiteF.M. NonakaC.K.V. SouzaB.S.F. BaptistaN.U. TelesF. da GuardaS.F. MendesA.V.A. PassosR.H. Standardized Brazilian green propolis extract (EPP-AF®) in COVID-19 outcomes: A randomized double-blind placebo-controlled trial.Sci. Rep.20231311840510.1038/s41598‑023‑43764‑w37891178
    [Google Scholar]
  32. de OliveiraP. de Souza LimaI. MunariC. BastosJ. da Silva FilhoA. TavaresD. Comparative evaluation of antiproliferative effects of Brazilian green propolis, its main source Baccharis dracunculifolia, and their major constituents artepillin C and baccharin.Planta Med.201480649049210.1055/s‑0034‑136829824687736
    [Google Scholar]
  33. WangH. PaulsonK.R. PeaseS.A. WatsonS. ComfortH. ZhengP. AravkinA.Y. BisignanoC. BarberR.M. AlamT. FullerJ.E. MayE.A. JonesD.P. FrischM.E. AbbafatiC. AdolphC. AllorantA. AmlagJ.O. Bang-JensenB. BertolacciG.J. BloomS.S. CarterA. CastroE. ChakrabartiS. ChattopadhyayJ. CogenR.M. CollinsJ.K. CooperriderK. DaiX. DangelW.J. DaoudF. DapperC. DeenA. DuncanB.B. EricksonM. EwaldS.B. FedosseevaT. FerrariA.J. FrostadJ.J. FullmanN. GallagherJ. GamkrelidzeA. GuoG. HeJ. HelakM. HenryN.J. HullandE.N. HuntleyB.M. KereselidzeM. Lazzar-AtwoodA. LeGrandK.E. LindstromA. LinebargerE. LotufoP.A. LozanoR. MagistroB. MaltaD.C. MånssonJ. Mantilla HerreraA.M. MarinhoF. MirkuzieA.H. MisganawA.T. MonastaL. NaikP. NomuraS. O’BrienE.G. O’HalloranJ.K. OlanaL.T. OstroffS.M. PenberthyL. ReinerR.C.Jr ReinkeG. RibeiroA.L.P. SantomauroD.F. SchmidtM.I. ShawD.H. SheenaB.S. SholokhovA. SkhvitaridzeN. SorensenR.J.D. SpurlockE.E. SyailendrawatiR. Topor-MadryR. TroegerC.E. WalcottR. WalkerA. WiysongeC.S. WorkuN.A. ZiglerB. PigottD.M. NaghaviM. MokdadA.H. LimS.S. HayS.I. GakidouE. MurrayC.J.L. Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21.Lancet2022399103341513153610.1016/S0140‑6736(21)02796‑335279232
    [Google Scholar]
  34. DuZ. WangY. BaiY. WangL. CowlingB.J. MeyersL.A. Estimate of COVID-19 deaths, china, december 2022–February 2023.Emerg. Infect. Dis.202329102121212410.3201/eid2910.23058537640373
    [Google Scholar]
  35. American Journal of Public Health. COVID-19. Available from: https://www.apha.org/Topics-and-Issues/Communicable-Disease/Coronavirus?cmgfrm= (Accessed April 05, 2024).
  36. MaraniM. KatulG.G. PanW.K. ParolariA.J. Intensity and frequency of extreme novel epidemics.Proc. Natl. Acad. Sci.202111835e210548211810.1073/pnas.210548211834426498
    [Google Scholar]
  37. WilliamsB.A. JonesC.H. WelchV. TrueJ.M. Outlook of pandemic preparedness in a post-COVID-19 world.NPJ Vaccines20238117810.1038/s41541‑023‑00773‑037985781
    [Google Scholar]
  38. MayM. Tomorrow’s biggest microbial threats.Nat. Med.202127335835910.1038/s41591‑021‑01264‑233723448
    [Google Scholar]
  39. SalatinoA. SalatinoM.L.F. NegriG. How diverse is the chemistry and plant origin of Brazilian propolis?Apidologie20215261075109710.1007/s13592‑021‑00889‑z34611369
    [Google Scholar]
  40. BerrettaA.A. ZamarrenhoL.G. CorreaJ.A. De LimaJ.A. BoriniG.B. AmbrósioS.R. BarudH.S. BastosJ.K. De JongD. Development and characterization of new green propolis extract formulations as promising candidates to substitute for green propolis hydroalcoholic extract.Molecules2023288351010.3390/molecules2808351037110745
    [Google Scholar]
  41. SaadS. Abdel-FattahD. KhamisT. El-SobkyA. Potential role of propolis nanoparticles in medicine and health: An updated review.Adv. Anim. Vet. Sci.2023103589598
    [Google Scholar]
  42. BaigN. KammakakamI. FalathW. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges.Materials Advances2021261821187110.1039/D0MA00807A
    [Google Scholar]
  43. BonifácioB.V. SilvaP.B. RamosM.A. NegriK.M.S. BauabT.M. ChorilliM. Nanotechnology-based drug delivery systems and herbal medicines: A review.Int. J. Nanomedicine2014911524363556
    [Google Scholar]
  44. AstrucD. Introduction to nanomedicine.Molecules2015211410.3390/molecules2101000426791291
    [Google Scholar]
  45. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nano-Enabled Med. Appl20216191
    [Google Scholar]
  46. AfzalO. AltamimiA.S.A. NadeemM.S. AlzareaS.I. AlmalkiW.H. TariqA. MubeenB. MurtazaB.N. IftikharS. RiazN. KazmiI. Nanoparticles in drug delivery: From history to therapeutic applications.Nanomaterials20221224449410.3390/nano1224449436558344
    [Google Scholar]
  47. MalikS. MuhammadK. WaheedY. Emerging applications of nanotechnology in healthcare and medicine.Molecules20232818662410.3390/molecules2818662437764400
    [Google Scholar]
  48. AbbasiR. ShinehG. MobarakiM. DoughtyS. TayebiL. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review.J. Nanopart. Res.2023253435110.1007/s11051‑023‑05690‑w36875184
    [Google Scholar]
  49. Fito LópezC. Colmenar GonzálezI. Andreu SánchezO. VelaV. Domat RodriguezM. Exposure assessment and risk characterization of carbon-based nanomaterials at different production scales.Sustainability202315161254410.3390/su151612544
    [Google Scholar]
  50. FarbodF. Mazloum-ArdakaniM. Typically used nanomaterials-based noncarbon materials in the fabrication of biosensors.Electrochemical Biosensors. EnsafiA.A. Academic Press20199913310.1016/B978‑0‑12‑816491‑4.00005‑X
    [Google Scholar]
  51. Clinicaltrials.gov. Results nano propolis. Available from: https://clinicaltrials.gov/search?term=nano%20propolis&checkSpell= (Accessed April 05, 2024).
  52. HegaziA.G. El-HoussinyA.S. FouadE.A. Egyptian propolis: Potential antibacterial activity of propolis-encapsulated alginate nanoparticles against different pathogenic bacteria strains Advances in Natural Sciences.Nanoscience and Nanotechnology201910445019
    [Google Scholar]
  53. Abdel RaheemI.A. Abdul RazekA. ElgendyA.A. LabahD.A. SalehN.M. Egyptian propolis-loaded nanoparticles as a root canal nanosealer: Sealing ability and in vivo biocompatibility.Int. J. Nanomedicine2020155265527710.2147/IJN.S25888832884255
    [Google Scholar]
  54. AminA.A. MahmoudK.F. SalamaM.F. LongoV. PozzoL. SeliemE.I. IbrahimM.A. Characterization and stability evaluation of Egyptian propolis extract nano-capsules and their application.Sci. Rep.20231311606510.1038/s41598‑023‑42025‑037752204
    [Google Scholar]
  55. GhallabD.S. MohyeldinM.M. ShawkyE. MetwallyA.M. IbrahimR.S. Chemical profiling of Egyptian propolis and determination of its xanthine oxidase inhibitory properties using UPLC–MS/MS and chemometrics.Lebensm. Wiss. Technol.2021136111029810.1016/j.lwt.2020.110298
    [Google Scholar]
  56. El SohaimyS.A. MasryS.H.D. Phenolic content, antioxidant and antimicrobial activities of egyptian and chinese propolis. American-Eurasian J.Agric. & Environ. Sci.2014141011161124
    [Google Scholar]
  57. ZhangC. ShenX. ChenJ. JiangX. WangK. HuF. Artepillin C, is it a good marker for quality control of Brazilian green propolis?Nat. Prod. Res.201731202441244410.1080/14786419.2017.130369728299979
    [Google Scholar]
  58. AhnM.R. KunimasaK. OhtaT. KumazawaS. KamihiraM. KajiK. UtoY. HoriH. NagasawaH. NakayamaT. Suppression of tumor-induced angiogenesis by Brazilian propolis: Major component artepillin C inhibits in vitro tube formation and endothelial cell proliferation.Cancer Lett.2007252223524310.1016/j.canlet.2006.12.03917343983
    [Google Scholar]
  59. ShahinozzamanM. BasakB. EmranR. RozarioP. ObandaD.N. Artepillin C: A comprehensive review of its chemistry, bioavailability, and pharmacological properties.Fitoterapia202014710477510.1016/j.fitote.2020.10477533152464
    [Google Scholar]
  60. BeserraF.P. GushikenL.F.S. HussniM.F. RibeiroV.P. BonaminF. JacksonC.J. PellizzonC.H. BastosJ.K. Artepillin C as an outstanding phenolic compound of Brazilian green propolis for disease treatment: A review on pharmacological aspects.Phytother. Res.20213552274228610.1002/ptr.687532935428
    [Google Scholar]
  61. MartinsN.S. de Campos Fraga-SilvaT.F. CorreaG.F. BokoM.M.M. RamalhoL.N.Z. RodriguesD.M. HoriJ.I. CostaD.L. BastosJ.K. BonatoV.L.D. Artepillin C reduces allergic airway inflammation by induction of monocytic myeloid-derived suppressor cells.Pharmaceutics20211311176310.3390/pharmaceutics1311176334834178
    [Google Scholar]
  62. Pubmed. Filtered results for “green propolis”. Available from: https://pubmed.ncbi.nlm.nih.gov/?term=green+propolis&filter=pubt.clinicaltrial&filter=pubt.meta-analysis&filter=pubt.randomizedcontrolledtrial (Accessed April 05, 2024).
  63. Clinicaltrials.gov. Results for green propolis.Available from: https://clinicaltrials.gov/search?term=green%20propolis (Accessed April 05, 2024).
  64. BaptistaB.G. FantonS. RibeiroM. CardozoL.F.M.F. RegisB. AlvarengaL. Ribeiro-AlvesM. BerrettaA.A. ShielsP.G. MafraD. The effect of Brazilian Green Propolis extract on inflammation in patients with chronic kidney disease on peritoneal dialysis: A randomised double-blind controlled clinical trial.Phytomedicine202311415473110.1016/j.phymed.2023.15473136934668
    [Google Scholar]
  65. DingJ. MatsumiyaT. HayakariR. ShibaY. KawaguchiS. SeyaK. UenoK. ImaizumiT. Daily Brazilian green propolis intake elevates blood artepillin C levels in humans.J. Sci. Food Agric.2021101114855486110.1002/jsfa.1113233543484
    [Google Scholar]
  66. SilveiraM.A.D. De JongD. BerrettaA.A. GalvãoE.B.S. RibeiroJ.C. Cerqueira-SilvaT. AmorimT.C. ConceiçãoL.F.M.R. GomesM.M.D. TeixeiraM.B. SouzaS.P. SantosM.H.C.A. San MartinR.L.A. SilvaM.O. LírioM. MorenoL. SampaioJ.C.M. MendonçaR. UltchakS.S. AmorimF.S. RamosJ.G.R. BatistaP.B.P. GuardaS.N.F. MendesA.V.A. PassosR.H. Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial.Biomed. Pharmacother.202113811152610.1016/j.biopha.2021.11152634311528
    [Google Scholar]
  67. ZhuA. WuZ. ZhongX. NiJ. LiY. MengJ. DuC. ZhaoX. NakanishiH. WuS. Brazilian green propolis prevents cognitive decline into mild cognitive impairment in elderly people living at high altitude.J. Alzheimers Dis.201863255156010.3233/JAD‑17063029630549
    [Google Scholar]
  68. SilveiraM.A.D. TelesF. BerrettaA.A. SanchesT.R. RodriguesC.E. SeguroA.C. AndradeL. Effects of Brazilian green propolis on proteinuria and renal function in patients with chronic kidney disease: A randomized, double-blind, placebo-controlled trial.BMC Nephrol.201920114010.1186/s12882‑019‑1337‑731023272
    [Google Scholar]
  69. TascaK.I. ConteF.L. CorreaC.R. SantiagoK.B. CardosoE.O. ManfioV.M. GarciaJ.L. BerrettaA.A. SartoriA.A. HonorioM.S. SouzaL.R. SforcinJ.M. Propolis consumption by asymptomatic HIV-individuals: Better redox state? A prospective, randomized, double-blind, placebo-controlled trial.Biomed. Pharmacother.202316211462610.1016/j.biopha.2023.11462637004329
    [Google Scholar]
  70. Vaz CoelhoL.G. Ferreira BastosE.M.A. ResendeC.C. Paula e SilvaC.M. Fernandes SanchesB.S. De CastroF.J. MoretzsohnL.D. Dos Santos VieiraW.L. TrindadeO.R. Brazilian green propolis on Helicobacter pylori infection. a pilot clinical study.Helicobacter200712557257410.1111/j.1523‑5378.2007.00525.x17760728
    [Google Scholar]
  71. NgatuN.R. SarutaT. HirotaR. EitokuM. LuzituN.S. MuzemboB.A. MatsuiT. SuganumaN. Brazilian green propolis extracts improve Tinea pedis interdigitalis and Tinea corporis.J. Altern. Complement. Med.20121818910.1089/acm.2011.069622229708
    [Google Scholar]
  72. ChermutT.R. FonsecaL. FigueiredoN. de Oliveira LealV. BorgesN.A. CardozoL.F.M.F. Correa LeiteP.E. AlvarengaL. RegisB. DelgadoA. BerrettaA.A. Ribeiro-AlvesM. MafraD. Effects of propolis on inflammation markers in patients undergoing hemodialysis: A randomized, double-blind controlled clinical trial.Complement. Ther. Clin. Pract.20235110173210.1016/j.ctcp.2023.10173236708650
    [Google Scholar]
  73. TsuchiyaY. HirataN. AsamaT. OsakabeN. HirataK. AkagiR. Can a short-term daily oral administration of propolis improve muscle fatigue and recovery?Int. J. Sports Med.2022431085986410.1055/a‑1808‑631935640598
    [Google Scholar]
  74. NiedzielskaI. PuszczewiczZ. MertasA. NiedzielskiD. RóżanowskiB. BaronS. KonopkaT. Machorowska-PieniążekA. Skucha-NowakM. TanasiewiczM. PaluchJ. MarkowskiJ. Orzechowska-WylęgałaB. KrólW. MorawiecT. The influence of ethanolic extract of brazilian green propolis gel on hygiene and oral microbiota in patients after mandible fractures.BioMed Res. Int.2016201611110.1155/2016/919081427595110
    [Google Scholar]
  75. MiryanM. SoleimaniD. DehghaniL. SohrabiK. KhorvashF. BagherniyaM. SayediS.M. AskariG. The effect of propolis supplementation on clinical symptoms in patients with coronavirus (COVID-19): A structured summary of a study protocol for a randomised controlled trial.Trials202021199610.1186/s13063‑020‑04934‑733272309
    [Google Scholar]
  76. Tatli SevenP. SevenI. Gul BaykalirB. Iflazoglu MutluS. SalemA.Z.M. Nanotechnology and nano-propolis in animal production and health: an overview.Ital. J. Anim. Sci.201817492193010.1080/1828051X.2018.1448726
    [Google Scholar]
  77. BezerraF.W.F. SilvaJ.M. FontanariG.G. OliveiraJ.A.R. RaiM. ChistéR.C. MartinsL.H.S. Sustainable applications of nanopropolis to combat foodborne illnesses.Molecules20232819678510.3390/molecules2819678537836629
    [Google Scholar]
  78. ChengX. XieQ. SunY. Advances in nanomaterial-based targeted drug delivery systems.Front. Bioeng. Biotechnol.202311117715110.3389/fbioe.2023.117715137122851
    [Google Scholar]
  79. TonelliF.M.P. TonelliF.C.P. FerreiraD.R.C. da SilvaK.E. CordeiroH.G. Biocompatibility and Functionalization of Nanomaterials.Intelligent Nanomaterials for Drug Delivery Applications Book. AhmadN. GopinathP. Elsevier20208510310.1016/B978‑0‑12‑817830‑0.00005‑9
    [Google Scholar]
  80. dos Santos AlvesM.J. de SousaM.H.O. de MouraN.F. CescaK. VerruckS. MonteiroA.R. ValenciaG.A. Starch nanoparticles containing phenolic compounds from green propolis: Characterization and evaluation of antioxidant, antimicrobial and digestibility properties.Int. J. Biol. Macromol.202425512807910.1016/j.ijbiomac.2023.12807937977471
    [Google Scholar]
  81. da SilvaJ.T. Dantas de SousaP.H. CostaA.F. de MenezesL.B. AlvesS.F. PellegriniF. AmaralA.C. Fluconazole and propolis co-encapsulated in chitosan nanoparticles for the treatment of vulvovaginal candidiasis in a murine model.Med. Mycol.20236111myad11310.1093/mmy/myad11337947253
    [Google Scholar]
  82. MoraisM.S. BonfimD.P.F. AguiarM.L. OliveiraW.P. Electrospun Poly (Vinyl Alcohol) nanofibrous mat loaded with green propolis extract, chitosan and nystatin as an innovative wound dressing material.J. Pharm. Innov.20221811536061220
    [Google Scholar]
  83. ZelčaZ. KrummeA. KukleS. KrasnouI. Propolis nanofibers: Development and effect against SARS-CoV-2 virus and S. aureus, S. enterica bacteria.Mater. Today Chem.20233310174910.1016/j.mtchem.2023.101749
    [Google Scholar]
  84. Shahab-NavaeiF. AsoodehA. Synthesis of optimized propolis solid lipid nanoparticles with desirable antimicrobial, antioxidant, and anti-cancer properties.Sci. Rep.20231311829010.1038/s41598‑023‑45768‑y37880491
    [Google Scholar]
  85. ZhangX. WangS. ChenX. QuC. Review controlling Listeria monocytogenes in ready-to-eat meat and poultry products: An overview of outbreaks, current legislations, challenges, and future prospects.Trends Food Sci. Technol.2021116243510.1016/j.tifs.2021.07.014
    [Google Scholar]
  86. Ceballos-GarzonA. PeñuelaA. Valderrama-BeltránS. Vargas-CasanovaY. ArizaB. Parra-GiraldoC.M. Emergence and circulation of azole-resistant C. albicans, C. auris and C. parapsilosis bloodstream isolates carrying Y132F, K143R or T220L Erg11p substitutions in Colombia.Front. Cell. Infect. Microbiol.202313113621710.3389/fcimb.2023.113621737026059
    [Google Scholar]
  87. DeVierno KreuderA. House-KnightT. WhitfordJ. PonnusamyE. MillerP. JesseN. RodenbornR. SayagS. GebelM. ApedI. SharfsteinI. ManasterE. ErgazI. HarrisA. Nelowet GriceL. A method for assessing greener alternatives between chemical products following the 12 principles of green chemistry.ACS Sustain. Chem.& Eng.2017542927293510.1021/acssuschemeng.6b02399
    [Google Scholar]
  88. IravaniS. KorbekandiH. MirmohammadiS.V. ZolfaghariB. Synthesis of silver nanoparticles: chemical, physical and biological methods.Res. Pharm. Sci.20149638540626339255
    [Google Scholar]
  89. SalemS.S. A mini review on green nanotechnology and its development in biological effects.Arch. Microbiol.2023205412810.1007/s00203‑023‑03467‑236944830
    [Google Scholar]
  90. HustonM. DeBellaM. DiBellaM. GuptaA. Green synthesis of nanomaterials.Nanomaterials2021118213010.3390/nano1108213034443960
    [Google Scholar]
  91. Hassan AfandyH. SabirD.K. AzizS.B. Antibacterial activity of the green synthesized plasmonic silver nanoparticles with crystalline structure against gram-positive and gram-negative bacteria.Nanomaterials2023138132710.3390/nano1308132737110913
    [Google Scholar]
  92. VijayaramS. RazafindralamboH. SunY.Z. VasantharajS. GhafarifarsaniH. HoseinifarS.H. RaeeszadehM. Applications of green synthesized metal nanoparticles : A review.Biol. Trace Elem. Res.2023202312737046039
    [Google Scholar]
  93. MadaniM. HosnyS. AlshangitiD.M. NadyN. AlkhursaniS.A. AlkhaldiH. Al-GahtanyS.A. GhobashyM.M. GaberG.A. Green synthesis of nanoparticles for varied applications: Green renewable resources and energy-efficient synthetic routes.Nanotechnol. Rev.202211173175910.1515/ntrev‑2022‑0034
    [Google Scholar]
  94. ChopraH. BibiS. SinghI. HasanM.M. KhanM.S. YousafiQ. BaigA.A. RahmanM.M. IslamF. EmranT.B. CavaluS. Green metallic nanoparticles: Biosynthesis to applications.Front. Bioeng. Biotechnol.20221087474210.3389/fbioe.2022.87474235464722
    [Google Scholar]
  95. DuanH. WangD. LiY. Green chemistry for nanoparticle synthesis.Chem. Soc. Rev.201544165778579210.1039/C4CS00363B25615873
    [Google Scholar]
  96. KıranT.R. OtluO. KarabulutA.B. Oxidative stress and antioxidants in health and disease.J. Laborat. Med.202347111110.1515/labmed‑2022‑0108
    [Google Scholar]
  97. LiC. LeiS. DingL. XuY. WuX. WangH. ZhangZ. GaoT. ZhangY. LiL. Global burden and trends of lung cancer incidence and mortality.Chin. Med. J.2023136131583159010.1097/CM9.000000000000252937027426
    [Google Scholar]
  98. WuL.P. WangD. LiZ. Grand challenges in nanomedicine.Mater. Sci. Eng. C202010611030210.1016/j.msec.2019.11030231753337
    [Google Scholar]
  99. LeongH.S. ButlerK.S. BrinkerC.J. AzzawiM. ConlanS. DufésC. OwenA. RannardS. ScottC. ChenC. DobrovolskaiaM.A. KozlovS.V. Prina-MelloA. SchmidR. WickP. CaputoF. BoisseauP. CristR.M. McNeilS.E. FadeelB. TranL. HansenS.F. HartmannN.B. ClausenL.P.W. SkjoldingL.M. BaunA. ÅgerstrandM. GuZ. LamprouD.A. HoskinsC. HuangL. SongW. CaoH. LiuX. JandtK.D. JiangW. KimB.Y.S. WheelerK.E. ChetwyndA.J. LynchI. MoghimiS.M. NelA. XiaT. WeissP.S. SarmentoB. das NevesJ. SantosH.A. SantosL. MitragotriS. LittleS. PeerD. AmijiM.M. AlonsoM.J. Petri-FinkA. BalogS. LeeA. DraslerB. Rothen-RutishauserB. WilhelmS. AcarH. HarrisonR.G. MaoC. MukherjeeP. RameshR. McNallyL.R. BusattoS. WolframJ. BergeseP. FerrariM. FangR.H. ZhangL. ZhengJ. PengC. DuB. YuM. CharronD.M. ZhengG. PastoreC. On the issue of transparency and reproducibility in nanomedicine.Nat. Nanotechnol.201914762963510.1038/s41565‑019‑0496‑931270452
    [Google Scholar]
  100. ShakibaA. ZenasniO. MarquezM.D. Randall LeeT. Advanced drug delivery via self-assembled monolayer-coated nanoparticles.AIMS Bioeng.2017427529910.3934/bioeng.2017.2.275
    [Google Scholar]
  101. SeibertJ.B. Bautista-SilvaJ.P. AmparoT.R. PetitA. PervierP. dos Santos AlmeidaJ.C. AzevedoM.C. SilveiraB.M. BrandãoG.C. de SouzaG.H.B. de Medeiros TeixeiraL.F. dos SantosO.D.H. Development of propolis nanoemulsion with antioxidant and antimicrobial activity for use as a potential natural preservative.Food Chem.2019287616710.1016/j.foodchem.2019.02.07830857719
    [Google Scholar]
  102. JavedS. ManglaB. AhsanW. From propolis to nanopropolis: An exemplary journey and a paradigm shift of a resinous substance produced by bees.Phytother. Res.20223652016204110.1002/ptr.743535259776
    [Google Scholar]
  103. BarsolaB. SaklaniS. KumariP. SidhuA.K. DharA. Role and the importance of green approach in biosynthesis of nanopropolis and effectiveness of propolis in the treatment of COVID-19 pandemic.Green Proces. Synth.20231212022810610.1515/gps‑2022‑8106
    [Google Scholar]
  104. KumahE.A. FopaR.D. HaratiS. BoaduP. ZohooriF.V. PakT. Human and environmental impacts of nanoparticles: A scoping review of the current literature.BMC Public Health2023231105910.1186/s12889‑023‑15958‑437268899
    [Google Scholar]
  105. LuykxD.M.A.M. PetersR.J.B. van RuthS.M. BouwmeesterH. A review of analytical methods for the identification and characterization of nano delivery systems in food.J. Agric. Food Chem.200856188231824710.1021/jf801392618759445
    [Google Scholar]
  106. ZhangY.N. PoonW. TavaresA.J. McGilvrayI.D. ChanW.C.W. Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination.J. Control. Release201624033234810.1016/j.jconrel.2016.01.02026774224
    [Google Scholar]
  107. UngorD. DékányI. CsapóE. Reduction of tetrachloroaurate(Iii) ions with bioligands: Role of the thiol and amine functional groups on the structure and optical features of gold nanohybrid systems.Nanomaterials201999122910.3390/nano909122931470660
    [Google Scholar]
  108. DługoszO. SzostakK. StarońA. Pulit-ProciakJ. BanachM. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine.Materials202013227910.3390/ma1302027931936311
    [Google Scholar]
  109. BurdockG.A. Review of the biological properties and toxicity of bee propolis (propolis).Food Chem. Toxicol.199836434736310.1016/S0278‑6915(97)00145‑29651052
    [Google Scholar]
  110. FoulkesR. ManE. ThindJ. YeungS. JoyA. HoskinsC. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives.Biomater. Sci.20208174653466410.1039/D0BM00558D32672255
    [Google Scholar]
  111. NymarkP. BakkerM. DekkersS. FrankenR. FransmanW. García-BilbaoA. GrecoD. GulumianM. HadrupN. HalappanavarS. HongistoV. HougaardK.S. JensenK.A. KohonenP. KoivistoA.J. Dal MasoM. OosterwijkT. PoikkimäkiM. Rodriguez-LlopisI. StierumR. SørliJ.B. GrafströmR. Toward rigorous materials production: New approach methodologies have extensive potential to Improve current safety assessment practices.Small2020166190474910.1002/smll.20190474931913582
    [Google Scholar]
  112. IsigonisP. HristozovD. BenighausC. GiubilatoE. GriegerK. PizzolL. SemenzinE. LinkovI. ZabeoA. MarcominiA. Risk governance of nanomaterials: Review of criteria and tools for risk communication, evaluation, and mitigation.Nanomaterials20199569610.3390/nano905069631060250
    [Google Scholar]
  113. GulumianM. ThwalaM. MakhobaX. WepenerV. Current situation and future prognosis of health, safety and environment risk assessment of nanomaterials in South Africa.S. Afr. J. Sci.20231191/21710.17159/sajs.2023/11657
    [Google Scholar]
  114. El-KallinyA.S. Abdel-WahedM.S. El-ZahharA.A. HamzaI.A. Gad-AllahT.A. Nanomaterials: A review of emerging contaminants with potential health or environmental impact.Discover Nano20231816810.1186/s11671‑023‑03787‑837382722
    [Google Scholar]
  115. KhanR. InamM. IqbalM. ShoaibM. ParkD. LeeK. ShinS. KhanS. YeomI. Removal of ZnO nanoparticles from natural waters by coagulation-flocculation process: influence of surfactant type on aggregation dissolution and colloidal stability.Sustainability2018111173910.3390/su11010017
    [Google Scholar]
  116. WiesnerM.R. LowryG.V. AlvarezP. DionysiouD. BiswasP. Assessing the risks of manufactured nanomaterials.Environ. Sci. Technol.200640144336434510.1021/es062726m16903268
    [Google Scholar]
  117. PandeyG. JainP. Assessing the nanotechnology on the grounds of costs, benefits, and risks.Beni. Suef Univ. J. Basic Appl. Sci.2020916310.1186/s43088‑020‑00085‑5
    [Google Scholar]
  118. AliA.M.M. JabirS.M. KadhimA.A. AlmagtomeA. Nanotechnology practices and cost restructure for effective cost management under industry 4.0 based manufacturing systems.TEM Journal.202211311931199
    [Google Scholar]
  119. BosettiR. JonesS.L. Cost–effectiveness of nanomedicine: estimating the real size of nano-costs.Nanomedicine201914111367137010.2217/nnm‑2019‑013031169449
    [Google Scholar]
  120. ChengZ. Al ZakiA. HuiJ.Z. MuzykantovV.R. TsourkasA. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities.Science2012338610990391010.1126/science.122633823161990
    [Google Scholar]
  121. MpongwanaN. RathilalS. A review of the techno-economic feasibility of nanoparticle application for wastewater treatment.Water20221410155010.3390/w14101550
    [Google Scholar]
  122. DingX. MillerP.G. HwangM.P. FuJ. WangY. Scale-up synthesis of a polymer designed for protein therapy.Eur. Polym. J.201911735336210.1016/j.eurpolymj.2019.05.032
    [Google Scholar]
  123. MilewskaS. Niemirowicz-LaskowskaK. SiemiaszkoG. NowickiP. WilczewskaA.Z. CarH. Current trends and challenges in pharmacoeconomic aspects of nanocarriers as drug delivery systems for cancer treatment.Int. J. Nanomedicine2021166593664410.2147/IJN.S32383134611400
    [Google Scholar]
  124. BuyaA.B. BeloquiA. MemvangaP.B. PréatV. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery.Pharmaceutics20201212119410.3390/pharmaceutics1212119433317067
    [Google Scholar]
  125. HoD. Digital nanomedicine: A new frontier for drug development.ACS Nano20221633435343710.1021/acsnano.2c01835
    [Google Scholar]
  126. WastiS. LeeI.H. KimS. LeeJ.H. KimH. Ethical and legal challenges in nanomedical innovations: A scoping review.Front. Genet.202314116339210.3389/fgene.2023.116339237252668
    [Google Scholar]
  127. RambaranT. SchirhaglR. Nanotechnology from lab to industry a look at current trends.Nanoscale Adv.20224183664367510.1039/D2NA00439A36133326
    [Google Scholar]
  128. YangZ. GaoD. ZhaoJ. YangG. GuoM. WangY. RenX. KimJ.S. JinL. TianZ. ZhangX. Thermal immuno-nanomedicine in cancer.Nat. Rev. Clin. Oncol.202320211613410.1038/s41571‑022‑00717‑y36604531
    [Google Scholar]
  129. PorterA.L. YoutieJ. How interdisciplinary is nanotechnology?J. Nanopart. Res.20091151023104110.1007/s11051‑009‑9607‑021170124
    [Google Scholar]
  130. ZhuY. TracyJ.B. DongJ. JiangX. JonesM.G. ChildersG. Teaching a multidisciplinary nanotechnology laboratory course to undergraduate students.J. Nano Educ.201351172610.1166/jne.2013.1032
    [Google Scholar]
  131. HuertasJD FuentesYV GarciaJC BustosRH The role of education in nanomedicine as a current need for academic programs related to the healthcare field: A scoping review.Adv Med Educ Pract.2024156574
    [Google Scholar]
  132. PorterA.L. KongthonA. LuJ.C.J.C. Research profiling: Improving the literature review.Scientometrics200253335137010.1023/A:1014873029258
    [Google Scholar]
  133. ItoT. DegawaT. OkumuraN. Brazilian green propolis prevent Alzheimer’s disease-like cognitive impairment induced by amyloid beta in mice.BMC Complement. Med. Therap.202323141610.1186/s12906‑023‑04247‑737978479
    [Google Scholar]
  134. WuY.L. ZhuA.Q. ZhouX.T. ZhangK.W. YuanX.J. YuanM. HeJ. PinedaM.A. LiK.P. A novel ultrafiltrate extract of propolis exerts anti‐inflammatory activity through metabolic rewiring.Chem. Biodivers.2024213e20230131510.1002/cbdv.20230131538189169
    [Google Scholar]
  135. SonN.T. GianibbiB. PantiA. SpigaO. BastosJ.K. FusiF. 3,3′-O-dimethylquercetin: A bi-functional vasodilator isolated from green propolis of the Caatinga Mimosa tenuiflora.Eur. J. Pharmacol.202496717640010.1016/j.ejphar.2024.17640038331336
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010310716240515100733
Loading
/content/journals/cpb/10.2174/0113892010310716240515100733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test