Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

A chronic metabolic condition, diabetes mellitus (DM), is becoming more common all over the globe. Diabetic complications include diabetic foot ulcers (DFUs). Between fifteen and twenty-five percent of people with diabetes will experience DFU at some point in their lives. Prolonged hospital stays and amputations are common outcomes of DFUs due to the absence of targeted therapy and appropriate wound dressings. Specialized DFU wound care is expected to be in high demand due to the anticipated increase in the prevalence of DM. Therefore, there is a strong need to enhance and create more effective wound dressings and therapies that are unique to DFU. Bioengineered tissues, individualised prostheses, and implants are just a few examples of how 3D bioprinting has revolutionised healthcare in the past decade. This review delves into the difficulties of wound management and explores how 3D bioprinting could improve existing treatment approaches and biomanufacturing composite 3D human skin substitutes as an alternative to skin grafting. To alleviate the healthcare burden caused by the rising incidence of DM, it will be crucial to co-develop 3D bioprinting technologies with new therapeutic techniques to address the unique pathophysiological problems of DFU in the future.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010306310240605050448
2024-06-20
2025-10-08
Loading full text...

Full text loading...

References

  1. HameedI. MasoodiS.R. MirS.A. NabiM. GhazanfarK. GanaiB.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition.World J. Diabetes20156459861210.4239/wjd.v6.i4.598 25987957
    [Google Scholar]
  2. AroraA. BehlT. SehgalA. SinghS. SharmaN. BhatiaS. Sobarzo-SanchezE. BungauS. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus.Life Sci.202127311931110.1016/j.lfs.2021.119311 33662428
    [Google Scholar]
  3. Corb AronR.A. AbidA. VesaC.M. NechiforA.C. BehlT. GhiteaT.C. MunteanuM.A. FratilaO. Andronie-CioaraF.L. TomaM.M. BungauS. Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of akkermansia muciniphila as a key gut bacterium.Microorganisms20219361810.3390/microorganisms9030618 33802777
    [Google Scholar]
  4. KumarS. BehlT. SachdevaM. SehgalA. KumariS. KumarA. KaurG. YadavH.N. BungauS. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus.Life Sci.202126411866110.1016/j.lfs.2020.118661 33121986
    [Google Scholar]
  5. WangooN. KaushalJ. BhasinK.K. MehtaS.K. SuriC.R. Zeta potential based colorimetric immunoassay for the direct detection of diabetic marker HbA1c using gold nanoprobes.Chem. Commun. (Camb.)201046315755575710.1039/c0cc00224k 20571696
    [Google Scholar]
  6. BremH. BalleduxJ. BloomT. KersteinM.D. HollierL. Healing of diabetic foot ulcers and pressure ulcers with human skin equivalent: a new paradigm in wound healing.Arch. Surg.2000135662763410.1001/archsurg.135.6.627 10843357
    [Google Scholar]
  7. RohillaM. Rishabh BansalS. GargA. DhimanS. DhankharS. SainiM. ChauhanS. AlsubaieN. BatihaG.E.S. AlbezrahN.K.A. SinghT.G. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy.Biomed. Pharmacother.202316911588110.1016/j.biopha.2023.115881 37989030
    [Google Scholar]
  8. GazzarusoC. GallottiP. PujiaA. MontalciniT. GiustinaA. CoppolaA. Predictors of healing, ulcer recurrence and persistence, amputation and mortality in type 2 diabetic patients with diabetic foot: a 10-year retrospective cohort study.Endocrine2021711596810.1007/s12020‑020‑02431‑0 32712853
    [Google Scholar]
  9. JonesL.E. Nursing Education on Pressure Ulcer Prevention in Acute Care.Walden University2023
    [Google Scholar]
  10. HarkerJ. Wound healing complications associated with lower limb amputation,World Wide Wounds.2006Available from: http://www.worldwidewounds.com/2006/september/Harker/Wound-Healing-Complications-Limb-Amputation.html#:~:text=Potential%20wound%2Dhealing%20complications%20associated,associated%20with%20lower%20limb%20amputations
  11. TanC.T. LiangK. NgoZ.H. DubeC.T. LimC.Y. Application of 3D bioprinting technologies to the management and treatment of diabetic foot ulcers.Biomedicines202081044110.3390/biomedicines8100441 33096771
    [Google Scholar]
  12. Venkat NarayanK.M. GreggE.W. Fagot-CampagnaA. EngelgauM.M. VinicorF. Diabetes — a common, growing, serious, costly, and potentially preventable public health problem.Diabetes Res. Clin. Pract.200050Suppl. 2S77S8410.1016/S0168‑8227(00)00183‑2 11024588
    [Google Scholar]
  13. HassanW.U. GreiserU. WangW. Role of adipose‐derived stem cells in wound healing.Wound Repair Regen.201422331332510.1111/wrr.12173 24844331
    [Google Scholar]
  14. BertheuilN. Adipose mesenchymal stromal cells: definition, immunomodulatory properties, mechanical isolation and interest for plastic surgery.Annales de Chirurgie Plastique Esthétique.Elsevier201910.1016/j.anplas.2018.07.005
    [Google Scholar]
  15. ShafiqM. JungY. KimS.H. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair.Biomaterials2016908511510.1016/j.biomaterials.2016.03.020 27016619
    [Google Scholar]
  16. CarstensM.H. Developmental Anatomy of Craniofacial Skin, Fat, and Fascia.ChamSpringer202310.1007/978‑3‑031‑15636‑6_11
    [Google Scholar]
  17. SmithR.L. Cells are the new cure: the cutting-edge medical breakthroughs that are transforming our health.BenBella Books2017
    [Google Scholar]
  18. LandénN.X. LiD. StåhleM. Transition from inflammation to proliferation: a critical step during wound healing.Cell. Mol. Life Sci.201673203861388510.1007/s00018‑016‑2268‑0 27180275
    [Google Scholar]
  19. DhankarS. GargN. ChauhanS. SainiM. A Bird View on the Role of Graphene Oxide Nanosystems in Therapeutic Delivery.Curr. Nanosci.20242011110.2174/0115734137299120240312044808
    [Google Scholar]
  20. StrangH. Role of cytokines and chemokines in wound healing.Wound healing, tissue repair, and regeneration in diabetes.Elsevier202019723510.1016/B978‑0‑12‑816413‑6.00011‑3
    [Google Scholar]
  21. MantovaniA. LocatiM. VecchiA. SozzaniS. AllavenaP. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines.Trends Immunol.200122632833610.1016/S1471‑4906(01)01941‑X 11377293
    [Google Scholar]
  22. SorgH. TilkornD.J. HagerS. HauserJ. MirastschijskiU. Skin wound healing: an update on the current knowledge and concepts.Eur. Surg. Res.2017581-2819410.1159/000454919 27974711
    [Google Scholar]
  23. SharmaH. GargN. DhankharS. MIttal, P.; Chauhan, S.; Saini, M. Biobased Nanomaterials: Pioneering Innovations for Biomedical Advancements.Pharm. Nanotechnol.20241211510.2174/0122117385291530240305044703 38504570
    [Google Scholar]
  24. CorrD.T. HartD.A. Biomechanics of scar tissue and uninjured skin.Adv. Wound Care (New Rochelle)201322374310.1089/wound.2011.0321 24527323
    [Google Scholar]
  25. HanS-K. Basics of wound healing.Innovations and Advances in Wound Healing.Springer202314210.1007/978‑981‑19‑9805‑8_1
    [Google Scholar]
  26. KrzyszczykP. SchlossR. PalmerA. BerthiaumeF. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes.Front. Physiol.2018941910.3389/fphys.2018.00419 29765329
    [Google Scholar]
  27. SchneiderC. StratmanS. KirsnerR.S. Lower extremity ulcers.Med. Clin. North Am.2021105466367910.1016/j.mcna.2021.04.006 34059244
    [Google Scholar]
  28. Coutinho-WolinoK.S. AlmeidaP.P. MafraD. Stockler-PintoM.B. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: pathways involved and future perspectives.Nutr. Res.20221079611610.1016/j.nutres.2022.09.001 36209684
    [Google Scholar]
  29. Rodríguez-RodríguezN. Martínez-JiménezI. García-OjalvoA. Mendoza-MaríY. Guillén-NietoG. ArmstrongD. Berlanga-AcostaJ. Wound chronicity, impaired immunity and infection in diabetic patients.MEDICC Rev.2021241445810.37757/MR2021.V23.N3.8 34653116
    [Google Scholar]
  30. AhmedM.S. KhanI.J. AmanS. ChauhanS. KaurN. ShriwastavS. GoelK. SainiM. DhankarS. SinghT.G. DevJ. MujwarS. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul.J. Exp. Biol. Agric. Sci.202311238039310.18006/2023.11(2).380.393
    [Google Scholar]
  31. ChauhanS. Current Approaches in Healing of Wounds in Diabetes and Diabetic Foot Ulcers.Curr. Bioact. Compd.2023193104121
    [Google Scholar]
  32. ChauhanS. Antihyperglycemic and Antioxidant Potential of Plant Extract of Litchi chinensis and Glycine max.Int. J. Nutr. Pharmacol. Neurol. Dis.2021113225233
    [Google Scholar]
  33. DhankarS. MujwarS. GargN. ChauhanS. SharmaP. Kumar SharmaS. KamalM.A. RaniD.N. KumarS. SainiM. Artificial Intelligence in The Management of Neurodegenerative Disorders.CNS Neurol. Disord. Drug Targets202323110 37861051
    [Google Scholar]
  34. DhankharS. SharmaP. ChauhanS. SainiM. GargN. SinghR. KamalM.A. Kumar SharmaS. RaniN. Cognitive Rehabilitation For Early-Stage Dementia: A Review.Current Psychiatry Research and Reviews20242011410.2174/0126660822275618231129073551
    [Google Scholar]
  35. JalilianM. Ahmadi SarbarzehP. OubariS. Factors related to severity of diabetic foot ulcer: a systematic review.Diabetes Metab. Syndr. Obes.2020131835184210.2147/DMSO.S256243 32547145
    [Google Scholar]
  36. BurgessJ.L. WyantW.A. Abdo AbujamraB. KirsnerR.S. JozicI. Diabetic wound-healing science.Medicina (Kaunas)20215710107210.3390/medicina57101072 34684109
    [Google Scholar]
  37. RodriguesM. KosaricN. BonhamC.A. GurtnerG.C. Wound healing: a cellular perspective.Physiol. Rev.201999166570610.1152/physrev.00067.2017 30475656
    [Google Scholar]
  38. ZhaoR. LiangH. ClarkeE. JacksonC. XueM. Inflammation in chronic wounds.Int. J. Mol. Sci.20161712208510.3390/ijms17122085 27973441
    [Google Scholar]
  39. StechmillerJ.K. ChildressB. StevensG. KilpadiD.V. SchultzG.S. 052 Effect of Negative Pressure Wound Therapy on the Expression of TNF-α, IL-1β, MMP-2, MMP-3, and TIMP-1 in Wound Fluid of Adults with Pressure Ulcers.Wound Repair Regen.2005132A4A2710.1111/j.1067‑1927.2005.130215az.x
    [Google Scholar]
  40. BoccacciniA.R. BlakerJ.J. Bioactive composite materials for tissue engineering scaffolds.Expert Rev. Med. Devices20052330331710.1586/17434440.2.3.303 16288594
    [Google Scholar]
  41. PreteS. DattiloM. PatitucciF. PezziG. ParisiO.I. PuociF. Natural and Synthetic Polymeric Biomaterials for Application in Wound Management.J. Funct. Biomater.202314945510.3390/jfb14090455 37754869
    [Google Scholar]
  42. Kirketerp-MøllerK. DoerflerP. SchoefmannN. Wolf-WiniskiB. NiaziO. PlessV. KarlsmarkT. ÅgrenM. Biomarkers of skin graft healing in venous leg ulcers.Acta Derm. Venereol.202210210210.2340/actadv.v102.201
    [Google Scholar]
  43. FalangaV. Bioengineered skin constructs.Principles of tissue engineering.Elsevier20201331135210.1016/B978‑0‑12‑818422‑6.00073‑3
    [Google Scholar]
  44. TseH.F. YiuK.H. LauC.P. Bone marrow stem cell therapy for myocardial angiogenesis.Curr. Vasc. Pharmacol.20075210311210.2174/157016107780368299 17430214
    [Google Scholar]
  45. LiaoY. ItohM. YangA. ZhuH. RobertsS. HighetA.M. LatshawS. MitchellK. Van De VenC. ChristianoA. CairoM.S. Human cord blood-derived unrestricted somatic stem cells promote wound healing and have therapeutic potential for patients with recessive dystrophic epidermolysis bullosa.Cell Transplant.201423330331710.3727/096368913X663569 23394106
    [Google Scholar]
  46. MaziniL. RochetteL. AdmouB. AmalS. MalkaG. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing.Int. J. Mol. Sci.2020214130610.3390/ijms21041306 32075181
    [Google Scholar]
  47. Di TrapaniM. BassiG. FontanaE. GiacomelloL. PozzobonM. GuillotP.V. De CoppiP. KramperaM. Immune regulatory properties of CD117(pos) amniotic fluid stem cells vary according to gestational age.Stem Cells Dev.201524113214310.1089/scd.2014.0234 25072397
    [Google Scholar]
  48. JecksonT.A. NeoY.P. SisinthyS.P. FooJ.B. ChoudhuryH. GorainB. Formulation and characterisation of deferoxamine nanofiber as potential wound dressing for the treatment of diabetic foot ulcer.J. Drug Deliv. Sci. Technol.20216610275110.1016/j.jddst.2021.102751
    [Google Scholar]
  49. NegutI. GrumezescuV. GrumezescuA. Treatment strategies for infected wounds.Molecules2018239239210.3390/molecules23092392 30231567
    [Google Scholar]
  50. ErikssonE. LiuP.Y. SchultzG.S. Martins-GreenM.M. TanakaR. WeirD. GouldL.J. ArmstrongD.G. GibbonsG.W. WolcottR. OlutoyeO.O. KirsnerR.S. GurtnerG.C. Chronic wounds: Treatment consensus.Wound Repair Regen.202230215617110.1111/wrr.12994 35130362
    [Google Scholar]
  51. ZunigaK.M.I. Development of a three-dimensional in vitro vascularized human skin equivalent employing collagen/keratin hydrogels. UT Electronic Theses and Dissertations.The University of Texas at Austin2021
    [Google Scholar]
  52. ŁabuśW. Tissue engineering in skin substitute.Adv. Exp. Med. Biol.2021134519320810.1007/978‑3‑030‑82735‑9_16 34582024
    [Google Scholar]
  53. ColazoJ.M. EvansB.C. FarinasA.F. Al-KassisS. DuvallC.L. ThayerW.P. Applied bioengineering in tissue reconstruction, replacement, and regeneration.Tissue Eng. Part B Rev.201925425929010.1089/ten.teb.2018.0325 30896342
    [Google Scholar]
  54. VaporidouN. PeroniF. RestelliA. JalilM.N. DyeJ.F. Artificial Skin Therapies; Strategy for Product Development.Adv. Wound Care (New Rochelle)2023121057460010.1089/wound.2022.0050 36680749
    [Google Scholar]
  55. NarwalS. Current Therapeutic Strategies for Chagas Disease.Antiinfect. Agents202321111
    [Google Scholar]
  56. PanchalM. RanaP. GargN. DhankharS. SharmaH. ChauhanS. A Comprehensive Review of Alternative Therapeutic Approaches for Nausea and Vomiting Relief in Pregnancy.Emir. Med. J.20245e0250688228292910.2174/0102506882282929231212074538
    [Google Scholar]
  57. El-SayedA. ZhangZ. ZhangL. LiuZ. AbbottL. ZhangY. LiB. Pluripotent state induction in mouse embryonic fibroblast using mRNAs of reprogramming factors.Int. J. Mol. Sci.20141512218402186410.3390/ijms151221840 25437916
    [Google Scholar]
  58. AlagpulinsaD.A. CaoJ.J.L. DriscollR.K. SîrbulescuR.F. PensonM.F.E. SremacM. EngquistE.N. BraunsT.A. MarkmannJ.F. MeltonD.A. PoznanskyM.C. Alginate-microencapsulation of human stem cell–derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression.Am. J. Transplant.20191971930194010.1111/ajt.15308 30748094
    [Google Scholar]
  59. SaharanR. KaurJ. DhankharS. GargN. ChauhanS. KumarS. SharmaH. Hydrogel-based Drug Delivery System in Diabetes Management.Pharm. Nanotechnol.20231211110.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  60. GheibiS. SinghT. da CunhaJ.P.M.C.M. FexM. MulderH. Insulin/glucose-responsive cells derived from induced pluripotent stem cells: disease modeling and treatment of diabetes.Cells2020911246510.3390/cells9112465 33198288
    [Google Scholar]
  61. BrouwerM. ZhouH. Nadif KasriN. Choices for induction of pluripotency: recent developments in human induced pluripotent stem cell reprogramming strategies.Stem Cell Rev.2016121547210.1007/s12015‑015‑9622‑8 26424535
    [Google Scholar]
  62. AntoniadouE. DavidA.L. Placental stem cells.Best Pract. Res. Clin. Obstet. Gynaecol.201631132910.1016/j.bpobgyn.2015.08.014 26547389
    [Google Scholar]
  63. YaoL. HuX. DaiK. YuanM. LiuP. ZhangQ. JiangY. Mesenchymal stromal cells: promising treatment for liver cirrhosis.Stem Cell Res. Ther.202213130810.1186/s13287‑022‑03001‑z 35841079
    [Google Scholar]
  64. PäthG. PerakakisN. MantzorosC.S. SeufertJ. Stem cells in the treatment of diabetes mellitus — Focus on mesenchymal stem cells.Metabolism20199011510.1016/j.metabol.2018.10.005 30342065
    [Google Scholar]
  65. LukomskaB. Challenges and controversies in human mesenchymal stem cell therapy.Stem Cells Int.20192019962853610.1155/2019/9628536
    [Google Scholar]
  66. HuangG. YeS. ZhouX. LiuD. YingQ.L. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network.Cell. Mol. Life Sci.20157291741175710.1007/s00018‑015‑1833‑2 25595304
    [Google Scholar]
  67. St JohnJ.C. Facucho-OliveiraJ. JiangY. KellyR. SalahR. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells.Hum. Reprod. Update201016548850910.1093/humupd/dmq002 20231166
    [Google Scholar]
  68. MittalP. DhankharS. ChauhanS. GargN. BhattacharyaT. AliM. ChaudharyA.A. RudayniH.A. Al-ZharaniM. AhmadW. KhanS.U.D. SinghT.G. MujwarS. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson’s Disease.Pharmaceuticals (Basel)202316790810.3390/ph16070908 37513820
    [Google Scholar]
  69. XuX. ZhengL. YuanQ. ZhenG. CraneJ.L. ZhouX. CaoX. Transforming growth factor-β in stem cells and tissue homeostasis.Bone Res.201861210.1038/s41413‑017‑0005‑4 29423331
    [Google Scholar]
  70. DhankharS. ChauhanS. MehtaD.K. Nitika; Saini, K.; Saini, M.; Das, R.; Gupta, S.; Gautam, V. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  71. LalitK. Phyto-pharmacological review of Coccinia indica.World J. Pharm. Pharm. Sci.20143217341745[WJPPS].
    [Google Scholar]
  72. KumarS.A. DelgadoM. MendezV.E. JoddarB. Applications of stem cells and bioprinting for potential treatment of diabetes.World J. Stem Cells2019111133210.4252/wjsc.v11.i1.13 30705712
    [Google Scholar]
  73. GiwaS. LewisJ.K. AlvarezL. LangerR. RothA.E. ChurchG.M. MarkmannJ.F. SachsD.H. ChandrakerA. WertheimJ.A. RothblattM. BoydenE.S. EidboE. LeeW.P.A. PomahacB. BrandacherG. WeinstockD.M. ElliottG. NelsonD. AckerJ.P. UygunK. SchmalzB. WeegmanB.P. TocchioA. FahyG.M. StoreyK.B. RubinskyB. BischofJ. ElliottJ.A.W. WoodruffT.K. MorrisG.J. DemirciU. BrockbankK.G.M. WoodsE.J. BenR.N. BaustJ.G. GaoD. FullerB. RabinY. KravitzD.C. TaylorM.J. TonerM. The promise of organ and tissue preservation to transform medicine.Nat. Biotechnol.201735653054210.1038/nbt.3889 28591112
    [Google Scholar]
  74. HarkerK.S. UenoN. LodoenM.B. Toxoplasma gondii dissemination: a parasite’s journey through the infected host.Parasite Immunol.201537314114910.1111/pim.12163 25408224
    [Google Scholar]
  75. GirardA.O. LakeI.V. LopezC.D. KalsiR. BrandacherG. CooneyD.S. RedettR.J. Vascularized composite allotransplantation of the penis: current status and future perspectives.Int. J. Impot. Res.202234438339110.1038/s41443‑021‑00481‑0 34711953
    [Google Scholar]
  76. VanaeiS. PariziM.S. VanaeiS. SalemizadehpariziF. VanaeiH.R. An overview on materials and techniques in 3D bioprinting toward biomedical application.Engineered Regeneration2021211810.1016/j.engreg.2020.12.001
    [Google Scholar]
  77. SuH. LuB. LiM. YangX. QinM. WuY. Development of digital light processing-based multi-material bioprinting for fabrication of heterogeneous tissue constructs.Biomater. Sci.202311196663667310.1039/D3BM01054F 37614165
    [Google Scholar]
  78. BenwoodC. ChrenekJ. KirschR.L. MasriN.Z. RichardsH. TeetzenK. WillerthS.M. Natural biomaterials and their use as bioinks for printing tissues.Bioengineering (Basel)2021822710.3390/bioengineering8020027 33672626
    [Google Scholar]
  79. DouC. PerezV. QuJ. TsinA. XuB. LiJ. A state‐of‐the‐art review of laser‐assisted bioprinting and its future research trends.ChemBioEng Rev.20218551753410.1002/cben.202000037
    [Google Scholar]
  80. Gungor-OzkerimP.S. InciI. ZhangY.S. KhademhosseiniA. DokmeciM.R. Bioinks for 3D bioprinting: an overview.Biomater. Sci.20186591594610.1039/C7BM00765E 29492503
    [Google Scholar]
  81. WilliamsD. ThayerP. MartinezH. GatenholmE. KhademhosseiniA. A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting.Bioprinting20189193610.1016/j.bprint.2018.02.003
    [Google Scholar]
  82. RohillaS. SharmaP. KambojS. DhankharS. GargN. ChauhanS. RaniN. Anabolic Androgenic Steroids: A Review.Emir. Med. J.20245e0250688225370610.2174/0102506882253706240104073440
    [Google Scholar]
  83. FatimiA. OkoroO.V. PodstawczykD. Siminska-StannyJ. ShavandiA. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: A review.Gels20228317910.3390/gels8030179 35323292
    [Google Scholar]
  84. MobarakiM. GhaffariM. YazdanpanahA. LuoY. MillsD.K. Bioinks and bioprinting: A focused review.Bioprinting202018e0008010.1016/j.bprint.2020.e00080
    [Google Scholar]
  85. KrishaniM. ShinW.Y. SuhaimiH. SambudiN.S. Development of scaffolds from bio-based natural materials for tissue regeneration applications: A review.Gels20239210010.3390/gels9020100 36826270
    [Google Scholar]
  86. CarrowJ.K. Polymers for bioprinting.Essentials of 3D biofabrication and translation.Elsevier201522924810.1016/B978‑0‑12‑800972‑7.00013‑X
    [Google Scholar]
  87. IndurkarA. PanditA. JainR. DandekarP. Plant-based biomaterials in tissue engineering.Bioprinting202121e0012710.1016/j.bprint.2020.e00127
    [Google Scholar]
  88. PerticiV. TrimailleT. GigmesD. Inputs of macromolecular engineering in the design of injectable hydrogels based on synthetic thermoresponsive polymers.Macromolecules202053268269210.1021/acs.macromol.9b00705
    [Google Scholar]
  89. OyeokaH.C. EwulonuC.M. NwuzorI.C. ObeleC.M. NwabanneJ.T. Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals.Journal of Bioresources and Bioproducts20216216818510.1016/j.jobab.2021.02.009
    [Google Scholar]
  90. LigonS.C. LiskaR. StampflJ. GurrM. MülhauptR. Polymers for 3D printing and customized additive manufacturing.Chem. Rev.201711715102121029010.1021/acs.chemrev.7b00074 28756658
    [Google Scholar]
  91. BarileG. LeoniA. MuttilloM. PaolucciR. FazziniG. PantoliL. Fused-deposition-material 3D-printing procedure and algorithm avoiding use of any supports.Sensors (Basel)202020247010.3390/s20020470 31947596
    [Google Scholar]
  92. MitchellM.G. Bioprinting: Techniques and Risks for Regenerative Medicine.Academic Press2017
    [Google Scholar]
  93. KumarP. HuangY. ToyserkaniE. KhameseeM.B. Development of a magnetic levitation system for additive manufacturing: Simulation analyses.IEEE Trans. Magn.20205681710.1109/TMAG.2020.2997759
    [Google Scholar]
  94. ParfenovV.A. KoudanE.V. KrokhmalA.A. AnnenkovaE.A. PetrovS.V. PereiraF.D.A.S. KaralkinP.A. NezhurinaE.K. GryadunovaA.A. BulanovaE.A. SapozhnikovO.A. TsysarS.A. LiuK. OosterwijkE. van BeuningenH. van der KraanP. GrannemanS. EngelkampH. ChristianenP. KasyanovV. KhesuaniY.D. MironovV.A. Biofabrication of a functional tubular construct from tissue spheroids using magnetoacoustic levitational directed assembly.Adv. Healthc. Mater.2020924200072110.1002/adhm.202000721 32809273
    [Google Scholar]
  95. TianZ. YangS. HuangP.H. WangZ. ZhangP. GuY. BachmanH. ChenC. WuM. XieY. HuangT.J. Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells.Sci. Adv.201955eaau606210.1126/sciadv.aau6062 31172021
    [Google Scholar]
  96. ZhangB. Strengths, weaknesses, and applications of computational axial lithography in tissue engineering.Science201936310751079
    [Google Scholar]
  97. JiS. GuvendirenM. Complex 3D bioprinting methods.APL Bioeng.20215101150810.1063/5.0034901 33728391
    [Google Scholar]
  98. RavanbakhshH. KaramzadehV. BaoG. MongeauL. JunckerD. ZhangY.S. Emerging technologies in multi‐material bioprinting.Adv. Mater.20213349210473010.1002/adma.202104730 34596923
    [Google Scholar]
  99. LiX. LiuB. PeiB. ChenJ. ZhouD. PengJ. ZhangX. JiaW. XuT. Inkjet bioprinting of biomaterials.Chem. Rev.202012019107931083310.1021/acs.chemrev.0c00008 32902959
    [Google Scholar]
  100. RameshS. HarryssonO.L.A. RaoP.K. TamayolA. CormierD.R. ZhangY. RiveroI.V. Extrusion bioprinting: Recent progress, challenges, and future opportunities.Bioprinting202121e0011610.1016/j.bprint.2020.e00116
    [Google Scholar]
  101. Ghanizadeh TabrizA. MillsC.G. MullinsJ.J. DaviesJ.A. ShuW. Rapid fabrication of cell-laden alginate hydrogel 3D structures by micro dip-coating.Front. Bioeng. Biotechnol.201751310.3389/fbioe.2017.00013 28286747
    [Google Scholar]
  102. JeongH.J. NamH. JangJ. LeeS.J. 3D bioprinting strategies for the regeneration of functional tubular tissues and organs.Bioengineering (Basel)2020723210.3390/bioengineering7020032 32244491
    [Google Scholar]
  103. SearsN.A. SeshadriD.R. DhavalikarP.S. Cosgriff-HernandezE. A review of three-dimensional printing in tissue engineering.Tissue Eng. Part B Rev.201622429831010.1089/ten.teb.2015.0464 26857350
    [Google Scholar]
  104. Samrat ChauhanL.K. Navpreet Kaur, Randhir Singh, Potential Anti-Arthritic Agents From Indian Medicinal Plants.Res. Rev. J. Pharm. Pharm. Sci.2015431022
    [Google Scholar]
  105. MiriA.K. MirzaeeI. HassanS. Mesbah OskuiS. NietoD. KhademhosseiniA. ZhangY.S. Effective bioprinting resolution in tissue model fabrication.Lab Chip201919112019203710.1039/C8LC01037D 31080979
    [Google Scholar]
  106. MataiI. KaurG. SeyedsalehiA. McClintonA. LaurencinC.T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering.Biomaterials202022611953610.1016/j.biomaterials.2019.119536 31648135
    [Google Scholar]
  107. ZhangY.S. HaghiashtianiG. HübscherT. KellyD.J. LeeJ.M. LutolfM. McAlpineM.C. YeongW.Y. Zenobi-WongM. MaldaJ. 3D extrusion bioprinting.Nature Reviews Methods Primers2021117510.1038/s43586‑021‑00073‑8
    [Google Scholar]
  108. ArefinA.M.E. KhatriN.R. KulkarniN. EganP.F. Polymer 3D printing review: Materials, process, and design strategies for medical applications.Polymers (Basel)2021139149910.3390/polym13091499 34066639
    [Google Scholar]
  109. NaserM. NasrM.M. ShehataL.H. Updates of Diabetic Foot Ulcer (DFU).Management Critical Review2021
    [Google Scholar]
  110. MasriS. ZawaniM. ZulkifleeI. SallehA. FadilahN.I.M. MaarofM. WenA.P.Y. DumanF. TabataY. AzizI.A. Bt Hj IdrusR.B.H. FauziM.B. Cellular interaction of human skin cells towards natural bioink via 3D-bioprinting technologies for chronic wound: A comprehensive review.Int. J. Mol. Sci.202223147610.3390/ijms23010476 35008902
    [Google Scholar]
  111. AlonzoM. AnilKumarS. RomanB. TasnimN. JoddarB. 3D Bioprinting of cardiac tissue and cardiac stem cell therapy.Transl. Res.2019211648310.1016/j.trsl.2019.04.004 31078513
    [Google Scholar]
  112. DzoboK. Advances in regenerative medicine and tissue engineering: Innovation and transformation of medicine.Stem Cells Int.20182018249584810.1155/2018/2495848
    [Google Scholar]
  113. GomesM.E. RodriguesM.T. DominguesR.M.A. ReisR.L. Tissue engineering and regenerative medicine: new trends and directions—a year in review.Tissue Eng. Part B Rev.201723321122410.1089/ten.teb.2017.0081 28457175
    [Google Scholar]
  114. WobmaH. Vunjak-NovakovicG. Tissue engineering and regenerative medicine 2015: a year in review.Tissue Eng. Part B Rev.201622210111310.1089/ten.teb.2015.0535 26714410
    [Google Scholar]
  115. SuX. WangT. GuoS. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field.Regen. Ther.202116637210.1016/j.reth.2021.01.007 33598507
    [Google Scholar]
  116. ChaudhryM.S. CzekanskiA. In-situ bioprinting of skin - A review.Bioprinting202331e0027110.1016/j.bprint.2023.e00271
    [Google Scholar]
  117. AlbannaM. BinderK.W. MurphyS.V. KimJ. QasemS.A. ZhaoW. TanJ. El-AminI.B. DiceD.D. MarcoJ. GreenJ. XuT. SkardalA. HolmesJ.H. JacksonJ.D. AtalaA. YooJ.J. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds.Sci. Rep.201991185610.1038/s41598‑018‑38366‑w 30755653
    [Google Scholar]
  118. Di BellaC. DuchiS. O’ConnellC.D. BlanchardR. AugustineC. YueZ. ThompsonF. RichardsC. BeirneS. OnofrilloC. BauquierS.H. RyanS.D. PivonkaP. WallaceG.G. ChoongP.F. In situ handheld three‐dimensional bioprinting for cartilage regeneration.J. Tissue Eng. Regen. Med.201812361162110.1002/term.2476 28512850
    [Google Scholar]
  119. ZhuZ. NgD.W.H. ParkH.S. McAlpineM.C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies.Nat. Rev. Mater.202061274710.1038/s41578‑020‑00235‑2
    [Google Scholar]
  120. Goodarzi HosseinabadiH. DoganE. MiriA.K. IonovL. Digital light processing bioprinting advances for microtissue models.ACS Biomater. Sci. Eng.2022841381139510.1021/acsbiomaterials.1c01509 35357144
    [Google Scholar]
  121. LeeM. RizzoR. SurmanF. Zenobi-WongM. Guiding lights: tissue bioprinting using photoactivated materials.Chem. Rev.202012019109501102710.1021/acs.chemrev.0c00077 32662642
    [Google Scholar]
  122. BhardwajN. ChouhanD. MandalB.B. Tissue engineered skin and wound healing: current strategies and future directions.Curr. Pharm. Des.2017232434553482 28552069
    [Google Scholar]
  123. Oualla-BachiriW. Fernández-GonzálezA. Quiñones-VicoM.I. Arias-SantiagoS. From grafts to human bioengineered vascularized skin substitutes.Int. J. Mol. Sci.20202121819710.3390/ijms21218197 33147759
    [Google Scholar]
  124. FayyazbakhshF. LeuM.C. A brief review on 3D bioprinted skin substitutes.Procedia Manuf.20204879079610.1016/j.promfg.2020.05.115
    [Google Scholar]
  125. JiangS. Decellularized extracellular matrix: A promising strategy for skin repair and regeneration.Engineered Regeneration2023
    [Google Scholar]
  126. YeoM. SarkarA. SinghY.P. DermanI.D. DattaP. OzbolatI.T. Synergistic coupling between 3D bioprinting and vascularization strategies.Biofabrication202416101200310.1088/1758‑5090/ad0b3f 37944186
    [Google Scholar]
  127. CuiX. LiJ. HartantoY. DurhamM. TangJ. ZhangH. HooperG. LimK. WoodfieldT. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel‐based bioinks.Adv. Healthc. Mater.2020915190164810.1002/adhm.201901648 32352649
    [Google Scholar]
  128. MoncalK.K. OzbolatV. DattaP. HeoD.N. OzbolatI.T. Thermally-controlled extrusion-based bioprinting of collagen.J. Mater. Sci. Mater. Med.20193055510.1007/s10856‑019‑6258‑2 31041538
    [Google Scholar]
  129. DattaS. SarkarR. VyasV. BhutoriaS. BaruiA. Roy ChowdhuryA. DattaP. Alginate-honey bioinks with improved cell responses for applications as bioprinted tissue engineered constructs.J. Mater. Res.201833142029203910.1557/jmr.2018.202
    [Google Scholar]
  130. TruccoD. SharmaA. ManferdiniC. GabusiE. PetrettaM. DesandoG. RicottiL. ChakrabortyJ. GhoshS. LisignoliG. Modeling and fabrication of silk fibroin–gelatin-based constructs using extrusion-based three-dimensional bioprinting.ACS Biomater. Sci. Eng.2021773306332010.1021/acsbiomaterials.1c00410 34101410
    [Google Scholar]
  131. Yuce-ErarslanE. TutarR. İzbudakB. AlarçinE. KocaagaB. GunerF.S. EmikS. Bal-OzturkA. Photo-crosslinkable chitosan and gelatin-based nanohybrid bioinks for extrusion-based 3D-bioprinting.Int. J. Polym. Mater.202372111210.1080/00914037.2021.1981322
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010306310240605050448
Loading
/content/journals/cpb/10.2174/0113892010306310240605050448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test